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ON THE DISTRIBUTION OF SOME GENERALIZED
SQUARE-FULL INTEGERS

D. SURYANARAYANA

Let a and b be fixed positive integers. Let n=pfίp^ p?*
be the canonical representation of n > 1 and let Ra,b denote
the set of all n with the property that each exponent
M l ^ i ^ r) is either a multiple of a or is contained in the
progression at + b, t ^ 0. It is clear that J?2,3 = L, the set
of square-full integers; that is, the set of all n with property
that each prime factor of n divides n to at least the second
power. Thus the elements of Ra,b may be called generalized
square-full integers. This generalization of square-full
integers has been given by E. Cohen in 1963, who also
established asymptotic formulae for JBα,&(#), the enumerative
function of the set Ra,b, in various cases. In this paper, we
improve the 0-estimates of the error terms in the asymptotic
formulae for Ra,b(χ) established by E. Cohen in some cases
and further improve them on the assumption of the Riemann
hypothesis.

l Introduction. An integer n > 1 is called square-full if in

the canonical representation of n into prime powers each exponent
is ^ 2. Let L denote the set of square-full integers. Let x denote
a real variable ^ 1 and let L{x) denote the number of square-full
integers <iχ. For the work done on the asymptotic formula for
L(x) or for Lk(x), the number of fc-full integers ^x (an integer n>l
is called k-ίull, if in the canonical representation of n each exponent
^ k) we refer to the bibliography given by E. Cohen [2] and by
E. Cohen and K. J. Davis [3] In particular, for the best known
results on the 0-estimates of the error term in the asymptotic
formula for L(x), we refer to the paper by the author and R. Sita
Rama Chandra Rao [7] and also to the recent paper by the author
[8].

In 1963, E. Cohen [1] generalized square-full integers in the
following way: Let a and b be fixed positive integers. Let n =
p^Pz2 - Prr and let Ra>b denote the set of all integers n with the
property that each exponent at (1 ^ i ^ r) is either a multiple of a
or is contained in the progression at + b, t^O. It is clear that
i?2>3 = L. Let ra>b denote the characteristic function of the set Ray,
that is, ra>b(n) = 1 or 0 according as neRa,b or n&Ra,b. Also, let
Ra,b(%) denote the number of integers n ^ x such that n e Ratb. The
following results have been established by E. Cohen (cf. [1],
Theorems 2.1, 3.1 and 3.2):
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If a < 26, 6 E£ o (mod a), then

(1.1) RuΛ{x) = « * ^ + 4 > V +

according as 6 > α- or 6 < a; if α > 26, then

(1.2) Λβf6(s) - β*xι/b + 0(a;1/2δ) ,

the constants α* and /9* are defined by

(1.3) a* = ζ(b/a)/ζ(2b/a) and β* = ζ(α/6)/ζ(2) ,

where ζ(β) in the Riemann Zeta function defined by ζ(s) = Σ?=i
for s > 1 and

(1.4) ζ(s) = —^— - s\ (t - [t\)t~s-λdt for 0
s — 1 Ji

If 2α > 6 > a, b ^ o (mod α), then for x ^ 2,

|Ό(a;1/2δ)

(1.5)

0(ί»1 / 3 α l o g a?) ,

according as 3α > 26, 3α = 26 or 3a < 26.
If 6 > α, 6 & o (mod α), then for x ^ 2,

(1.6) 0(a;1/26 log a?)

0(a?2/(25+5α)) ,

according as 26 < 5α, 26 = 5α or 26 > 5α.
The object of this paper is to improve the 0-estimates of the

error terms in the above asymptotic formulae for Ra,b(%) applying
the method adopted in [6] or [7] and the results due to H.-E. Richert
[5] on the divisor problem for τa,h(n), namely

(1.7) Σ τath(n) = C(6/α)α1/α + ζ(a/b)xί/b + O(s') ,

where τa,h(n) = Σ ^ i = ί l 1, the summation being taken over all ordered
pairs (d, δ) of positive integers d and δ such that daδb = n. I t is
known that θ.£ 2/(3α + 36) or θ ^ 2/(5α + 26), according as 6 < 2α
or 6 > 2α. These results on the upper bound of θ have been
established by H.-E. Richert (cf. [5], Satz 2). As for as the lower
bound of θ is concerned, it is known that θ ^ l/(2α + 26) and this
result has been established by E. Kratzel (cf. [4], Satz 7).

The improvements in the 0-estimates of the error terms are
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given in Theorem 3.1, Remark 3.1, Theorem 3.3 and Remark 3.3,
which are further improved on the assumption of the Riemann
hypothesis in Theorem 3.2, Remark 3.2, Theorem 3.4 and Remark
3.4.

Finally, we mention that applying the method adopted here,
together with the results of H.-E. Richert and E. Kratzel stated
above, we can improve the O-estimates of the error terms in
Theorems 3.1 and 3.2 of E. Cohen [2] also. In fact, he [2] establishes
in Theorem 3.1, an asymptotic formula for the enumerative function
of the set Sa>b (when b > a > 1, (<&,&) = 1), which like Rayh reduces
to L when a = 2 and 6 = 3.

2* Preliminaries* In this section we state some lemmas which
have been established already and which we need in our present
discussion. First, we state the following best known estimate con-
cerning the average of the Mδbious function μ(n) established by
Arnold Walfisz [10]:

LEMMA 2.1 (cf. [10], Satz 3, p. 191). For x ^ 3,

(2.1) M(x) = Σ μ(n) = O(xδ(x)) ,
n^x

where

(2.2) δ(x) = exp {- A log3/5 x(ίog log x)~ι/δ} ,

A being a positive absolute constant.

LEMMA 2.2 (cf. [6], Lemma 2.2). For x ^ 3 and any s > 1,

(2.3) Σ fifcϊ = 1 +
*s* ns ζ(s)

LEMMA 2.3 (cf. [9], Theorem 14-26(A), p. 316). If the Riemann
hypothesis true, then for x ^ 3,

(2.4) M{x) = Σ μ{n) = 0(x1/2ω(x)) ,

where

(2.5) ω(x) = exp {A log α?(log log x)*1} ,

A being a positive absolute constant.

LEMMA 2.4 (cf. [6], Lemma 2.5). If the Riemann hypothesis is
true, then for s > 1,
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(2.6) Σ ^ = T p r + 0(α;1/2

*£» ws ζ(s)

LEMMA 2.5 (cf. [1], Lemma 2.1). If b Ξ£ O (mod a), then

(2.7) r β f 6 (w)= Σ μ(d)τatb(δ).
d2bδ=n

3* Main results* In this section, we improve the O-estimates
of the error terms. First we treat (1.5).

THEOREM 3.1. For x ^ 3, 2a > b > a, b =έ o (mod a), we have

(3.1) Λ..*(aO = a*%1/a + /3*α;1/δ + 0(xl/2bd(x)) ,

* α^d /3* are grii β^ 6̂ / (1 3) and d(x) is given by (2.2).

Proof. By Lemma 2.5, we have

RaM = Σ rβ,>(n) = Σ Σ μ(d)τa,h(δ)

- Σ
2)

Let z = xί/2b. Further, let 0 < p = ô(a?) < 1, where the function
p will be suitably chosen later. If d2bδ ^ a?, then both d> pz and
δ > p~2b cannot simultaneously hold. Hence

#..»(») = Σ μ(.d)τa,b(d) + Σ μ(d)τaΛ(δ) - Σ μ(d)τa,h(δ)
/Q Q\ d2bδ^x d2bδ^χ d^pz
\ό ό) d^pz δ£p~2b δ^p~~2b

= JX1 -f- K2 — xv 3 >

say.

Now, by (1.7),

Σ ^ +

Σ

Since 2α > b and 6» ̂  2/(3α + Zb), we have 260 < 1. Hence
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Now, applying Lemma 2.2 for s = 2b/a > 1 and s = 2, we obtain
from (3.4) that

+ ζ(alb)xι">\-±-

(3.5) + Q(pι-Utz)

since b> a implies p'1 < p1-*1";
We have by Lemma 2.1,

Σ j«(d)r.,»(δ) = Σ τ.,6(«) Σ
2b b

, f Γ)

Since δ(a?) is monotonic decreasing and (x/m)mb Ξ> pz, we have
8{(%lm)mi) £ δ(pz). Further, by (1.7) and partial summation, we^get
Σ « S P - » τa,b(m)m-1/2h = (Kp1-""). Hence,

(3.6) R2 =

Also, we have by Lemma 2.1 and (1.7),

Rz = Σ μid) Σ
is 2

Hence by (3.3), (3.5), (1.3), (3.6) and (3.7), we obtain

(3.8) Raιb(x) = a*tf>° + β*xί/b + o(ρι-2b/azδ(pz) +

Now, we choose

(3.9) p = p(x) = {δ(ajι/46)}a/26 ,

and wri te

= Iog s/5(a;1/4*){loglog(a; ι /4δ)}-1/5 ,

( 3 ' 1 0 ) = (A.Y'V' ίt; - log 46)-1/5 ,

where % = log x and v = log log *.
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(3.11) For v ^ 2 log 46, that is, u ^ 1662, x ^ em\

we have v~1/δ ^ (v - log 46)~1/δ ^ (v/2)~1/δ, so that

/ 1 \3/5 / 1 '
/q io\ I ) Λ/3/5..-1/5 < ff^\ <r I x

V46/ \4δ

We assume without loss of generality that the constant A in
(2.2) is less than unity.

By (3.9), (2.2) and (3.10), we have

(3.13) p =

By (3.11), we have α/2δ(l/4δ)3/V/5(ι;/2)"1/5 ^ u/Ab. Hence by (3.12),
(3.13) and the above,

ί An / Λ \ 3 / 5 / v \~1/δ) ( v)

~~ ^ 26 \46/ \ 2 / ) ~~ ^ 46)

so t h a t p ^ α;~1/4δ. Hence

(3.14) pz ^ α; ι/2δ-1/4δ - α;1/4& .

Since δ(a?) is monotonic decreasing δ(pz) ^ δ(xί/4h) = lo
2 δ / σ, and so

by (3.12) and (3.13), we have

( An / Λ \ 3 / 5

(3.15) p^^δipz) £ p ^ exp - ^ ( 4 ) "8/β"-1/β

1 26 \4δ/

Hence the first 0-term in (3.8) is equal to

Aaί 1 >
"2δ"Viδ^

since 0 < 1 - 26(? < 1. By (3.12) and (3.13), we see that the second
0-term in (3.8) is also of the above order. Thus, if Aa>h(x) denotes
the sum of the two 0-terms in (3.8), we have

(3.16) Aa>h{x) = 0(a;1/2δ exp {-B log3/5 α;(log log x)~1/5}) ,

where B = Bah = Aa(l — 2bθ)/2b is a positive constant.

Hence Theorem 3.1 follows by (3.8) and (3.16).

REMARK 3.1. Following the same procedure adopted in the proof
of Theorem 3.1 in the case 6 > 2a also, we obtain improvements in
the error term of Ra,h(x) in the sub cases where we have θ < 1/26
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(for example, when 26 < 5α, we have θ <: 2/(5α + 26) < 1/26) and in
these cases, the asymptotic formula for RaΛ(x) in given by

(3.17) Ra,b(x) = a*x1/a + β*xι/b + 0(x1/2hδ(x)) ,

where α* and β* are given by (1.3) and δ(x) is given by (2.2).
In fact, we get an improvement in the O-estimate of (1.6) above

in the first case from 0(x1/2b) to 0(1/2hδ(x)).

THEOREM 3.2. // the Riemann hypothesis is true, then the error
term Aa>h{%) in the asymptotic formula for Ra>b(x) in (3.1) is
0(x{2~aθ)/{4b+a~4abθ)ω(x)), where θ is given by (1.7) and ω{x) is given by
(2.5).

Proof. Following the same procedure adopted in Theorem 3.1
and making use of (2.6) instead of (2.3), we obtain

(3.18) Aa>b(x) = 0(p1/2~2b/az1/2ω(pz)) + Oip^^z) .

Now choosing p = s-«/<«+*-*«**> f w e see that 0 < p < 1 and
pi/2-2b/azi/2 ^ pi-*bθz = χ(2-aθ)/nb+a-iabθ)# g i n c e ω ^ i g m o n o t o i i i c increasing

and pz < z, we have ω(pz) < ω(z) = ω(xί/2b) < ω(x).
Hence by (3.18) and the above discussion, we have Aa>h(x) ~

0(x{2-aθ)/{4b+a-iamω(%)), so that Theorem 3.2 follows.

REMARK 3.2. If the Riemann hypothesis is true, then the error
term Aaih(x) in the asymptotic formula for Ra,h{x) in (3.17) is
0(x{2-aθ)nib+a-iabθ)ω(x)), where ω(x) is given by (2.5).

THEOREM 3.3. For x ^ 3, 6 < a < 26, 6 ^ o (mod a), we have

(3.19) Ra,b(x) = /3*a;1/& + a*x1/a + 0(x1/2bd(x)) ,

where a* and β* are given by (1.3) and δ(x) is given by (2.2).

Proof. Starting with Lemma 2.5 as in the proof of Theorem
3.1, we obtain

Now, choosing p = p(x) = {δ(x1/4b)}1/2 and fix) the same as in (3.10)
and arguing on similar lines as in the proof of Theorem 3.1, we get
Theorem 3.3.

REMARK 3.3. Following the same procedure adopted in the proof
of Theorem 3.3, in case a > 26 also, where 6 ̂  o (mod α), we obtain
the following:
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(3.20) Rath(x) = β*x1/b + 0(x1/2hδ(x)) .

COROLLARY 3.3.1 (6 = 1) (cf. [1], Corollary 2.1). // a > 1, then
the set Ra = RaΛ of the integers each of whose exponents is ==o or
1 (mod a) has asymptotic density ζ(α)/ζ(2); more precisely

(3.21) Ra(x) =

THEOREM 3.4. // £foβ Riemann hypothesis is true, then the error
term ΔOth(x) in the asymptotic formula for Ra,b(x) given by (3.19) is
0(xι2~hθ)/biδ~4hθ)ω(x))f where θ is given by (1.7) and ω(x) is given by
(2.5).

Proof. By making use of (2.6) instead of (2.3) in the proof of
Theorem 3.3, we obtain Δa>b(x) = 0(p-*/2z1/2ω(pz)) +

Now, choosing p — 3-1/(»-«*> and a r g u i n g as in Theorem 3.2, we
get Theorem 3.4.

REMARK 3.4. If the Riemann hypothesis is t r u e , then the er ror
term Δa>b(x) in the asymptot ic formula for Ra,h(x), given by (3.20) is
0(α?(2α-δ)/&(5α~4δ)o>(α?)).

This resul t follows from Theorem 3.4 above, if we show t h a t
a > 26 implies θ = I/a. Now, a > 26 implies t h a t 6 < 2α, so t h a t
by H.-E. Richert ' s result mentioned in § 1 , θ <: 2/(3α + 36) < 1/α and
hence (1.7) reduces to Σ ^ * τatb(n) = ζ(a/b)x1/h + 0(^1 / α), which implies
that <9 = 1/α.
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