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AFFINE OPEN ORBITS, REDUCTIVE ISOTROPY GROUPS,
AND DOMINANT GRADIENT MORPHISMS;

A THEOREM OF MIKIO SATO

FRANK SERVEDIO

An algebraic proof is given for a theorem of M. Sato.
The theorem gives criteria for the open orbit in a prehomo-
geneous vector space under a reductive group to be an affine
variety. The following conditions are equivalent:

1. 0(G) the open orbit is an affine variety.
2. Gz the isotropy subgroup of X in O(G) is reductive.
3. There exists a semi-invariant form P of degree r ^ 2

such that gradP: V->V* is a dominant morphism of affine
varieties.

In 1965, Mikio Sato stated a theorem giving characterizations of
open affine orbits in real or complex vector spaces under the actions
of reductive linear Lie groups. The statement has not appeared
published in a European language, but appeared as a remark in
Japanese in [8]. "Let (G, V) be a prehomogeneous pair; assume
that G is a reductive real or complex algebraic group. The follow-
ing conditions are equivalent:

( i ) Hx, the isotropy subgroup of X in the open dense orbit,
is reductive.

(ii) S, the union of singular G-orbits in V, is a union of hyper-
surfaces Z{PX) U Z(P2) U U Z(PJ.

(iii) There exists a semi-invariant form P for G such that the
mapping grad P/P: V - Z(P) —> F* is dominant."

By a prehomogeneous pair (G, V) we mean an algebraic subgroup
G £ GL{ V) acting on V, a finite dimensional vector space over R or
C such that there is an open dense orbit O(G) in V; see [9]. A
proof of the theorem was not known. The result is striking in that
the conditions are superficially quite different; also they are entirely
algebraic whereas the theorem appears in the Sugaku article [8]
where the techniques are analytic. The theorem is restated and
provided with an algebraic proof. The author wishes to gratefully
acknowledge the observations and assistance of Takuro Shintani.

Let k be an algebraically closed field of characteristic 0. k shall
denote the multiplicative group k — {0}. V shall always denote a
finite dimensional k-vector space and F* shall be its &-dual. GaGL(V)
shall denote a closed algebraic subgroup defined over k. The
topologies used are always the Zariski topologies on the spaces. A
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prehomogeneous pair ((?, F) is defined as above with this modification.
Let k[V] denote the graded affine ifc-algebra of polynomial functions
on F. If Pek[V], reserve the notations"Z{P)" for the Zariski
closed subset of V consisting of zeroes of the function P and "?7P"
for the Zariski open subset UP = V - Z(P). If P Φ 0, UP is known
to be an affine algebraic variety defined over k, Zariski dense in V;
see [7]. Let "0{G)" denote the Zariski open orbit of G in V for a
prehomogeneous pair (G, V). G acts as a group of automorphisms
of k[V] by \P(X) = P{g~'X) for all geG, Pek[V] and Xe V. P
is semi-invariant for G if there exists a χ 6 k[G] which is a unit in
k[G] such that for all g e G, XgP = χtoΓM?. χ:G->k" is a rational
character. Define the morphism grad P: V—+ V* of the canonical
affine variety structures on V and F* by setting (grad P){X) to be
the element of F* given by (grad P){X){Z) = (DZP)(X), for all Z e F,
where Dz: k[ V] —> k[ V] is the ^-derivation of degree —1 on the k-
algebra k[V\. k[V] is canonically isomorphic to the symmetric
algebra Sfc(F*) and in either description Dz is defined by requiring
DZ(Y) = Y(Z) for all F e F * . If a basis & - {Xlf , Xn} is chosen
in 7 and a dual basis ^ * = {Ylf , Yn} in F* such that Yβ{X%) =
δi3-f then Λ[F] is naturally isomorphic to the polynomial algebra
k[Ylf •••, Yn] and (gradP)(X) = ^=ldPjdYi(X)Yi, or in coordinates
(grad P){X) = OP/3 F,(X), , 3P/3 Γ%(

SATO'S THEOREM. Let ((•?, F) be a prehomogeneous pair such
that G is a reductive algebraic group containing k'Iv. The follow-
ing are equivalent:

(1) 0(6?) is an affine variety defined over k.
(1') O(G) is equal to UP, for P a nonzero semi-invariant form

of degree r ^ 2 for G.
(2) For XeO(G), Gx = {g eG\gX = X}, ίfce subgroup fixing

X in G, is a reductive closed subgroup of G.
(3) There exists a nonzero form P of degree r ^ 2 in k[V]

semi-invariant for G such that grad P:V—>V* is a dominant
morphism.

(3') There exists a nonzero form P in k[ V] of degree r ^ 2
semi-invariant for G such that grad P/P: V—*V*, X\-+1/P(X) (gradP)
(X) is a dominant rational mapping.

REMARKS AND EXAMPLES. (a ) The condition that grad P: F—> F*
is a dominant morphism is equivalent to the condition that the forms

i = 1, , w be algebraically independent over k.

(b) LEMMA. For a form Pek[V], gradP F — F * is a
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dominant morphism of affine algebraic varieties if and only if
grad P/P: V—+V* is a dominant rational mapping.

Proof. The proof is straightforward in view of the fact that
the dominance of the rational mapping is equivalent to the algebraic
independence of the rational functions dP/dYJP; i = 1, •••, n.

This lemma enables us to conclude immediately that (3) and (3')
are equivalent.

(c) The theorem as stated in the Sugaku article [8], contains
a "non-fatal" error. Statement "(ii)" lacks the requirement that m,
the number of hypersurfaces, be greater than 1 or if m = 1, that
the degree of the form Pγ be greater than 1.

( d) EXAMPLES. ( i ) If G = GL(V) and dim V ^ 2, then all
statements (1), •••, (3') are false; if dim V = 1, then all statements
are true with G = k'f Gx = 1, and P = Y\.

(ii) Let R = Y\ + Y\ + + Yl be a quadratic form on kn

f

G — k'Iv-O(ri) where O(n) is the orthogonal group of R. Then all
statements of the theorem are true. (1) and (1') are applications of
Witt's theorem; Gx = O(n — 1) a reductive group and grad R gives
a linear isomorphism since R is a nondegenerate quadratic form.

(iii) For V = k4x3 and G = fc#IF Sp(4) x 0(3) there is a semi-
invariant form P for G of degree 4. With X = (X19 X2, X3) and
X, e k\ P(X) = [Xί9 X2]

2 + [X2, X3]
2 + K , ^ J 2 where [, ] is the skew

bilinear form on k4 defining the symplectic group, Sp (4). In this
case we have

(1) 0(G) is not affine.
"1 0 OΊ

(1') O(G) S UP; in fact X = 0 0 0
0 1 0

_0 0 0.
of X has codimension 2 in UP. O(G) c UP — GX.

Γl 0 0
0 1 0

6 Up but GX, the G-orbit

(2) For Σ = 0 0 1 G O(G), Gx is a unipotent algebraic group

J) 0 OJ
of dimension 2.

(3) grad P is not a dominant morphism. The closure of the
image of gradP has codimension 2 in V*. See [8], page 141.

Proof of Sato's theorem. (1) if and only if (Γ). Only "(1)
implies (1')" needs justification. Since O(G) is open in V and is an
affine variety, by the result in [5], V — O(G) is an algebraic set of
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pure codimension 1. Since k[V] is a unique factorization domain,
γ-O(G) = Z(P) by [7]. Thus O(G) = UP for some P ^ 0 in k[V].
Clearly P must be G-semi-invariant, and P must be a form since
k'lγ c G. The form P must have degree r ^ 2; for if r = 1, we
may assume P = Γ, and then C7P - { I e F | ΓX(X) Φ 0}. ^(ΓJ =
{Je V\ Yι(X) — 0} is a G-invariant subspace of codimension 1. Since
G is reductive there exists a complementary G-invariant subspace,
a line Z( Γ"2, , Yn) on appropriate choice of basis &. But
^(F 2, , Yn) Π DVi is nonempty unless dim V = 1, where the theorem
has been verified. However, Z( Y"2, , F J Π ί/Fl being nonempty
contradicts O(G) = £7P.

(2) implies (1). Since Gx is a closed subgroup of G acting on
G by right translation and since Gx is reductive, Mumford's theorem
enables us to conclude that the quotient variety G/GΣ is an affine
variety; see [4]. However, the action of Gx on the image of the
orbit mapping Gor: XG —> O(G) is isomorphic

g\—>gX

to the action of Gx on G by right translation and thus is a quotient
morphism in the sense of [1]. Hence, G/Gx = O(G). Therefore,
O(G) is affine.

(1) implies (2). As above, G/Gx ^ O(G). With G reductive
and k of characteristic 0, and O(G) affine, Theorem 3.5 in [2] allows
us to conclude that Gx is reductive.

The equivalence of (3) and conditions (1) and (2) is seen more
easily if the following lemmas are established. First, fix some nota-
tion. Let AeΉ.omk(V, W), "A*" shall always denote the transpose
of A. Thus A* eHomfc(W*, V*) is defined by the requirement that
(A*Y)(X) = Y(AX) for all Xe V and all Y e W*.

LEMMA 1. There is a k-linear isomorphism T: V—> F* such
that T* = T and an automorphism i:G—+G of order 2 over k
such that for all geG, and for all XeV, T(gX) = (i{g)*)'ιT(Σ).

Proof. There is a k = C version of this in [9], Lemma 1.1 on
page 135. One can justify the result for k by proving Lemma 2
below and then using it to obtain the result for G, whose Lie
algebra is L by imitating the techniques used in [10].

LEMMA 2. Let L be a reductive algebraic Lie subalgebra of
LGL{V), the Lie algebra of GL(V). There is a k-linear isomor-
phism T: V —* F* such that T = T* and a Lie algebra automor-
phism ir of L of order 2 such that for all AeL, for all Xe V,
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T(AX) = -ir{A)*T(X).

Sketch of proof of Lemma 2. L = z x 1/ where z is an algebraic
torus and U is the derived subalgebra of L, λ -split semi-simple; see
[3]. For i', send elements of z to their negatives and specify i' on
L' by sending each root to its negative and extend on a system of
canonical generators of U as described in [6]. T is specified by
sending each element of a basis of weight vectors of 1/ in V to
its correspondent in a dual basis of V*. This suffices to verify
Lemma 2.

LEMMA 3. If P is a semi-invariant form in k[V] for G, then
for all geG, for all X,UeV, graά P(gX)(gU) = χ(g) grad P(X)(U).
Equivalently, for all geG, for all l e F , χ(g)g*~'grad (P) =
grad P(gX).

Proof. Let t be transcendental over k. gradP(X)(Z7) is the
coefficient of t in the &[£]-polynomial P(X + tU); see [11]. The
identity χ(g)P(X + tU) = P(g(X + tU)) = P(gX + tgU) establishes the
lemma.

Let G* = {g*\geG}. From Lemma 1, it follows that (G*, 7*)
is a prehomogeneous pair. Let O(G*) be the open orbit in V*. Since
k is algebraically closed and T* = T, there exists a choice of basis
& = {-Xi, ., XJ such that 2 W = {ΓJEΊ, , TXn} is the dual basis
to &, namely (TXt)(Xj) = <?̂  for i, i = 1, •••,%. Such a basis ^
will becalled an orthogonal basis. Any change of basis by an
orthogonal transformation results again in an orthogonal basis. As
above, let ^ * = {Ylf , F%} denote the dual basis of έ%.

LEMMA 4. For (G, V) prehomogeneous with G reductive and P
a semi-invariant for G, there exists an orthogonal basis <%? for V
with X1 e O(G) and c Φ 0 such that grad P(-Xi) = cY1 if and only if
gradP: V—> V* is a dominant morphism.

Proof. For a basis ^ let the n x 1 matrix of coordinates or
basis coefficients for l e F b e denoted by X?, the n x n matrix of
A 6 End*; (F) be denoted by A^ and the 1 x n matrix of dual basis
coefficients of Γ e F * be denoted by YΛ. Note that Y(AX) =
Γ^JUX^. For an orthogonal basis ^ , Γ^ansp-e = (T~ιY)^. The
conditions of Lemmas 1 and 3 give i{g)X = T~ιg~ι*TX and

grad P(</X)Sanspose = (χ(^)Γ-1^-1* gradP(X))^ .

Hence if ^ is an orthogonal basis and Xle0{G) and grad P(XX) =
with c Φ 0, then
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Since i is an automorphism of G and Xx e O(G), the first column of
coordinate functions of G in basis & are algebraically independent.
Hence the coordinate functions of grad P are algebraically indepen-
dent.

Conversely, if gradP is dominant, then the rational mapping
gradP/P: F-> F* has the property that grad P/P(O(G)) contains a
Zariski open subset U of F* such that k'UaU. Hence by the
proposition below grad P/P(O(G)) contains a vector Yγ which may
be completed to an orthogonal basis. Let XL be such that

Since 0(G) c UP,

0 = 1.
r P

Now complete {XJ to an orthogonal basis for V.

PROPOSITION. Let U be a Zariski open subset of V such that
k'UcU, and let R be a nondegenerate quadratic form on V. Then
U contains an orthogonal basis with respect to R.

Proof. U f] UR is open and nonempty. Therefore there is an
X, 6 U Π UR such that R(XX) = 1. Let Y, = R(Xίf ) be the linear
(polynomial) function on V given by the symmetric bilinear form
associated to R. Z(Yλ) is the closed subset of V with underlying
point set equal to the vector space Yϊ. Rx( — R restricted to Yx) is
a nondegenerate quadratic form. Consider C7n URΓ\Z(Yύ If ^ e

latter is nonempty choose X2 as above in the choice of X1 for this
vector space Yi. lίUΓ\UBΐ\ Z(Yλ) is empty, then Z(Yγ) c Z(R) U S,
where S = V — U. Z{Y^) is an irreducible closed set. Hence
Z(Y,) aS = Z(R19 , RJ, where Ri9 i = 1, , m are forms in k[V].
Equivalently the following inclusion of ideals holds;

It is clear now that an X[ could be chosen, as was X1 for which
(Y[)^)(Rlf •••, i?J so that Uf] UEΓιZ(Y[) is not empty. Proceed
inductively until an orthogonal basis is chosen in V.

In characteristic 0, it is well known that if a closed algebraic
subgroup of GL(V) has a reductive Lie algebra, then that subgroup
is reductive; see [4], Proposition 3.31 and [3].
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(3) implies (2). For this part of the proof we use the Lie
algebras of GL{V), G and Gx which we denote by LGL(V), L and
Lx respectively. These are algebraic Lie algebras over k. We show
Gx reductive by showing Lx reductive. LX == {AX\AeL} is canoni-
cally isomorphic to the tangent space of the orbit GX at X. Hence
Lx = {AeL\AX = 0}. For XeO(G)y Lx has codimension n in L
since the dimension of the orbit O(G) = GX is n. We use the
following criterion of reductivity for algebraic Lie algebras.

LEMMA 5. Let L c LGL{ V) be an algebraic Lie subalgebra. L
is reductive if and only if the trace form restricted to L x L is
nondegenerate.

Proof. See [3].

The trace form is nondegenerate when restricted to L. We need
show that the trace form restricted to Lx is nondegenerate for
XeOiG). We show that Lx can be defined under the trace form as
the subspace orthogonal and complementary to a subspace of L of
codimension n. As above, choose an orthogonal basis where Xx e O(G)
and grad P(XL) = cYlf c Φ 0. Since grad P(gX) = χ(g)g":~1 grad P(X),
we see that Lx = LgτadP{x) where LgτSiάP{x) = {Ae.L|A* gradP(X) = 0
in V). grad P is dominant implies that grad P(X^) lies in the open
orbit O(G*) in V* and hence Lgr&άP{Xl) is also of codimension n in L.
Hence LXl = LgT3LάP{Xl). With the basis chosen as above, AX1 = 0 if
and only if Atl = 0 f or i = 1, , n if and only if Trace AE13- = 0
for i = 1, , n where Eu is the n x n matrix with first row
(0, , 0,1, 0, , 0) with 1 in the ith place and other rows zero if
and only if Trace AE[ό = 0 where E[s = Elό modulo the annihilator
of L under the trace form and E[, e L. Let MXl be the subspace
spanned by E[j in L. The criterion LXl = LYι implies immediately
that LXl Π MXl = 0. Hence LXl is reductive.

(1') implies (3). We assume that O(G) = UP. Recall that the
dual pair ((?*, V*) is a prehomogeneous vector space with a cor-
responding form Qefc[F*] of degree r; Lemma 1 gives this. gradP
sends G orbits to G* orbits; i.e., grad P(GX) = G* grad P(JC) for
all Xe V. Lemma 3 implies this easily. Let R be the quadratic
form associated to the k-vector space mapping T: V —> F* of Lemma
1, so that R(X) = Γ(X)(X). We may choose an Xγ e O(G) Π ί7β and
assume that P(Xχ) = 1 and that Xx is a member of an orthogonal
basis &. Then P = FΓ + ΓΓ"1^ + + Γ ^ + P r with Pt e
k[Y2, •••, ΓJ of degree i. We compute easily that gradP(XJ =
rY, + Px. Since & is an orthogonal basis, Q = X[ + Xp'Qi + +

i + Qr where Qt e k[X2, , XJ is of degree i and is the cor-



544 FRANK SERVEDIO

respondent of P .̂ Thus Qi is P* with Y replaced by X. We establish
that Q(grad P(X1)) Φ 0. For any g e G,

Q(grad PigXJ) = Q(χ(g)g-1 * grad P(X,)) = χ(gYQ(g^ * (rY, + PJ) .

It suffices to compute Q(g * (rYΊ + PJ).

Y, + PJ) = X[(<7 * (rY, + PJ)
+ Xp(<7*(r Y, + P^Q^ff*^^ + PJ) + .. . + α ^ ^ r Γ , + PJ)

+ PJ + (^r^CrΓ, + PJflrQ^rΓ, + Pt)

- ( g g*x)\rY, + Px) + ( g ΛA)r"VΓ, + PJ^Q^rΓ, + PJ

+ .. . +^Q r(rF1 + P1)

- (rgn + tgMPdf + ( r ^ + g g^XiiPSJ^gQ^rY, + Px)

+ ••• + ̂ ( r Γ , + PJ .

The latter is a nonzero polynomial expression of the type

r'gli + flrlΓSUiίflO + + flrnSi(flf) + S0(sr)

with .Si(flO polynomial expressions in the coordinate functions glm with
(1, m) Φ (1,1). This polynomial cannot be the zero polynomial, since
otherwise gn is algebraically dependent on the gίm with (1, m) Φ (1,1)
and this contradicts that the point Xx e O(G). This completes the
proof of the theorem.

A description of all prehomogeneous pairs (Gf V) over k with G
acting irreducibly on V is being sought. The examples such as (iii)
with Sp (2ri), n^2, are the only ones known where there exists a
semi-invariant P and the condition O(G) £ UP maintains. We have
shown that grad P(O(G)) is contained in a proper G-invariant closed
sub variety of UQ in F*. In general gradP restricted to Z{P) fails
to have the property of being a dominant mapping to Z(Q) even
when the conditions of the theorem hold; an example is G = km

SL(n) x SL(n) acting on knxn with (c, gί9 g2)X = cg.Xg^1 and P =
determinant.
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