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ANOTHER NOTE ON EBERLEIN COMPACTS

E. MICHAEL AND M. E. RUDIN

An Eberlein compact is a compact space that can be
embedded in a Banach space with its weak topology. It is
shown that: If X is compact and if X= M1U M2 with Mi and
M2 metrizable, then M± Π M2 is metrizable and X is an Eber-
lein compact. This answers a question of ArhangeΓskiί.

1Φ Introduction* An Eberlein compact, or EC, is a compact

space1} which can be embedded in a Banach space with its weak
topology. For background and various properties of these spaces,
the reader is referred to [1] or the authors' preceding note [3].

Since every metrizable space can be embedded in a Banach
space with its norm topology, every metrizable compact space is
clearly an EC. The purpose of this note is to prove the following
stronger result, thereby answering a question of A. V. ArhangeΓskiϊ.

THEOREM 1.1. If X is compact, and if X = MX\J M2 with Mx

and M2 metrizable, then M1 Π M2 is metrizable and X is an EC.

In contrast to Theorem 1.1, a compact space which is the union
of three metrizable subsets need not be an EC, or even a Frechet
space2) (see [2, Example 6.2]3)). However, it was shown in [5] that
a compact space which is the union of countably many metrizable
subsets must at least be sequential (a property somewhat weaker
than being a Frechet space).

2* Proof of T h e o r e m 1JL We first show t h a t M = M ^ ^

metrizable. For i = 1, 2, let ^ be a ^-discrete—hence σ-disjoint—

base for Mt. For each £ 7 e ^ , choose an open set φt(U) in X such

that φlU) f]Mi = U. Let ^ - {ΦlU) ΓiMiUe^, i = l, 2}. Then <%?
is easily seen to be a ^-disjoint 1—m hence point-countable 1—m base
for M. Since M is compact, it must therefore be metrizable by a
result of A. S. Miscenko [4].

Since M is compact and metrizable, it has a countable base (Bn).
For each pair (m,n) such that Bm Π Bn = 0, pick an open .Fσ-set

1 All spaces in this paper are Hausdorff.
2 X is a Frechet space if, whenever x£A in X, then xn -»x for some xn € A.

Every EC is a Frechet space by a theorem of Eberlein and Smulian (see [1, Theorem
4.1]).

3 In this example, the three metrizable subsets are actually discrete, and one of
them is an open set whose complement is (necessarily, by Theorem 1.1) an EC.
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Vm>n in X such that BmaVm,n and Vm,nΠBn = 0 . Let T be collec-
tion of all such Vm,n.

Let Y — X — M. Then F is the union of the two disjoint, open
metrizable subsets X — M1 and X — M2, so Y is metrizable. Since
Y is open in X, it therefore has a (/-disjoint base ^ " such that
WdY for all T F e ^ λ Clearly each WzW" is an open F, in X.

Finally, let £f •= T \] *W. Then y is a σ-disjoint, separating
(in the sense of [3, Definition 1.3]) cover of X by open i*>sets, so
X is an EG by a characterization of H. P. Rosenthal (see [6, Theorem
3.1] or [3, Theorem 1.4]).

3* Concluding remarks*

(3.1) The proof of Theorem 1.1 actually establishes the following
somewhat sharper results.

(a) If X is regular, and if X = \Jn=1 Xn with each Xn having
a (/-disjoint base, then Γ\n=iXn has a σ-disjoint base.

(b) If X is compact, and if X = U~=i -X» w ^ h e a c ^ -X» metrizable,
then Π«=i-^» i s nietrizable.

(c) If X is compact, and X= X1\JX2 with Jϋ̂  and X2 having
(7-disjoint bases, then X has a σ-disjoint, separating collection of
open ίVsubsets.

Observe that not every EC staisfies the conclusion of (c), as can
be seen from the space of all points in {0, l}ωi which have at most
two nonzero coordinates.

(3.2). Somewhat in the spirit of Theorem 1.1, one can show
that if X = U^i %i, and if each Xt is an EC, then X is an EC: In
fact, X is then the image under the obvious perfect map of the
topological sum Σ?=i -3Γ*» a n ( i this sum is clearly an EC, so X must
be an EC by [1, Theorem 2.1] (see also [3, Theorem 1.1]).
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