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A DECOMPOSITION OF ADDITIVE
SET FUNCTIONS

WAYNE C. BELL

In this paper it is demonstrated that if μ is an additive
function from a field F into the nonnegative reals, then μ
can be separated into two mutually singular parts, /Ί and μ2,
where μ1 is representable in the sense that its Lebesgue de-
composition projection operator has a refinement integral
representation and μ2 is such that for each E e F the contrac-
tion of μ2 to E is representable iff μ2(E) = 0. If μ2 is
maximal, then the decomposition is unique.

1* Introduction* Suppose S is a set, F a field of subsets of

S, b(F) the set of bounded functions from F into R, and ba(F) the
set of functions in b(F) which are additive on disjoint elements of
F. For H Q ba(F) denote by H+ the set of nonnegative valued
elements of H and let μ be in ba(F)+. For λ e ba(F)+ denote by Aλ

the set of elements in ba{F) which are absolutely continuous with
respect to λ and by aλ the Lebesgue decomposition projection opera-
tor for λ, i.e., for ηeba(F), aλ(τj) is that part of η which is absolute-
ly continuous with respect to λ [5]. For Xβba(F)+ we say that λ

is representable if there exists a g: F —> R such that ccλ(τj) = \ gη for

each η e ba{F) in which case g will be said to represent λ.

2* Preliminary theorems* All integrals in this paper are
refinement limits of sums over finite subdivision of S by elements
of F. If β:F->R and ί β(I) exists we will denote by ί β the

Js J

function \(v,\ β(I))\veF\. For further details concerning the

integral and 2. K. 1 and 2. K. 2 below see [1],

THEOREM 2. K. 1. If a:F-*R and \ a(I) exists,
is

then

\
JS

a(v) -

exists and is zero. Consequently, ifβe b{F) and v e F, then

\ β(I) \ a(J) exists iff \ β(I)a(I) exists in which case they are equal.
iv il )v

Proof. [9].

COROLLARY 2. K. 2. If a:F~>R and β:F—>R and each of

305



306 WAYNE C. BELL

I a{I) and \ β(I) exists and M is either max or min then \ M{a, β}
JS JS J

exists iff \M\\af \ βl exists in which case they are equal.

Proof. [1].

Notice that if h represents μ, then for Xeba(F)+ we have
0 ^ aμ(X) = 1 hX ^ X so that l hX = 1 max {0, min {h, l}}λ and there-
fore h can be replaced by a bounded function. Also any representa-
tion for μ which is valid for ba(F)+ is valid for ηeba(F) since
aμ(rj) = aμ(η+) — aμ(r]~) [5] where η+ and ψ are the positive and
negative parts of η, respectively. Consequently we will restrict our
attention to ba(F)+.

We will also have need of the following theorem due to Appling.

THEOREM 2.A. If μ e ba(F)+

9 ηeAμy βe b(F) and ί βμ exists,

then \ βr) exists.

Proof. [3].

If in subsequent statements the existence of a given integral or
its equivalence to a given integral is an immediate consequence of
the statements of this section, the integral will often only be written
and the proof of existence or equivalence will be left to the reader.

3* Two lemmas* By the remarks of the previous section if μ
has a representing function, then it has a bounded representing
function which, by the following lemma we may assume to be the
characteristic function of some subset of F.

LEMMA 3.1. Suppose h e b(F) and for each X e ba(F)+ we have

\ hX exists and is equal to \h\ hX. Then there exists a g: F —>{Q, 1}

such that for each X e ba(F)+ we have \ gX exists and is equal to
Γ J
I hX.

Proof. Let a = h2, β = min {a, 1} and suppose X e ba(F)+. It is
an easy consequence of 2.K.I and 2.K.2 that

ί aX = ί a2X = [ a f aX = [hX a n d ί βX = f β f βX = ί β2X .

Also
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\ aX <; 1 max {a, 1}X — X + X ^ I max {a, l}(max {a, 1} — l)λ + λ = λ

hence I βx = I min {a, 1}X = 1 ax = I hx. Now

0 ^ j min {β, 1 - β}X = j (1 - β) min {β, 1 - β}X + \ β min {A 1 - β}X

= J min {β - β\ (1 - βf}X + ( min | ( β*X, [ βx - \ /S2λl

= ( min {( £λ - (/52λ, \ (1 - βfx} + 0 = 0 .

For each veF let «.)={«•> ^ « S * 1 / 2 Then 0 S ! S
min {/9, 1 — /S} so that \ ίλ exists and is zero. For each v e F let

i if . - „ , , 2

1 = min {2{β{υ) - l{v)), 1} .
0 if

Now by 2.K.2. \ ̂ rλ exists and we have

ί gX = [ min {2{β - I), l}λ = ( min J2 ί /Sλ - 2 ί Zλ, λ

= ί min J2 ί /9λ, λI = ί /9λ + ( min | ί /Sλ, λ - f β\\

= [βχ - [min{β, 1 - β}X = [βx .

If D is a subdivision of S, i.e., a finite disjoint subset of F
whose union is S, then H is a refinement oΐ D, H < Z>, means that
if is a subdivision of S and for each v eD there exists a subset if,,
of if whose union is v.

LEMMA 2. Suppose Xeba(F)+, (Et) is a disjoint sequence in
F, B > 0 and for each ieN we have gt: F—> [0, B] and I ̂ λ exists.
Suppose also that if ieN, IeF and gt(I) Φ 0, then iQEi. Then

g(I)X(I) exists and is ΣΠ=i \ flr<(/)λ(/),
v Jv

ΣΓ=i ^i(I) /or eαcft / e JP7.

Proo/. Let v e ί 1 and c > 0. Let w be such that Σ " H^i Γl v) <
C/4JB. For each i ^ ^ let A < {^ ΓΊ v) be such that if K < A, then

- t
Jv

Let
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and suppose H < D. Let if, = {IeH\I
•ff~ Ui^i Si N o t e t h a t i f -ίefl;, then

Σ g(I)MD - Σ ί Λ(i)λ(/)
7/ 1 Jv

for each ί and 2ϊ'
Now

Σ Σ - Σ (

Σ
»+i

+
%

^ Σ
1

+ Σ {g(I)MI)\IeH', IQ EjΠv and j > n)
+ Σ B\(Ei n v)

Λ + l

< Σ o/2n + Σ BX(E3 Ov) + B'c/AB

^ c/2 + B'c/AB + c/4 = c .

For 'yejP denote by #v the characteristic function of {IeF\lQv}

and by cv(«) the contraction of μ to v, i.e., cv(μ) = \ xvμ.

A linear transformation, Γ, from ba(F) into 6α(F) is in the class
& [2] iff there exists a if > 0 such that for each v e F and ζ in
we have

THEOREM 3.A. // TeΐT, rjeba(F)+ and δeAη, then T(δ) =

Proo/. [2].

In [4] it was shown that the elements of ^ commute. Now,
if veF and λeAJ, then cv, aμ and aλ are clearly in ^ . Therefore
for f e ba(F) we have α:;t(ί) e Aμ, so that

aλ(ξ) =

consequently if ^ is representable, then λ is also. If we replace λ,
in 3.C.1, by cυ(μ) we have:

3.C.2. «*„</«>(£) = to*«/.)(£) .
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hence we may say that if g represents cv(μ) and IeF is such that
I Q v, then g-xτ represents cΣ(μ).

4* The decomposition* Suppose R Q F is a ring of subsets of
S such that IeF and I QveR implies that IeR, then if / is the
characteristic function of R and X e ba(F)+ the expression Σ# /(-ΌM-0
is nondecreasing for successive refinements and bounded by X(S) so
that \ fx exists.

THEOREM 1. Suppose R £ F is a ring of subsets of S for which
IeF and I QveR imply IeR. Suppose further that cv{μ) is re-
presentable for each v e R and \fμ — μ where f is the characteristic
function of R. Then μ is representable.

Proof. Since μ = I fμ we have for each n there exists Dn < {S}

such that if E < DΛ, then μ(S) - Σ E/W&I) < V™ and D% can be
chosen so that Dn<Dn_1. Therefore if vn == \J {IeDn\f(I) = 1}, then
vn C vn+1 and μ(S ~ vn) < 1/n for each n. Let JEΊ = v1 and ^ = vt ~
Vi_ι for i > 1. For each i let μt = cE.(μ) and g^F —>{0, 1} be such

that ^-α;^. = ^ and aμ.(X) = \ ̂ λ for each λ 6 ba(F)+. Let g = ΣJT 9i

and suppose λ 6 ba(F)+. By Lemma 2, \ #λ exists and is ΣΓ \ 9%^ a n ( i

for each i we have ^^(λ) = \ ̂ λ̂ e Aμ. £ Aμ and therefore I βfλ e Aμ.

Thus, if λ = 1 gX, then λ e Aμ.

Now suppose λ e A];. Let c > 0 and ?i be such that μ(I) < 1/n
implies that λ(I) < c. Then

0 £ί λ(S) - ( g(I)X(I) ^ X(S) - ± \ gllMI) = λ(S) -
J-sr l Js

= λ(S) - ΣcEioaμ(x)(S) = λ(S) - Σ ct

= X(S) - Σ HEt) = λ(S) - X(vJ = X(S

Therefore λ e A« iff X = I βrλ.
J r r

Now, as previously established, I gX e Aμ. Since I ^λ ^ λ it
J J

follows that 1 gX ^ ^(λ) = l #α^(λ) ̂  I βrλ, hence g represents μ.
If 77 and d are in 6a(F)+ we will say that they are mutually

singular if whenever X e ba(F)+ and X^rj and X ^ δ, then X = 0.
This is the notion of singularity used in [5] and [10] which is
equivalent to that of [6]. It is also equivalent to lmin{)7, δ} = 0.
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Since rj and δ are only finitely additive we cannot, necessarily, obtain
disjoint sets sλ and s2 such that ^(sj = δ(s2) = 0 with s1 (J s2 — t.

THEOREM 2. There exist μγ and μ2 in ba(F)+ such that:
(1) μλ and μ2 are mutually singular and μ = μι + μ2.
( 2 ) μx is representable.
( 3 ) For each v eF we have cv(μ2) is representable iff μ2(v) = 0.
(4) If μBis in ba(F)+

9 μ2 ^ μz ^ μ and for each v eF we have
cv(μ3) is representable iff μz{v) = 0, then μ2 = ft.

Proof. If I, veF, I £ v and fc represents cv{μ), then by 3.C.2.
Xjr-h represents cΣ{μ). Consequently R = {v e F\cv(μ) is representable}
is a ring satisfying the conditions of Theorem 1 since for / and v
in R with h, k representing cz(μ) and cv(μ) respectively we have
h + x^j h represents cIϋv(μ). Let / be the characteristic function of

R and μγ = I // .̂ Then for each v 6 R we have

= (

so that cv(μϊ) is representable. Also

and thus, by Theorem 1, μx is representable. Let μ2 = μ — μi =

I (1 — f)μ and note that μx and /i2 are mutually singular since

min {/, 1 — /} = 0. Therefore for λ 6 ba(F)+ we have aμi(X) and ^2(λ)
are mutually singular hence

= I max {aμi(X), aμ2(X)} ^ α^(λ)

i.e., aH + (X̂ 2 = aμ. Now suppose v e ί 7 and cv(μ2) is representable,
then cv(^) = cv(μύ + cv(//2) is representable so that v e R. Therefore
/(/) = 1 for each Ie F for which I £ v. Hence

fφ) = [ (1 - f{I))μ{I) = 0 .

Finally suppose μz e ba(F)+ and μ2t^μ3^μ and cv(μ3) is repre-
sentable iff i«3(

/y) = 0. For each v e R we have cv(μ3) is representable
by 3.c.l. so that μz{v) = 0. Therefore

^ o

This decomposition differs from those of [6], [7] and [10] in that
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it does not give rise to a normal subspace [5]. To see that this is
true suppose that the set R of those elements of ba(F) whose total
variations are representable is a normal subspace and note that
if a e ba(F)+ and for each v e F we have a(v) e {0, a(S)}, then a e R.
Therefore for any summable sequence, (αj, of such elements we
have λ = Σn=i an € R. Consequently aλ has an integral representation.
However by [4] this is true iff the linear functional η —> ccλ{η){S) has
an integral representation and in [8] it was shown that this is not
always true.
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