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AN EHRENFEUCHT GAME FOR THE MULTIVARIABLE
QUANTIFIERS OF MALITZ AND SOME

APPLICATIONS

LEE BADGER

An Ehrenfeucht game is developed for some languages
which admit the Malitz quantifiers. The method is used to
show that equivalence of structures with respect to such
languages is usually preserved by the cardinal sum operation,
and that such equivalence need not be preserved by the direct
product operation. Craig's theorem is shown to fail in all
cardinal interpretations of the languages.

In this paper we report the results of a study of the model
theory of Lfω-Lfω is essentially the union of the languages Ln

κ where
L° is the first order predicate calculus and for n > 0 L? is an extension
of U obtained by allowing the additional quantifier symbol Q% which
binds n distinct variables and Qnxίf *- ,xnφ has the interpretation:
"there is a set of individuals X of power K such that for distinct
xίf , xn e X, φ." In this study the principal tool is an Ehrenfeucht
game and the main results are that L<ω equivalence is preserved by
cardinal sums of structures, that L<ω equivalence need not be preserved
by direct products of structures, and that Craig's theorem fails in
L<ω.

Using our notation U is the language L(Q) studied by Keisler
[12], Fuhrken [9], [10], Vaught [17] and others. L<ω is an extension
of L1 which was introduced by Magidor and Malitz in [14]. In this
paper they show that with L£" one can say without the use of
additional symbols that an equivalence relation has uncountably many
classes, that a tree order is a Suslin tree, and that a group has an
uncountable abelian subgroup. To show that this is significantly
more expressiveness than is possible with Lι

ωi they point out models
of set theory where the notion of a Suslin tree cannot be characterized
in Ll}1 even with the use of relativized reducts. They show that
under certain set theoretical assumptions L<° is countably compact.

1* Preliminaries. The class of infinite cardinals is denoted by
card, K and λ usually denote infinite cardinals. cX denotes the
cardinality of X and cf tz denotes the cofinality of /c.

L° denotes the ordinary first order predicate calculus with its
customary rules for formations of formulas. If n e ω — 1, Ln denotes
the language which extends L° by admitting the additional quantifier
symbol Q% and with the additional rule of formation that says if φ
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is a formula of Ln and xlf 9xn are distinct variables then Q*xL, ,
xnφ is also a formula of ZΛ L<ω is the extension of L° which admits
all the quantifier symbols Qn. If Sί is a structure and K an infinite
cardinal we write Sί N κ Q

nxίf , #%<p if there is X £ 9X such that
c X ^ Λ: and for distinct a19 , an e X, Sί |=β 9>[αlf •••,«»]. £ is called
the cardinal interpretation of Q. If tc is fixed throughout a discussion
or is clear from the context we may omit the subscript K and simply
write |=. Also if we wish to discuss the languages Ln or L<ω with
the interpretation, κ\ fixed throughout we refer to the languages
as Ln

κ or L<\
The language L is an extension of L° which admits the additional

quantifier symbols Qj for n e ω — 1 and λ e card; and admits conjunc-
tions and disjunctions of any cardinal length. Satisfaction for L is
defined as expected when Qj is treated like Qn with the λ-interpre-
tation.

It will be convenient to assume our languages have quantifiers
dual to the Q*. We denote these by bn and define satisfaction of
them by 91 N, ©X, , xnφ if and only if 31 \=κ -^Qnxu , xn-φ. If
L is a language, two structures are said to be L equivalent if they
satisfy exactly the same sentences of L; we denote this by 5ί = 95(L).
For a precise definition of the elementary terms not defined here we
refer the reader to [4].

2* Ehrenfeucht games* Classical Ehrenfeucht games provide
a test for determining L° equivalence of structures. The game
theoretic form of this method was first developed by Ehrenfeucht
[6] but a similar method was known to Fraisse [8] in the form
of w-equivalence between structures. Lipper [13], Brown [3], and
Vinner [18] independently extended the method to ZΛ In this section
we extend the games to Ln, L<ω, and L.

Suppose SI and S3 are similar structures (i.e., of the same type),
m and n are positive integers, and tc is an infinite cardinal. We
describe Gi{% S3)c, a game played by two players denoted I and II.
GZ(% 33)* consists of m periods of play. During each period of play
n or less elements are chosen from |δί| and the same number of
elements are chosen from |S5|. We describe a typical period of play,
the jth period, with all others being similar.

Player I begins by choosing a structure, say Sί. If I chooses S3
then the roles of 9ί and 33 are reversed in the following description.
Player I may make either of two types of moves.

Type 1. Player I chooses a sequence of n or less elements from
|Sί|, aiίf - ,ajkr
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Player II then responds with a sequence of k$ elements from |33|,

Type 2. Player I chooses a set X Q | δί | with cX ^ tz.
Plays II responds with Γ £ |33| with c 7 ^ /c.
Player I chooses a sequence of n or less distinct elements from

Y, bh, •-,bjkj.
Player II responds with a sequence of kβ distinct elements from

•Λ-9 &J19 ' ' ' y Ujkj

This completes the description of period j . The completion of
period m constitutes the completion of G™(SΪ, 33)*. Many times we
omit the subscript K when it is clear from the context what ic is, in
particular, when the language under discussion is Lfω or L*. In the
future we may refer to a move of Type 1 as an "existential move"
and a move of Type 2 as a "Q move."

Let Oz = {{aii9 bdi): 1 ^ j ^ I and 1 <; i <Ξ &,} for £ <; m and let
0 = Om. 0 is called the outcome of Gϊ(8l, S3)Λ and O, for Z < m is
called a partial outcome. We say that player II wins Gϊ(8l, 33)* if
O is an isomorphism from its domain to its range when each is
viewed as a substructure of Sί and S3 respectively. We say that
player I wins if player II does not win. By a winning strategy
for player II in Gϊ(8l, 33)* we mean a fixed procedure that player
II can follow so that no matter how player I moves, player II
wins. If Ot is a partial outcome of GZ{% 33)* we say that player
II is in a winning position or that Oz is a winning position for
player II if there is a fixed procedure that player II can follows
to finish Gj(5H, 33)* such that no matter how player I moves, player
II wins.

THEOREM 2.1. Suppose Sί and 33 are of the same finite type and
n is a positive integer. Then 31 = 33(1/*) if and only if for each
positive integer m player II has a winning strategy in GZ(% 33)*.

We omit the proof because the method parallels closely that used
for LI and that method appears in the literature in [18]. A detailed
proof of Theorem 2.1 appears in [2].

COROLLARY 2.2. Suppose Sί and 33 are of the same finite type.
Then Sί = 33(L^ω) if and only if for each pair of positive integers
m and n, player II has a winning strategy in Gϊ(8ϊ, 33)*.

This follows from Theorem 2.1 by noting that for each φβL<ω

there is an ne ω — 1 and ψeLn such that \=κφ<^ψ.
In practice when using the games to show two structures fully
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equivalent we may assume that when player I makes an existential
move he chooses exactly one element. This is sufficient to imply the
structures equivalent, for if player I could win Gi(8l, 33)* by choosing
^n elements on each existential move, then there would be a k <;
m-n such that player I could win G?(8l, 33) Λ by choosing only one
element in each existential move.

We now define a game for determining L equivalence of structures.
This game we denoted by G(3ί, 33). It is like G£(Sί, 33)ff except for
the following differences:

(i ) there are ω periods of play,
(ii) there is no bound on the length of the finite sequence of

elements that player I chooses in each period,
(iii) in a move of type two player I may choose any infinite

subset of a structure, and player II must respond with a subset of
the other structure of equal or greater cardinality than the cardinality
of that subset chosen by player I.

The definitions of outcome, partial outcome, winning, and winning
strategy for G(Sί, 33) are analogous to those definitions for Gi(8l, 33)*.

THEOREM 2.3. Supose Sί and 33 are of the same type. Then
Sϊ = 33(L) if and only if player II has a winning strategy in G(δί, 33).

Again we omit the proof. A proof does appear in [2], and it
makes use of methods similar to those of Karp in [11].

3* Cardinal sums and L<0} equivalence*

DEFINITION 3.1. Spupose %(i e I) are similar relational structures.
We define in the usual way the cardinal sum of %{i el), denoted
Σnei%. First, assume that \%\ n \%\ = 0 for i Φ j . If this is not
the case, replace certain % by suitable isomorphic copies. Suppose
Σnei% is denoted by Sί. Then |3ί| = Uiei|St*l and if R is in the
common type, iΓ = \JieiR

mi-

THEOREM 3.2. Suppose ic is regular and % = $bt(L£ω) for all
iel. Then Σasi^i = Σ*er 33,(1^).

Proof. Let Sί = Σiei% and 33 = Σie/33;. Since each sentence
involves only finitely many relation symbols, it suffices to show
that Sί|Γ = 33|r(L<ω) for each finite type τ. So we may assume that
the type of the structures is finite. Let m, n e ω — 1 be given,
we will show that player II has a winning strategy in Gϊ(8ϊ, 33).
Explicitly, we will show that player II can play Gϊ(8ϊ, 33) such
that for each (α, b) in the outcome we have α e 18Ϊ, | if and only if
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6 6 133,1 and such that if 0, = 0 n I % I x I S3< I then 0, is a winning
position for player II in Gi(8ϊ,, S3,). These two facts mean that player
II has a win, for if φ(vlf , vn) is an atomic formula and a19 , an

do not all come from a single \%\, then Sί | ^ φ [ α w •••,»»]; and similarly
8̂ ^^[δ i , -"fen] when not all of b19 •••, bn come from a single |S3<|.

We suppose inductively that player II can play so that through
i — 1 periods the above holds, where for 0 we mean that portion of
the outcome constructed in the first j — 1 periods.

Case 1. Suppose player I chooses a, e |8Ϊ,| C |3Ϊ|. Player II
considers a3- as a choice made by player / in G£(8l,, S3<). Player II
has a strategy in this game, since % = ί&t(Lfω) and since the type
is finite. Also, by induction, player II is in a winning position in
this game. Gj(Sί<, S3<) may or may not be in period j , depending
upon how many elements have been chosen from the ith summand
thus far. But this is not a factor in the argument. Certainly the
play in Gl(8t,, S3,) is not beyond the jth period. So the strategy in
Gl(%, S3,) gives 6e|S3,|, which player II chooses as a 6e |S3 | . The
induction assumption is satisfied.

Case 2. Suppose player I chooses XQ |Sί|, cX ^ /c.

Subcase a. Suppose there is some ίelsuch that c(XΓΊ 181,|) ^ tc.
Then player II considers X π 181, | as a choice made by player I in
(?m(Sϊi, S3,) and the reasoning is the same as in case 1.

Subcase b. Suppose there is no iel such that c(XΠ |8ί,|) ^ Λ:.
Then since tc is regular, cM ^ Λ: where M = {i e I: X Π 181, | ^ 0}. For
each ieM, pick a single α ^ e X n |8l,|. Player II considers xt as a
choice made by player I in a move of Type I in Gi(8l,, S3,), for each
ieM. The strategies in each of these games give yi 6 |S3,| for ieM.
For Y £ 1811, player II chooses Y = {y^. i eM}. cY^tc since cM ^ fc.
No matter what distinct bjlf •••, 6 i w 6 F that player I chooses, there
are n distinct indices i19 , ineM such that 6yjfe = yik, k = 1, , w.
For αy i, , α, n e X, player II chooses ajk — xik, k = 1, •••,%. Again
the induction hypothesis is satisfied.

REMARK. If fc is singular the theorem still holds if cl < cf K.

The proof is the same, except Subcase b of Case 2 will not arise,
and this is the only place where the regularity of fc was used.

If λ = cf K < K and μ — cI^X we have this counterexample.
Suppose K = ΣiexKi where ω ^ ιct < tc for all ΐ e λ . The type of
the structures in our counterexample will have one unary relation,
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U. For iex set % = </c<f κt} and 35* = <α>, α>>. For ieμ — X set
35i = <1, 0> and ^ = <1, 0>. Because of the cardinalities involved it
is clear that 81* = 3&i(Lfω) for all ieμ. However cΐl in Σnei% is
Σiiexfti = * and c f / i n Σ i e / ^ is Σie^ω = ω-X = λ < K. SoΣ«e/8l< 1=
QxU(x) whereas Σ*e/», l£ Qa?l7(»). So Σ*β/ «* * Σiβ/ S/ϋ1).

DEFINITION 3.3. Suppose λ is a cardinal, 81 a structure. By
Sί λ we mean Σ ^ S ί , where Si, = Sϊ for each i e Jand |8ί,| n |Sΐ;l = 0
for % Φ j .

A natural extension of the question of preservation of L<(0 equi-
valence by cardinal sums is the following: When is it the case that
SI = S3(L<ω) and λ = μ(Lfω) imply 8ί λ = ^&'μ(Lfw)Ί Of course, λ =
μ(Lfω) just means that λ and μ are the same finite cardinal or λ
and μ are both infinite and less than K or λ and μ are both greater
than or equal to /c. The answer is given the following theorem and
counterexample. We omit the proof. The interested reader is referred
to [2].

THEOREM 3.4. Suppose Sί = $8(Lfω) and λ = μ(Lfω) and suppose
it is not the case that cf K <; λ + μ < fc. Then Sϊ λ = ^

Counterexample 3.5. Suppose cf K ̂  λ + μ < fc. Then there are
structures Sί and S3 such that Sί = ?δ(Lfω) and Sί λ ^ §B /£(Lί).

4. Direct products and L<ω equivalence* It is well known that
if Sί, = a3<(L°) for i e l then Πie/Sί, = Π i e i ^ L 0 ) (here Π denotes
the ordinary direct product of structures). This was first shown by
Mostowski [15], and was considerably generalized by Feferman and
Vaught in [7]. In this work they show that a very general type
of product of structures preserves the notion of elementary equiva-
lence between its factors. As special cases they obtained preservation
theorems for cardinal sum and direct product, among others.
Wojciechowska [19] extended their work to the language Lι and
obtained preservation theorems with some restrictions placed on the
interpretation ic, and on the size of the index set. Lipner [13] also
obtained similar results.

In this section we will see that the situation for L<ω is quite
different. Using the Ehrenfeucht games (which in L° gives an im-
mediate proof of the positive result) we will produce counterexamples
which show that L<ω equivalence need not be preserved under products.
In fact we produce structures Sΐ and S3 such that Sΐ = 33(L<ω) but
Sί2 m S52(L2). Here Sί2 denotes Sί x Sί.
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DEFINITION 4.1. A linear order is said to be Λ>dense if between
any two elements there are K elements.

THEOREM 4.2. Suppose Sί and S3 are /c-dense linear orders without
endpoints of power fc. Then Sϊ = S3(L).

Proof. We will show player II has a winning strategy in G{% S3).
Let Oj denote that portion of the outcome selected through the

first j periods. Say O3 = {(ai9 &,): i < k5 < ω}. We will show that
player II can play such that for each j there is permutation π3: k3- —>
k3 such that

#

«*,-«» ^ dπjω ^ ^ cbic^kj-i) a n d

with equality holding in the first list if and only if it holds at the
corresponding place in the second list. The existence of such π3 for
each j eω implies that player II has a win in G(Sί, S3).

We assume by induction, that player II can play so that at the
end of period j (*) holds. Without loss of generality we may assume
π3 is the identity. We describe player IΓs strategy during period
3+1.

Case 1. Suppose player I chooses a single element, αe |Sϊ | . If
a equals some previously chosen ai9 then player II chooses b to be
the corresponding bί9 Otherwise, either a < α0 or a > akj_ι or there
is i e kj such that at < a < ai+1. If a < aQ then player II chooses b
to be any element <δ0; this can be done because S3 has no endpoints.
If a > akj_ίf player II chooses b > bkj_λ. If at < a < ai+ι player II
chooses b to be any element in S3 such that bt < b < bi+1. This can
be done because S3 is a dense linear order. In any of these cases
it is clear that there is πj+ί: kj+1 —> kj+1 such that (*) holds.

Case 2. Suppose player I chooses X C | ί ϊ | with ω <; λ = cX ^ /c.
First note that a09 •—,akj_1 partition |Sί| into kd + 1 segment. So
there is at least one of these segments, say (αt, ai+1) such that
IX Π (ai9 ai+ί) I ^ λ. Here (ai9 ai+ί) denotes {x: at < x < ai+ί}. If it

happens that the only segment with the large intersection is the
initial or terminal segment, the argument is similar. Since at < ai+19

by induction ί̂  < bi+ί; and since S3 is /c-dense, there are fc elements
between 6* and bi+1. For F £ | S 3 | , player II chooses the set of
elements strictly between bt and bί+1. Since 33 is /r-dense, this is a
set of power tc. Now suppose player I chooses distinct bιί+1)19 •••,
6(i+i)n 6 Y. All of these are strictly between bi and bi+1. Since there
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are λ elements of X strictly between at and ai+l9 it is clear that
player II can choose α(J +1)1, , α ( ί +1,n e X so that the induction hypo-
thesis is satisfied.

LEMMA 4.4. Suppose 5Ϊ = (Af ^ a > is a reflexive linear order.
Then the following are equivalent:

( i ) δί2 has an antichain of power K.

(ii) ϊ P N . ^ H a ; ^ l / ) Λ -i(fί ^ aOl
(iii) T%βre is / £ |Sί|2 so that f is a strictly decreasing function

and cardinality of f is ^fc.

Proof, (i) <=> (ii) follows immediately from the definition of an-
tichain and satisfaction. Suppose (ii). Then there is X £ | 9 Ϊ 2 | so
that for distinct x, y e X, —\{x <; y) and —\(y <; x). X is our candidate
for /. Let x = (x19 x2) and y = (y19 y2). By definition of <; in 2ί2 we
have (since —\x ̂  y) that xι<^y1 implies x2^

%y2. Since ^ a is a
linear order this means that xί ίί*yι implies y2 < x2. Also xx Φ yγ

for if xγ = i/i then since a;2 ̂  y2 or ?/2 ̂  x2 we would have x <; y or
y Sx* This establishes (iii). A similar argument shows that (ii)
follows from (iii) by showing that / is a satisfying set.

In order to construct the counterexamples we need the existence
of a certain type of linear order.

LEMMA 4.5. Suppose K > ω. Then there is a reflexive linear
order 9ί such that Sί is K-dense, δί is of power κ9 Sϊ has no end points,
Sϊ has a suborder of type ΛΓ, and SI2 has no antichain of power tz.

Proof. We begin the construction by constructing a sequence
of order types μn, 1 ^ n < ω such that for each n, μn is isomorphic
to the ordinal /cn, and for each n, μn £ /*Λ+i.

Let μ1~κ with the usual order. Given μny μn+ι results from
μn by placing a copy of K strictly between a and a + 1 for each

It is clear that μn c μn+1, in fact it is a subordering. Let μ =
U^Kα.ft with the induced order, μ has the following properties:

( i ) cμ = fc.
(ii) μ has a first element and no last element.
(iii) μ is /c-dense.
(iv) μ has a suborder of type ic.
( v ) μ2 has no antichain of power tc.

Only (v) needs verification. We check condition (iii) of Lemma 4.4.
Suppose X Q μ, cX = ω, and / : X—> μ. We claim / cannot be strictly
decreasing; this will establish (v). Suppose / is strictly decreasing.
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Let X% = X Π μn for 0 < n < ω. X = U-^n Since cX = α^ there is
an neω such that cX% = ωlf so we have f:Xn—+μ and Xft £ /£w.
Let Y = /(XJ. c 7 = ό ) ! since / is strictly decreasing. Γ" = \JYm

where Ym = Y Π μm for 0 < m < ω. Choose m ^ w so that c 7 m ^ α>lβ

Let Γ = {xeXn: f(x) e Ym). Then / : X'-*Ymf cX' = ω19 f is decreasing
and X\ Ym £ μm. Since μm ~ κm this is impossible.

To obtain 81, we remove the first element of μ.

Counterexample 4.6. Suppose K is uncountable. There are struc-
tures 81 and S3 such that 8ϊ = S3(L) but 5ί2 & ^&{L\).

Take 8ί to be the order constructed in Lemma 4.5. Take 35 =
SΪ Λ;*. Here Λ;* is the converse ordering of the ordinal tc, and denotes
ordinal product. Both 81 and 93 are Λ>dense linear orders without
endpoints of power K and so by Theorem 4.2 % = 93(1/). δϊ2 has no
antichain of power /c so W \φκQ

2xy[-i(x ^ y) A —ι(y ̂  x)]. S3 has a
suborder of type K and a suborder of type £* so there is / Q |93|2

so that / is strictly decreasing and card / ^ tc. By Lemma 4.4
this means

S32 N=, Q2xy[-^(x ^y) Λ ~^{y S x)\ .

For the case tc — ω we must construct a different counterexample.
In the remainder of this section we will be working in the a)-inteγ-
pretation; + and will denote ordinal addition and multiplication
and λ and μ will be arbitrary order types. As in Slomson [16],
we say that player II has a nice winning strategy in (?l(λ, μ) if
player II has a winning strategy in Gi(λ, μ) following which he
picks the first element from λ or μ if and only if player I has
on the same move just picked the first element from the other
order type.

LEMMA 4.7. (i) If player II has a winning strategy in G
ω + μ) then player II has a nice winning strategy in Gl(ω + λ,
(O + μ).

(ii) // player II has a nice winning strategy in (?m(λ, u) then
player II has a winning strategy in (τ*+1(ω λ, (ύ μ).

(ii) is an analogue of Lemma 5.2 in [16]. Slomson proves the re-
sult in the uncountable interpretation and with n — 1. His proof goes
through without changes in the (^-interpretation with n = 1. Only
minor modifications are needed to deal with the Malitz quantifiers
(n> 1). (i) is clear because ω + λ ^ l + ω + λ and ω + μ = l + ω + μ.

LEMMA 4.8. ωω(l + λ) = ωω(l + μ){L<ω).
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Proof. Let 81 denote ωω(l + λ) and 33 denote ωω(l + μ). Clearly
player II has a winning strategy in G (̂Sί, 33). So by Lemma 4.7(i)
player II has a nice winning strategy in G*(% 33). Applying 4.7(ii)
player II has a winning strategy in G?(α> 8l, ω 33). But ω 2l =
ω (ωω(l + λ)) = (α) ά>ω)(l + λ) = ωω(l + λ) = SI and similarly ω 33 = 33.
50 player II has a winning strategy in £r?(8l, 33). Repeated applications
of Lemma 4.7 yield that for all m, player II has a winning strategy
in Gl{% S3). Since n is arbitrary, 8ί = 33(L<ω).

Counterexample 4.9. There are structures 81 and 33 such that
51 = 33(L<ω) but W =£ 332(LL).

Take 81 = <<*Γ, ^ > and 33 = <αΓ(l + <w*), ^ > . By Lemma 4.8
81 ΞΞ 33(L^ω) Since 33 has a suborder of type ω and a suborder of
type α)* there is / £ | 3 3 | 2 such that card f = co and is / strictly decre-
asing. Since 8ϊ is an ordinal there is no such / £ |9ϊ|2. By Lemma
4.4 this means that

^&2 ^ Q2xy[~^(x ^ y) A ~{y<,x)] and

W \φ Q2xy[-(x ^y) A ~(y^ x)]

Since 81 = (ωω, ^ > is well ordered and 33 = (ωω(l + α>*), ̂ > is not
well ordered and since 81 ΞΞ 33(L^ω) we have:

THEOREM 4.10. The notion that a binary relation is a well order
is not expressible in L<ω.

5. Craig's theorem* The Counterxamples 4.6 and 4.8 also provide
a proof that Craig's theorem fails in these languages. The essential
observation is that if we add pairing functions to a structure 8ί then
the theory of W reduces to the theory of 8ί with the pairing functions.

Let ^ be a binary relation symbol, P and R binary function
symbols, and let π19 π2, p19 and p2 be unary function symbols. Let
φ express that ^ is a linear order, let d say that P, πlf and π2 are
pairing and coordinate functions,

3 = VxVyfaiPfr, y)) = xΛ π2(P(x9 y)) = y A P ( φ ) , π2(x)) = x]

and let 7 say that R, pι and p2 are also pairing and coordinate func-
tions. Let

σδ = tyxylπ^x) ^ π,(y) A π2(x) ^ π2(y)] and

σr - b2xy[px(x) ^ p,{y) A p2(x) ^ ply)] .

Now suppose © is of type <;, P, π19 π2f R, plf ρ2. Some easy facts
to check are:
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if & N δ then P s maps |(£|2 one-to-one and onto

if g [= 7 then iϋ® maps | (£ |2 one-to-one and onto

if S h ^ Λ ^ then K ^ , ^ if and only if (£2 has no /c-powered
antichain.

Similarly if E h ^ Λ Ύ then K N ^ r if and only if (£2 has no
Λ>powered antichain.

Using these facts we see that

μ (φ A δ A σδ) > (7 • σr) .

φ A δ A oδ is of type < ,̂ P, πx and π2 and

7 • σr is of type ^ , R, ft , and ft .

We claim that there is no Craig interpolant, σ in Lfω and of
type ^ such that N ( ^ Λ ^ Λ ^ ) ^ ^ and t= σ —>(7 —>0>).

Suppose such σ did exist. We will get a contradiction. If
/c = a) let Sί and S3 be as in in Counterexample 4.9, if fc > ω let SI
and S3 be as in Counterexample 4.6. Sί and S3 are both infinite and
of type <;. Since Sί is infinite we can define P, π19 and π2 such that
<|Sί|, ^ , P, π19 π2) t= δ. Since Sί is a linear order and Sϊ2 has no tc-
powered antichain we have <|Sl|, ^ , P, TΓ̂  π2) \= φ A δ A σδ. So
<|Sΐ|, ^ , P, TΓi, τr2> t= ̂ , but σ is of type ^ so Sί μ σ. Sί = S3(L<ω) so
S3 N ^. Also S3 N φ. Since |S3| is infinite we can define R, ft, and
ft such that <|S3|, <:, i?, ft, ft> |= 7. But f= σ-+(Ί-+σ7) so <|S3|, ^ ,
J2, ι°i> ft) N 9 Λ 7 Λ ίτr. This means S32 has no Λr-powered antichain,
which contradicts its construction. We have just proved

THEOREM 5.1. Craig's theorem fails in Lfω in that there is a
valid implication of LI which has no interpolant in L<ω. (No as-
sumption ΛΓ.)

This result may be contrasted with the unpublished result of
Stavi who showed that if K is uncountable and regular then there
is a valid implication of L\ which has no interpolant in Lfω.

Actually, if we assume ιc > ω then we know Sΐ = S3(X). This
means we can then strengthen the result to say that there is a valid
implication of LI with no interpolant in L.

As was pointed out in [2] a more general result which implies
Theorem 5.1 is that which says that if L is any language in which
theory of the square of a structure is interpretable into the theory
of the structure with pairing functions added, if in L one can express
the notion of pairing functions, and if there are two infinite structures
whose squares do not preserve their L equivalence, then Craig's
theorem must fail in L.
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