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PLANE PARTITIONS (II): THE EQUIVALENCE OF THE
BENDER-KNUTH AND MACMAHON CONJECTURES

GEORGE E. ANDREWS

A plane partition of the integer n is a representation of
n in the form n— Σi.^i^i where the integers ntj are non-
negative and Tiij Ξ> nitj+lf ntJ ̂  nt+1j. In 1898, MacMahon con-
jectured that the generating function for the number of
symmetric plane partitions (i.e., niS = nH) with each part at
most m (i.e., nn rg m) and at most s rows (i.e., ntί = 0 for
i> s) has a simple closed form. In 1972, Bender and Knuth
conjectured that a simple closed form also exists for the
generating function for plane partitions having at most s
rows, nn ^ m and strict decrease along rows (i.e., ni5 > nitj+1

whenever ni} > 0). The main theorem of this paper establishes
that each conjecture follows immediately from the other.

In the first paper of this series, MacMahon's conjecture
was proved. Hence a corollary of the main theorem here is
the truth of the Bender-Knuth conjecture; the Bender-Knuth
conjecture has also been proved in a different manner by
Basil Gordon.

1* Introduction* In the 1898, P. A. MacMahon [8] conjectured
that the generating function μ(m, s; q) of M(m, s; n) the number of
plane partitions Σ i , y i i % °f n(.nij ^ w<f/+1; niyj^nί+1>j) such that ?% =
%*> Ma = 0 if i > s, and nn <; m satisfies

μ(m, 8) q) = Σ M{m, s; n)qn

(l l) s ( (Λ πm+2i-ί\ s /i n2{m+i+h-l)Λ

= πf^—-—- π ( q k
The first paper in this series [2] was devoted to the proof of (1.1).

In 1972, E. Bender and D. Knuth [3] conjectured that the generating

function β(m, s; q) of B(m9 s; n) the number of row-strict plane par-

titions Σufci^i of n(ntj > nί>j+1 if nίά > 0, i.e., strict decrease along

rows; Uij ^ ni+ίj) such that, ni3 = 0 if i > s and nn ^ m, satisfies

(1.2) β(m, s;q) = Σ> B(m, s;

Our object in this paper is to prove the following theorem and

its corollary:
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THEOREM 1.

(1.3) μ(s, m; q) (1

t i (1 +
= β(m, x; q2) .

This is our asserted "equivalence" of the two conjectures. Since
the MacMahon conjecture is true [2], we see immediately the following:

COROLLARY 1 (Gordon's theorem). The Bender-Knuth conjecture
is true, i.e., equation (1.2) is valid.

In [10; p. 265], R. Stanley mentions that B. Gordon possesses
(unpublished) a proof of the Bender-Knuth conjecture; however, the
implication from Stanley's comments is that Gordon's methods differ
substantially from ours. The limiting case m —>oo was done for s = 2
by Gordon [4], and for general s by Gordon and Houten [6], [7].
Professor Gordon informs me that his proof of the Bender-Knuth
conjecture will be published shortly.

In §2, we shall fill in some of the details needed to get a deter-
minant representation for β(mf s; q). Bender and Knuth [3; p. 50]
state this determinant representation without supplying the inter-
mediate steps. In §3, we present several simple recurrences for
Gaussian polynomials which suffice for the proof of Theorem 1. In
§4, we prove the equivalence theorem (Theorem 1) and Gordon's
theorem (Corollary 1).

2* The determinant representation* We consider the Gaussian
polynomials
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Now

(2.2) n

is the generating function for partitions with exactly k distinct parts
each <; n, [9; p. 10], and therefore

(2.3) n — /Y^ί

is the generating function for partitions with distinct odd parts each
^ 2n - 1.
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Now we make B. Gordon's observation [5; p. 158] that Sylvester's
mapping of self-conjugate partitions into partitions with distinct odd
parts may be directly extended to plane partitions to show that
M(j, m; n) is also the numbe of plane partitions of n with strict
decrease along rows where each part is odd and at most 2m — 1
and there are at most j rows.

The assertion by Bender and Knuth [3; p. 50] that

(2.4)

(2.5)

where

μ(2n, m; q) = det (CU + Ci+j_XXn ,

μ{2n + 1, m; q)

- (1 + «)(1 + (1 + det ( C ^ - Ct+ί)nxn ,

2m
m + k

is now immediate from the above remarks, Lemma 3 of [3; p. 49]
and the corollary of Theorem 4 [3; p. 49] once we remark that

(2.6) m
k + vj2

2m
m + v

an identity equivalent to the g-analog of the Chu-Vandermonde sum-
mation [1; p. 469, Th. 4.2].

In exactly the same way, we find

(2.7)

(2.8)

where

(2.9)

β(m, 2n; q) = det (Cί_y + C't+S-Xx»

β(m, 2n + 1; q)

= (1 + q)(l + q2) (1 + qm) det (CLs ~ C'ί+j)nxn ,

m
y(k+v) (k+v+1)/: m

k

This is not a summation that has a known closed form; however,
the determinants in (2.7) and (2.8) may be simplified as follows:

c: + cu - Σ q
k

k i k + l ) / 2 >

X\q

fm'

UJ
m

k + v

v)(k+v-l)/2

m

k + v -

(2.10)
k + v
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" 1

[_ m + v _|i

Furthermore for v > 0,

(^l—v : = : i-i Q'

X"1 Λ,fc(fc + l)/2

- 2 J y
(fcΦ + l)(fc«+2)/2

/ m l
x since = 0 for r < 0

\ LJ

^ ' v —1

Hence the first row of the determinant in (2.7) is

(2.11) c;_, + c; = c;_x + c; = 7 ^ ) ,

and in (2.8) it is

(2.12) = T,(g) - Ύj+1(q)
- T^X?) - 7i+ι(g) (by (2.10)) .

Finally by adding the ith row of each determinant to the (i + l)st
row successively as i runs from n — 1 down to 1, we find that ith
row in (2.7) becomes (for i > 1)

(2.13) cί_i-i + c; t i_ a + c;_, + σi+i^ = Ύ^AQ) + %+, -i(α),

while the ith row in (2.8) becomes (for i > 1)

(2.14) CLi-, - σi+s_x + GLy - C'ί+3. = 7,_,(g) - T^^to) .

Hence by (2.11) and (2.13) we see that

(2.15) β(m, 2n; q) = det ((1 - δ^Ύ^q) + 7<+ί _ι(β))ΛXil ,

where δn = 1 if i = 1 and equals 0 if i > 1, and by (2.12) and (2.14)

/3(m, 2^ + 1; ?) = (1 + ?)(1 + q2) (1 + gw) det (%_&)

These last two equations are the forms given this generating function
by Bender and Knuth [3; p. 50].
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3* Recurrence lemmas* Here we require four quite elementary
lemmas. Each result involves the Ck (defined just after equation
(2.5)) and the Ίk{q2) (defined in (2.10)). To simplify matters we shall
utilize the standard notation (g2, q2)n = (1 - #2)(1 - g4) . . . (1 - q2n).

LEMMA 1.

Proof.

i
m + 1 - j

(a, QO«+

(1 + ̂ -Qg-'-" ί S_J2m + 1
(l + ̂ + i ) ? Lm + i

LEMMA 2.

Proof.

2m Ί OΓ 2m

i 12

g 2 M + 2 ) to2; « 2

+ q ^ ^ Γ 2m + l Ί _ Γ 2m + 1
^ [ j ? U

1+Aq >>'
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LEMMA 3. Let

(3.2)

Proof.

(1 + ^2»+2 i-1) i " Λ ? ;

2m + 1 1 _ I 2m

2m

LEMMA 4. Lei

Proo/.

- d

2m
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4* Proof of main results. We restate Theorem 1 for convenience:

THEOREM 1.

m (Λ _|_ ns+2i-l\

μ(8, m; q) Π { +

+

Q

 2i

 } = β(m, s; q2) .

Proof. If s = l, then the assertion is trivial since clearly
μ(l, m; q) = ΠΓ-i (1 + 98*"1), and β(m, 1; q) = ΠΓ=i (1 + <72ί)

Next let s = 2n^2. Then

, m; q) = det (C^y + C ^ ̂ ) ^ (by (2.4)) .

The first row of this determinant is

Q-±^!^ZΊj(Qη , i ^ j ^ n (by Lemma 1) ,

and if we multiply the (i — l)st row by X̂  and add it to the ΐth
row (letting i run from n down to (2) we find that by Lemma 3,
the resulting Λh row is

Therefore

m; ff) = det
\L -ή- q )

(Π (1 + ί '-jVδ (1 + q*1-1

Π*(i + fl^"1)
i

which is the desired result for s = 2^.
Finally we let 8 = 2n + 1 ̂  3. Then

/ι(2n + 1, m; q) = ( f i (1 + q2"'1)) det (C,., - Ci+j)nxn (by (2.5))
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The first row of this determinant is

( α V < r ? (Ύ'-3<(?2) ~Ύl+iiqη)' 1-j-n{hγ Lemma 2)'
and if we multiply the (i — l)st row by F4 and add it to the ith
row (letting i run from n down to (2) we find that by Lemma 4,
the resulting ith row is

Therefore

2» + 1, m, q) = {ft (1 + q2^)] det

- {Π (1 + ,-)}{n (-£±^)} d e t (WΛ-W

Π (1 + q*h))(fί
= β(m, 2n + 1, t){Π (

π
, 2w + 1; q2) Π - # - τ

which is the desired result for odd s — 2n + 1.

COROLLARY 1 (Gordon's theorem). The Bender-Knuth conjecture
is true, i.e., equation (1.2) is valid.

Proof. Equation (1.1) was proved in [2]. Hence by Theorem 1,

β(m, s; q>) - μ{sf m; q) ft ^^IZ?ft
= -Λ [(1 - g»c+«-») « ( l - g»(«+i+*-D

which is just (1.2) with q2 replacing q.

We should point out that if one starts with Gordon's forthcoming
proof of the Bender-Knuth conjecture then obviously Theorem 1
implies the MacMahon conjecture.
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