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EQUATIONAL DEFINABILITY OF ADDITION
IN CERTAIN RINGS

HAL G. MOORE AND ADIL YAQUB

Boolean rings and Boolean algebras, though historically
and conceptually different, were shown by Stone to be equa-
tion ally interdefinable. Indeed, in a Boolean ring, addition
can be defined in terms of the ring multiplication and the
successor operation (Boolean complementation) aΓ = 1 +
x(=l — x). In this paper, it is shown that this type of equa-
tional definability of addition also holds in a much wider
class of rings, namely periodic rings (ring satisfying xm = xn,
m Φ n) in which the idempotent elements are "well behaved."
More generally, the following theorem is proved:

Suppose R is a ring with unity 1, not necessarily com-
mutative. Suppose further that R satisfies the identity xn =
xn+1f{x) where n is a fixed positive integer and f(x) is a fixed
polynomial with integer coefficients. If, further, the idem-
potent elements of R commute with each other, then addi-
tion in R is equationally definable in terms of multiplication
in R and the successor operation x~ = 1 + x.

Some new classes of rings to which this theorem applies
are exhibited.

1* The periodic case* In this section, we shall consider a pe-

riodic ring R with unity 1 in which the idempotent elements com-

mute with each other, and will give a direct proof of the equational

definability of the " + " of R in terms of "X" and the successor

operation αΓ. This direct proof avoids the axiom of choice. We

begin with a formal definition of a periodic ring.

DEFINITION 1. A ring R is called periodic if there exist fixed

integers m and n with m > n ^ 1 such that for all x in R, xn = xm.

LEMMA 1. Let R be a periodic ring with unity 1. Then (i)

For each x in R, χ^m~n)n is idempotent. (ii) x is nilpotent if, and

only if xn = 0.

Proof, (i) It can be shown by induction that the identity xn = xm

(m > n ^ 1) implies that for all positive integers r

( 1 ) xn = ίc +r(a? - - ι ) r .

In particular xn = x%%{xn"%"1)%. Let e = (xm~n)n. It is readily verified

that β2 = β, which proves (i). Part (ii) follows at once from equa-

tion (1).
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LEMMA 2. Let R be a ring with unity 1 in which all of the
idempotent elements commute with each other. Then all the idem-
potent elements of R lie in the center of R.

Proof. Let β2 = e e R. It is readily verified that for each x e R,
e + ex — exe is idempotent and hence e(e + ex — exe) = (β + ex — exe)e.
Thus, ex = exe. Similarly xe = exe and so ex = xe proving the lemma.

To aid in our proof of the main theorem, we introduce some
notation. Let (R, +, X) be any (not necessarily periodic) ring with
unity 1. Let xeR. We define the (unary) successor operation x~
in R by

( 2 ) oT = x + 1

with an inverse successor operation x^ given by

( 3 ) x* = x — 1 .

We also use following notation:

( 4) αΓfc = ( ( ( O T Γ , (A -iterations),

with a similar definition for aΓ\ Moreover for all a, b e R we define
the (binary) operation

( 5 ) α X j = ( α Λ χ δ~Γ ( = α + 6 + α&) .

It is readily verified that for all aeR,

(6) α X j = 0 X^α = a .

We are now in a position to give a direct proof of

THEOREM 1. Let R be a periodic ring with unity 1 which
satisfies the identity xm = xn, m > n ^ 1. Suppose that all the
idempotent elements of R commute with each other. Then the " + "
of R is equationally definable in terms of the "X" of R and the
successor operation ". Indeed for all x, y e R we have

x + y = [x{χm-n-ιyT{χ{m'n)n)] X^

Here, x^ = αΓ*"1 wftere g = 2m - 2%

Proof. Let a?0, ̂ /0 be arbitrary but fixed elements of iϋ, and let

/ON
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Then, by Lemmas 1, 2, e is a central idempotent element of R. Let

(9) Re = {re\reR}; R(l - β) = {r(l - e)\reR} .

The mapping

(10) σ: R > Re φ Λ(l - β) σ{r) = (re, r ( l - e)) , (r e Λ) ,

is readily seen to be an onto isomorphism:

(11) σ: R = Re 0 22(1 - β) , (<7 is onto).

Moreover, by (10),

(12) σ(x0) = (a?oe, a?0(l - e)) α(y0) = (yoe, yo(l - e)) .

Now, since the operations in Re0i2( l — e)[=R] are componentwise,
it suffices to verify (7) for both of the following substitutions [see
(11), (12)]:

(i) x = xoe, y = #oe;
(ii) a? = fl?0(l - e), y = y o ( l - e).

Verification of (7) 'wfee^ (i) holds:
In this case, #oe is a ^^ίέ in Re, since by (8) and the fact that

e is a central idempotent,

Moreover, since ô  is a unit in Re, we have

(13) (xQe)m~n = eβ = e[ = identity of Re] .

Hence the right side of (7), with x = α;oβ, 1/ = yoef reduces to [see (13)]

(14) [xoe(e + {xQey-*-\yQe))] X^ 0

because (((xoe){m~n)nyγ = ( O 2 = (e - ef = 0. Now, by (6) and (13),
(14) reduces to

xoe + (xoe)m~n(yQe) = xoe + yQe = x + y ,

which verifies (7) in this case.
Verification of (7) when (ii) holds:
To begin with, observe that 1 — e is an idempotent element

which is in the center of R, and in fact 1 — e is the unity element
of i?(l — e). Hence

(15) = [xo(l - e)Y m~n)n = a ? 5 w - n ) w
= a?5w-n ) w(l - β) = e ( l - β) = 0 ,

using (8). Thus x = a?0(l — β) is a nilpotent element of R(l — e), and
hence (see [3; p. 8])
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(16) aΓ = (1 — e) + a?0(l — e) is a unit in R(l — β) .

Therefore, as in the above proof [see (13)],

(xΎ~n = [(1 - e) + a?0(l - e ) ] M

( ' = 1 - e[=identity element of R(l - e)] .

Hence the right side of (7), with x = xo(l — e), y = j/0(l — β), reduces
to [see (15)]

(18) 0 X^ [aT((l - e) + ( a T Γ " " " ^ ^ ) 2 ] .

By (6), (16), (17), (3), the expression in (18) reduces to

αΓ + (aΓ)m~ V = x~ + V^ = x + V f

and again (7) is verified. Thus (7) is an identity of the ground
ring R.

Now, since xn = xm holds in R, in particular (2m — 2n) 1 = 0.
Let ^ = 2m — 2\ Then ΛJ"9 = x in J? and thus x* = x^q~ι. Therefore
(5) implies that x X^y = (aT X ^ Γ 9 " 1 and the " + " of i2 is indeed
equationally definable via (7) and these remarks in terms of the "X"
of R and " only. This proves the theorem.

REMARK. Since a Boolean ring R with identity has characteristic
2, x"'= αΓ = cc* is the Boolean complement [5]. Also, a Boolean ring
is periodic (satisfying x = α?2) and commutative [5]. Therefore i?
satisfies all of the hypotheses of Theorem 1. Moreover, (7) now re-
duces to (since m = 2, n — 1)

x + y = [χy~χ] X^ |>~(2ΓH<Oa] = »y" X^ »"i/

which becomes, using the definition of union [5] in a Boolean algebra,

x + y = ay* U ίc*2/ .

This is the familiar definition of addition in the Boolean case [5].
Therefore (7) may be viewed as a generalization to periodic rings of
the formula for addition in the Boolean situation.

At the end of this paper we give some examples of rings, some
commutative and some not commutative, for which Theorem 1 applies.

2* The general case* We now proceed to extend the results
of the previous section to a class of rings satisfying certain types
of polynomial identities. We begin with the following

DEFINITION 2. A (not necessarily commutative) ring R is called
a local ring if each x in R is either nilpotent or else invertible in
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R. We are now prepared to prove the following

LEMMA 3. Let R be a ring with unity 1, and let n be a fixed
positive integer. Suppose that f(t) is a fixed polynomial with in-
teger coefficients, and that, for all xeR,

(19) x* = xn+1f(x) .

If, further, all the idempotent elements of R commute with each
other, then R is isomorphic to a subdirect sum of local rings Ut

(ieΓ).

Proof. An easy induction, which we omit, shows that equation
(19) implies

(20) x* = xn+r[f(x)]r for all positive integers r.

In particular xn = x2n[f(x)]n. Let e = x*[f(x)]\ Then e2 = e. Hence,
by Lemma 2, we have the following:

(21) If x e R, then e = xn{f(x)}n is a central idempotent.

We recall, by BirkhofFs theorem [1], that R is isomorphic to a
subdirect sum of subdirectly irreducible rings Rt (ieΓ). We claim
that each Rt is a local ring. To prove this, let σt: R—*Ri be the
natural homomorphism of R onto Rt. For x e Rt let x e R be any
preimage under σt. Let e = xn{f(x)}n. Then by (21), e is a central
idempotent in R. Let e = σt(e). Then e is an idempotent in the
center of Rt. Now let

Ix = {er\reRt}; J2 = {r - er | f 6JB<} .

Since e is in the center of Rif both It and J2 are ideals in Rt. More-
over ii Π /2 = (0). But Ri is subdirectly irreducible which forces
either I, or I2 to be (0). If I, = (0), e = e2 = 0, hence e = 0. If
Λ = (0), then β = Γ. Since e = (^)%{/(^)}w, we have shown that

(22) If xeRiy then (x)n{f(x)}n = 0 or (£)"{/(£)}* = ϊ .

Moreover, since i^ clearly satisfies (20), we conclude from (22) that

(23) If x e Rif then (x)n = 0 or (ac)-1 = (^""M/ίίc)}* e Rt .

Hence Rt is a local ring, and the lemma is proved.
Next, we prove the following

LEMMA 4. In the notation and under all the hypotheses of
Lemma 3, the set Nt of nilpotent elements in the local ring Ri is
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an ideal in Rt and RJNt is a field. Moreover, Nt coincides with
the Jacobson radical /£ of Ri9

Proof. Suppose that x e J*. Then, as we proved in Lemma 3,
xn{f(x)}n is an idempotent element in Jif and hence xn{f(x)}n = 0.
Therefore, by (20), xn — 0, and hence Jt £ Nt. Now, suppose that
aeNi and xeRt. Since Ri is a local ring, ax is either nilpotent or
is a unit in Rt. It is easy to see that ax is not a unit in Rt (since
a is nilpotent), and hence ax is nilpotent. Therefore, ax is right
quasi-regular for all x in Ri9 and hence a e J*. Thus, Nt £ Jif and
hence Nt — Jt. Now, observe that the identity xn = xn+1f(x) is in-
herited by the division ring RJNi and, moreover, both n and f(x)
are fixed. Hence, Rt/Nt is a field, and the lemma is proved.

LEMMA 5. In the notation and under all the hypotheses of
Lemmas 3 and 4, there exists a monic polynomial g(x) with integer
coeficients and an integer m > 1 such that for all x in R,

(24) xm = xm+1g(x) .

Proof. Let x = 2 in (19). This gives 2n = 2w+1/(2), and hence
the characteristic of R is a positive integer q. Now let p^ p2, , ps

be all the distinct prime factors of q. Let xeRif xg Ni9 and let
ay. i?£ —• RJNi be the natural homomorphism of Rt onto the field
RJNi. Let α/.» —> ά5. Note that the field RJNi has prime charac-
teristic, and moreover the subring <£> generated by x is a finite
field; that is,

(25) (x) = GF(p)i) £ RJNt .

Moreover, since the characteristic of the field RJNi must divide the
characteristic q of R, it follows that the prime ps is one of the
prime factors of q. Also in view of (19) we have

{xY = (χy+ίf(χ)

for all xeRJNi. We define the polynomial h(t) of degree a by

h{t) = tn+1f(t) - tn .

Since f{t) has integer coefficients, so does h(t). From (25) we con-
clude that kj is the degree of the irreducible (minimal) polynomial
which x satisfies over GF(pό) and hence kά ^ a, where we now view
h{t) as a polynomial in GF{pά)[t\. But then kj divides a\ and, hence,

(26) tpkόj - t divides t'f - t .
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We can, therefore, conclude from (25) and (26) that

φyf - x = 0 ( = the zero of RJNt) .

Therefore, for x e Rt, xpf — x is nilpotent in Rt. Since, moreover,
Ri satisfies (20), we conclude that

(27) (xpf - x)n = 0 for all x e Rt .

(Note that if x is in Nif then xn = 0, from which (27) also follows.)
Now define the monic polynomial u(x) by

(28) u(x)

where, of course plf p2, *",p8 are the distinct prime factors of q.
Observe that the coefficient of the lowest degree term in u{x) is — 1.
Moreover, by (27), if x is any element of any of the rings Ri (ieΓ),
u(x) — 0. Hence, in view of the fact that the operations of a sub-
direct sum are componentwise, u(x) = 0 for all x in the ground ring
R. Thus, by (28) we see that, for some integer m > 1 and some
monic polynomial g(x) with integer coefficients equation (24) holds,
and the lemma is proved.

LEMMA 6. Suppose that R is a ring of positive characteristic
q and with unity element. Then,

(29) aΓ = aΓ*"1 and x X^ y = (αΓ X y~y~ι .

Moreover, any monic polynomial f(x) with integer coefficients and
zero constant term is expressible in terms of the operations X and
~ in R.

Proof. To avoid any possible confusion, let us denote the unity
of R by e. Then of = x + e and x" = x — e. Hence, (see (4)),

x^^1 == x + (q — ϊ)e = x — e = x~ .

Now recalling the definition of X^ in (5) we have

xX^y = (αΓ X yΎ = ( ^ X ^ Γ ? - 1

which proves (29).
To complete the proof of the lemma, consider the monic poly-

nomial

tn~2(30) f{t) = tn + aj"'1 + a2t
n

with integer coefficients and zero constant term. Since by hypothesis
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the characteristic of R is q, qx = 0 for all x e R. Thus we may
assume, without loss of generality, that each of the integers at

(i = 1, 2, , n — 1) in (30) is positive. Then, by (4), we see that

f(x) = «(••• (x(x(x(x~aί)Ta*Taή -Γ"*-1

This finishes the proof of the lemma.
With the aid of these lemmas we are now in a position to prove

the following main theorem.

THEOREM 2. Let R be a ring with unity 1; let n be a fixed
positive integer, and let f{t) be a fixed polynomial with integer
coefficients such that for all xeR

(31) xn = xn+1f(x) .

Iff further, all the idempotent elements of R commute with each
other, then the " + " of R is equationally definable in terms of the
"X" of R and the (unary) successor operation " .

Proof By Lemma 5 there exists a monic polynomial g(t) with
integer coefficients and an integer m > 1 such that xm — xm+1g(x) for
all x 6 R. We claim that R satisfies the following identity:

[x + v = [χ(χm-\g(χ)TyΓ(χg(χ)T]

1
To prove this we recall first that by Lemma 3, R is isomorphic

to a subdirect sum of local rings Rt (ieΓ). Since the operations in
a subdirect sum are componentwise it suffices to verify (32) for each
local ring Rt. To this end we distinguish two cases:

Case 1. x is a unit in Ri9 Note that xm = xm+1g(x) holds in Ri
and hence xg(x) = 1. Therefore the right side of (32) reduces to
(see (3))

)} X ^ 0 ,

since {{{xg{x)TYf = (Vf = 02 = 0. But then the right side (see (6))
reduces to

x + xm(g(x))my = x + {xg{x))my = x + y

as desired.

2. x is a nilpotent element in Ri—the only other possibility
in a local ring. In this case 1 + x = x~ is a unit in Ri9 Therefore,
as in Case 1, we have x^giμΓ) — 1. Moreover, since xm = xm+1g(x),
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by reiterating we get

(33) xm = xm+r(g(x))r

for all positive integers r. Since x is nilpotent, (33) readily implies
that xm = 0, and, therefore, (xg(x))m = 0. Thus, the right side of
(32) reduces to

o x ^ [αΓ(i + (χΊm

These two cases demonstrate that (32) is an identity satisfied by
all elements a? and y of each local ring Rt (ίeΓ). Therefore, (32)
is an identity of the ground ring R.

To complete the proof, we first observe that by setting x = 2
in (31), we get

Thus, the characteristic of R is a positive integer q. Hence, by

(2)-(5),

(34) a?" = x"9"1 and xX^y = (x~ X y")"9"1 .

Now let

(35) hit) = Γ-\g{t)T .

Note that since g(t) is a monic polynomial with integer coefficients
and m > 1, fc(£) is also a monic polynomial with integer coefficients
whose constant term is zero. Therefore, by Lemma 6, h(t) is ex-
pressible as a primitive composition of the operations X and ", say

(36) h(t) = Φ(t; X, 1 .

By (35) and (36), it follows that

(37) xm-\g(x))m = Φ(x; X, Λ) and (x^m-\g(x^))m = Φ(αĵ ; X, Λ) .

Also by Lemma 6, xg(x) is expressible as a primitive composition of
the operations X and ", say

(38) xgix) = ψ<a?; X, Λ) .

In view of (34), (37), and (38), the right side of the identity (32) is
expressible in terms of the two operations X, and % which proves
the theorem.
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3* Examples* We turn now to some examples of rings, some
commutative and some not commutative, to which our theorems
apply.

EXAMPLE 1. Let R be any Boolean ring with unity [5]; more
generally, let R by any p-τing with unity; i.e., R satisfies xp = x, px = Q,
p = prime. (See [4], [2], and [7].) Then the " + " of R is equa-
tionally definable in terms of "X" and """.

EXAMPLE 2. Let R be any ring with unity in which, for a fixed
n > 1 and every xeR, xn = x. Then here too the " + " of R is
equationally definable in terms of "X" and """.

It should be pointed out that the rings of Examples 1 and 2 are
necessarily commutative, (see [3]; p. 217), as are, of course the rings
of the next example.

EXAMPLE 3. Let R be the ring Zn of integers modulo n. It
can be shown that R is periodic; in fact, R satisfies the identity

where φ(n) is the familiar Euler ^-function. Therefore, by Theorem
1, the " + " of R is equationally definable in terms of "X" and ".
Indeed equation (7) now becomes

This formula for " + " is much simpler than that given in [6].
The next two examples demonstrate that our theorems also

apply to some rings which are not commutative.

EXAMPLE 4. Let F = GF(pk) be a finite field and let R be the
ring of those n x n upper triangular matrices over F in which all
of the entries on the main diagonal are equal. It can be shown
that R is a finite local ring whose only idempotent elements are the
zero matrix and the identity matrix. The ring R is also a periodic
ring; in fact, R satisfies the following identity:

χPnk = χP
{n+ί)k

 #

Therefore R satisfies all of the hypotheses of Theorem 1; and hence,
the "+" of R is equationally definable in terms of "X" and ".
Observe that R is not commutative for n > 2 even over GF(2).

Example 4 can be generalized as follows.
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EXAMPLE 5. Let R be any finite (not necessarily commutative)
ring in which all of the idempotent elements commute with each
other. Then the " + " of R is equationally definable in terms of "X"
and ".

To prove this we let R = {xlf x2, , xk}. Now for any xi e R let

S = {xi9x*if -- , ^ + 1 } .

Since S contains k + 1 elements of R, there must exist integers ri

and Si such that l ^ r ί < s ί ^ f t + l for which

xV = xl* .

Therefore, as in the proof of Lemma l(i), it must follow that x^'^^
is idempotent. Now let

k

n = Π (s< — r^t and m = 2n .
ί = l

Then we see that each x e R, xm = x%. Hence, iϋ is periodic. There-
fore, again by Theorem 1, the " + " of R is equationally definable in
terms of the "X" of R and the successor operation ".

The rings in Examples 4 and 5 are the first known examples of
rings in which the commutative operation of ring addition is equa-
tionally definable in terms of a not commutative ring multiplication
and a successor operation ". One might ask just how noncommuta-
tive a ring may be for this to still be possible.

In conclusion, we would like to express our indebtedness and
gratitude to the referee for his helpful suggestions and valuable
comments.
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