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EXTREMAL PROPERTIES OF REAL BIAXIALLY
SYMMETRIC POTENTIALS IN £2<«+w>

PETER A. MCCOY

The set & consists of all real biaxially symmetric poten-
tials U<β'»(x, y) = Σ~=o an(x*+y2)nP\?>β\x*--y2/x2+y2)/Pίa>β\l),
a > β > —1/2 which are regular in the open unit sphere Σ
about the origin in E2<ia+t+2K Three problems appear re-
garding & and subset ^ # whose members have the first
m + 1 coefficients α0, - , α m specified. (1) For Uia>β>e&f

determine I(JJia V) = inf {U<* P(x, y)\(x, y)eΣ} as limit of a
monotone sequence of constants {i2τι(#o> * >GU}~=O which can
be computed algebraically. (2) Find U^'^e^* and the con-
stant λ2m(a0, , O=sup{J(l7 C β ^)| t/(α^} e^*}=I(E7 (

o

α ^). (3)
Determine necessary and sufficient conditions from the Fourier
coefficients so that Uζ" β> e & and Uζa'β> is nonnegative in Σ.
We develop solutions using operators based on Eoornwinder's
Laplace type integral for Jacobi polynomials, along with ap-
plications of the methods of ascent and descent to the
Caratheodory-Fejer and Caratheodory-Toeplitz problems which
focus on the properties of harmonic functions in E2.

1* Introduction* Real biaxially symmetric potentials (BASP)
jj(«,β) which a r e regular in some domain Ω about the origin in
jg2ia+β+2) m a y k e e X p a n d e d uniquely as a series

(1) U^(x, y) = ao + 2±anUί* β)(x, y) , a, β > - 1/2
» = 1

in terms of the complete set of biaxially symmetric harmonic poly-

nomials

( 2 ) Wϊ>\x, y) = (x2 + y2yPla>β)(x2 - y2/x2 + y2)/Pίa>β)(l),

defined from the Jacobi polynomials [1, p. 9]. These functions are
necessarily even, satisfying the Cauchy data

(3) Ul*'β)(0,y)= U?'βKx,0) = 0

along the singular lines x = 0, y = 0 in Ω.

Symmetry about one axis reduces Uιf>β) to zonal harmonics (a=β),

identifying U{<X}β) as a generalized axially symmetric potential (GASP)

[1, p. 10; 5, p. 167] which corresponds to the real part of an an-

alytic function of one complex variable when a = β = — 1/2. This

simple correspondence provides characterizations of the fundamental

properties of harmonic functions in E2 from their Fourier coefficients

in circular harmonics as they are determined by those of the as-
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sociated analytic functions; serving as a point of reference in seeking
the singularities, zeros, and extremal values for other parameters
a, β.

R. P. Gilbert [5, 6] employed properties of the Jacobi polynomials
to represent each (complex valued) BASP as the integral transform
of a unique associated analytic function of one complex variable and
conversely. Then reasoning as in the "Envelope Method" [4, 5], a
generalization of the Hadamard argument in the Singularities Theo-
rem [3, 5], he showed that the classical criterion of Hadamard and
Mandelbrojt [3] for determining the location and structure of the
singularities of harmonic functions in E2 from their Fourier coef-
ficients provides analogous information for BASP in E2{a+β+2),
a,β> -1/2.

M. Marden [11] and P. McCoy [12,13] applied convexity argu-
ments and conformed mapping techniques to the Bergman ^ [2, 5]
and Gilbert J%fμ [4, 5] integral representations of GASP, describing
their value distribution as in the classical Cauchy [10, p. 123],
Caratheordory-Toeplitz [16, p. 153] and Schur [17, p. 159] coefficient
theorems for harmonic functions in E2. T. Koornwinder's [1, 9] new
Laplace type integral for Jacobi polynomials was used by P. McCoy
and J. D'Archangelo [15] to extend properties developed by Marden
for the zeros of axially symmetric harmonic polynomials to harmonic
polynomials with biaxial symmetry.

Further applications of Koornwinder's integral by McCoy [16]
produced operators mapping analytic functions of one complex vari-
able onto (complex valued) BASP and conversely. These operators,
valid for limited ranges of the parameters, permitted a partial ex-
tension of the Caratheodory-Toeplitz and Schur theorems. Moreover,
a new aspect of the coefficient problem—that of the extremal properties
of the real axially symmetric potentials of the Caratheodory-Fejer
[8, p. 145ίf] type—was introduced by operators related to ^ and

This article provides a unified treatment of the above mentioned
theorems and properties, extending them to real BASP without re-
striction beyond Koornwinder's on the parameters. Taken in union
with Gilbert's theory of singularities, it completes the generalization
of the classical coefficient theorems pertaining to real harmonic (or
analytic) functions in E2. These may be also viewed as a means of
calculating the infimum (supremum) of solutions to the biaxially
symmetric potential equation [5, 9] from the Fourier coefficients
which taken with the methods of ascent and descent [4] indicates
similiar possibilites for solutions to more general partial differential
equation generated by operators whose properties are analogous to
those found in



BIAXIALLY SYMMETRIC POTENTIALS 383

2* Basic formulas and definitions* Koornwinder's formula [9,
p. 130] represents the biaxially symmetric harmonic polynomials as

oJo
( 4 ) U?'»(x, y)=\\ Zndμa>β(t, s) , a > β > - 1/2

JoJo

( 5 ) ζ = x2 - yΨ + i2xyt cos s

with nonnegative measure

dμatβ(t, s) = 7β |,(l - t2)a-β-ψβ+1(sin s)2adtds
( 6 } Ύa.β = 2Γ(a + l)/Γ(l/2)Γ(α - β)Γ(β + 1/2)

normalized so that

( 7 ) \
JoJo

The real harmonic polynomials

un(xf y) = un(x2 - y2, 2xy)

Vn(%, V) Ξ vn(x2 - y2, 2xy)

are defined by

un{x, y) + ivn(x, y) = (x + iy)2n .

Expanding the vector ζn in terms of these as

( 9 ) ζn = un(x2 — yΨ, 2xyt cos β) + ivn(x2 — /̂2έ2, 2α;̂ /έ cos s)

and transforming according to Koornwinder's formula establishes that
vn, the harmonic conjugate of un9 is in the null space of (4). This
suggests the relation

(10) Uΐ*\x, y) = \Ύuu(tf - yΨ, 2xyt cos s)dμa,β(t, s)
J o J o

associating the real (even) BASP (1) and the real (even) harmonic
function

oo

(11) u(x, y) = α0 + 2 Σ αΛwΛ(a?, y)

viz.

ii(ίc2 - y2, 2xy) = a0 + 2 Σ α ^ * ^ ~ I/2,

by the operator

(12) U<*'» = Aa,β(u)

whose definition is
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(13) U{a>β)(x, y) = \Ύu(x2 - yψ, 2xyt cos s)dμayβ(t, s) .

Evidently, if u is harmonic in the open unit disk Dp of radius p
about the origin in E2, Uia'β) is a BASP in the open unit sphere Σp

of radius p about the origin in E2{a+β+2).
The inverse operator (related to &ΰlβ [see 6]) uses orthogonality

of the Jacobi polynomials

τ)aa + τfdτ = K«>β)δnm, a, β > - 1

to define the measure

dVa,βfo V> τ) = Satβ(ξ> V> τ)( l - τf(X + τYdτ ,

inverting the relation (10) as

1 Jl^y»aΛxr-\ yr~\ τ) ,

determining the inverse operator

as

(15) u(x, y) =

An absolutely and uniformly convergent dominant of Satβ for (£, η, τ)
on compact subsets of [0,1) x [0,1) x [ — 1, +1] is the Poisson kernel
[1, p. 11]. By construction of the operators, it follows directly that
Aa)β and A^β are one-one onto maps between the families

= {u{a>β) I expansion (1) regular in ^} , a > β > -1/2

and

4,9 = {^(expansion (11) regular in Dp)

which share the normalization

Aa,β(l) = A-i(l) - 1 .

A principle interest is in the values of the functional

β)) = i n f U{a β) , U{a>β) 6
ΣΣ

= inf u , w 6 /£
D
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(subscripts p — 1 are dropped) as they are determined by the minimal
eigenvalues λ2fc(α0> •••,#*) of the Toeplitz matrices

(16) T 2 k ( a 0 , •••, a k ) =

aQ 0 ai 0 a2 0 a3

0 α 0 0 α x 0 α 2 0 •••

ax 0 tt0 0 c&! 0 ct2

*
<Xfc 0 aQ I

found by applying theorem (a) [8, p. 147] to the function F(z) =
/(#2). We now turn to

3* Extremal properties* The following is an extension of theo-
rem (a) [8, p. 147] referred to in an equivalent form [7, p. 499ff]
as the Caratheodory-Fejer theorem which is how we identify it.

THEOREM 1. Let UM\x, y) = a0 + 2ΣΓ=i^?7ίΓ^fe v) he a real
BASP regular in the sphere Σ and {λ2fc(α0, •••, ak)}ΐ^ be the sequence
of smallest eigenvalues associated with the Toeplitz matrices
{T2k(a0, .-.,αO}?=o. Then

(17) I(Uia>β)) = l im X2k(a0, a > β > - 1/2 .

Proof. For the nonnegativity of the measure (6) and the nor-
malization (7), it is immediate that

U{a'β)(x, y) = Aa,β(u) ^ i(u) , a > β > - 1/2

and

(18) = lim;
k

The smaller functional is evaluated by the Caratheodory-Fejer theo-
rem [8, p. 147]. Anticipating the reverse inequality, we define the
functionals

LPQ\
&«,») = i n f j7(«./j)

Vo(%) = inf u

with

p0 = , η, τ) > 0 , ' f2 + rf < p2 < 1 , r e [ - l , 1]} .

The number p0 exists since Sa,β is continuous in a cylinder of small
enough radius with center on the τ-axis, τe[ — 1, +1], and p0 is
positive as Sa>β(0, 0, τ) — 1 there.
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Now, if Ul£tβ)(xlf yd is a BASP which is nonnegative for x\ +
y\ ^ pi and the A^β associate is u#, then

so that

(19) iPo(u,) ^ IPo(U^) .

The homothetic transformations x1 — pQx9 yλ~ρ^y, and the homogeneity
of the harmonic polynomials

un(χ, y) = pό2nun(χpo, ypo)

and

Uΐ'β\x, y) = pϊ**U«'β)(xp0, yp0)

produce harmonic functions

and

U^Xx,, yϊ) = a0 + 2± anPo
2nU^\xlf Vι)

n—i

regular for x\ + y\ < $ corresponding to the regular functions (1)
and (11) in x2 + y2 < 1. Evidently,

and because of inequality (19),

(20) i(u)

Thus,

(21) i(u)

and because of (18) the theorem is proved.
We next define the set Sίf^ = 3if^\a,, , α j as the subset

of έ%f^β) whose members have their first m + 1 coefficients α0, •• , α Λ

fixed and turn to the analogy of the second classical theorem [8, p.
151].

THEOREM 2. Let W'β) e <serla'P)(a0, •••, am) be expanded as in (1)

and λ2 w(α0, , am) be the smallest eigenvalue of the Toeplitz matrix

T2m(aQ, -- , α j . Then

β))^X2m, a> β> - 1 / 2
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and

sup {I{JJ« »)\Uι" » e

for unique Uj,a'β} e ^fla'β)(a0, •••,«„) expanded as

UlT 'Xx, V) = \ m + Σ σ* Wίβ "(x, y) ,
fc = l

( } w*(a, 1/) = [1 - (χ2 + y2)][gk(χ, y)Γ ,

ί/*(a?, V) = 1 - 2(ΛJ2 + ί/2) cos {2 arc cos x/l/V + ?/2 - φk}

for unique 1 <; i <; m, ^* 6 [0, 2ττ), o* > 0 provided c\ + + c2

m ̂  0,
otherwise if and only if

(23) tfΓ^s, ») = Co = λ2m .

Proof. For the subfamily <%?%>β) we associate the subfamily
^^ = ^ { ( O ' ^ Ί ^ ^ e ^^# f / ϊ ))} whose members u satisfy the requisite
inequality [8, p. 151],

(24) i(u) ^ λ2w(α0, - - - , 0

The matrix Γ2Λ(α0, •••,«») is identified from [8, p. 146] by u(x, y) =
Re /((a? + i#)2). Because of the relation (21), we find

The Aα,1^ associate of the extremal function Z7^^} is

3

uo(x, y) = λ2m Σ

wk(x, y) =

Λ(«) - (1 + ekz)/(l - εkz) , |ε*| = 1 .

Because of (12), u0 transforms onto the required extremal function
(22) as defined.

The final result is the generalization of the Caratheodory-Toeplitz
theorem [8, p. 152; 17, p. 157] which classified nonnegative harmonic
functions in D from their coefficients.

THEOREM 3. Necessary and sufficient conditions for the expan-
sion U{a>β) e Si?^β) and

U{«>β)(x, y) ^ 0 , x2 + t < 1 , a > β > - 1/2
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specify that the determinants

Λ<A, •••,«») = det T2n(a0, , <O

generated from the coefficients of the expansion are either

(i) Λ(α0, , an) > 0 , n = 0, 1,

or w case

(ii) 4,(a0, , <O > 0 , % = 0, , m ,

Λ(a0, , aΛ) = 0 , n = m + 1, ,

wftere Z7(β ̂ (a?, y) - U(

0*'β)(x, y) - λ2m .

Proof. When w, the associate of U{a>β), is nonnegative and regular
in D so must U{a>β) be nonnegative and regular in Σ because the
measure of the transform is nonnegative. This is indeed the case
[see 8, 18] if (i) or (ii), establishing the sufficiency. Conversely,

u^xί} y,) = A^β(U^) ^ 0

when

U«'β)(xlf yj ^ 0 , x\ + y\ < pi .

However,

sgn u^(x19 yd = sgn u(x, y)

sgn U%'β)(x19 yd = sgn U^\x, y)

so that U{a>β) nonnegative and regular in Σ implies u nonnegative
and regular in D which asserts (i) or (ii).

4* Generalizations* For β > a, the symmetry relations found
from [1, p. 8]

may be employed with the proper interpretation of the biaxially
symmetric potential equation [6, 9]. The axisymmetric case a = β,
may be interpreted with a [ β in Koornwinder's formula which be-
comes Gegenbauer's integral for the Jacobi polynomials.

The classical theorems of Caratheodory-Fejer and Caratheodory-
Toeplitz have analogous calculations for the supremum [see 8] and
bounds on the maximum modulus (Caratheodory-Schur [see 17]) which
generalize directly by the methods contained here in. Domains
Ω c E2{a+^2) about the origin which are not spheres are defined by
their projections into ωaE2 as

0 = {(x,y)\ζ2eω90^ s ^ π, - 1 ^ t ^ + 1},
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ω being a simply connected domain about the origin. To consider
extensions of theorems and 1 and 2, ω is mapped conformally onto
Zλ The required connection coefficients between U{"tβ) a regular
BASP in Ω and the "associated" BASP regular in Σ may be found
as in [13, 14]. The methods of ascent and descent may be utilized
to extend the above properties.
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