SEVERAL DIMENSIONAL PROPERTIES OF THE SPECTRUM OF A UNIFORM ALGEBRA

RICHARD F. BASENER

The author has previously introduced a generalized Silov boundary which seems useful in studying analytic structure of several dimensions in the spectrum of a uniform algebra \mathfrak{A} . Related generalizations of \mathfrak{A} -convexity, \mathfrak{A} -polyhedra, etc. are developed here. Several different but equivalent approaches to these various generalizations are described. The generalized boundaries discussed here are related to the "qholomorphic functions" of the author, and to \mathfrak{A} -holomorphic convexity.

The generalized Šilov boundary was introduced by the author [2] to study multi-dimensional analytic structure in the spectrum of a uniform algebra. Related but more extensive applications of this boundary were developed by Sibony [13]. Kramm [10] has utilized this boundary to help obtain a characterization of Stein algebras. The definition of the Šilov boundary of order q in [2] was motivated by consideration of \mathfrak{A} -varieties of codimension q in the spectrum of \mathfrak{A} .

Here we show how extending \mathfrak{A} by the conjugates of q functions from \mathfrak{A} , decomposing the spectrum of \mathfrak{A} into q + 1 pieces, or generalizing the idea of an \mathfrak{A} -polyhedron all lead to the same circle of ideas as the qth order boundary. We also relate this boundary to "q-holomorphic" functions. (In [3], [4] the author defined a function f to be q-holomorphic if $\overline{\partial} f \wedge (\partial \overline{\partial} f)^q = 0$, and developed some elementary properties of such functions.) Finally, we establish a connection between the first order boundary and the \mathfrak{A} -holomorphic convexity studied by Rickart [11].

We refer the reader to Stout's book, [14], for notation, terminology, and basic results concerning function algebras and uniform algebras.

1. Generalized boundaries and extension algebras. Let A be a function algebra on the compact Hausdorff space X (although the results of this section also apply if X is locally compact). Let $\partial_0 A$ denote the usual Šilov boundary for A. For a subset S of A let #S denote the cardinality of S and let

$$V(S) = \{x \in X | \forall f \in S, f(x) = 0\}.$$

If K is a closed subset of X define the restriction algebra

$$A \mid K = \{f \mid_{\kappa} : f \in A\}$$

and let A_K denote the uniform closure of $A \mid K$ in C(K).

DEFINITION. Let q be a nonnegative integer. A subset Γ of X is a qth order boundary for A if given $S \subseteq A$ with $\#S \leq q$, $V(S) \neq \emptyset$, we have:

$$orall f\in A,\ \exists x\in \Gamma\cap V(S) \ \ ext{such that} \ \ |f(x)|=\max_{V(S)}|f| \ .$$

We then define the qth order Šilov boundary for A by

$$\partial_q A = ext{Closure} \left[\cup \left\{ \partial_0 [A \,|\, V(S)] : S \subseteq A, \, \#S \leq q
ight\}
ight].$$

Evidently $\partial_q A$ is the smallest closed *q*th order boundary for *A*, and the two definitions for $\partial_0 A$ are consistent.

DEFINITION. If \mathfrak{B} is a commutative Banach algebra with unit, let $M = M(\mathfrak{B})$ denote its spectrum and \hat{B} its algebra of Gelfand transforms. Since \hat{B} is a function algebra on M we may define $\partial_q \mathfrak{B} = \partial_q \hat{B}$.

Now suppose that A is a uniform algebra on the compact Hausdorff space X. We denote the corresponding commutative Banach algebra by \mathfrak{A} , and we identify X with the corresponding subset of its spectrum M. Evidently $\partial_q A = \partial_q \mathfrak{A}$ if and only if $\partial_q \mathfrak{A} \subseteq X$. Of course X contains the usual Šilov boundary of A, so this always holds for q = 0, but it need not hold when q > 0. (Let $\Delta = \{z \in C: |z| \leq 1\}$. Take $X = \partial \Delta$, A = P(X). Then $\partial_q A = X$ for all $q, \partial_0 \mathfrak{A} = X$, but $\partial_q \mathfrak{A} = \Delta$ for q > 0.) The generalized Šilov boundary used in [2], [10], and [13] is $\partial_q \mathfrak{A}$. For examples of $\partial_q \mathfrak{A}$, see [13], pp. 145-147.

Sibony apparently arrived at his definition of $\partial_q \mathfrak{A}$ by considering the behavior of plurisubharmonic functions. We include his definition here for completeness.

THEOREM 1 (Sibony, [13] Theorem 3). If A is a uniform algebra on the compact Hausdorff space X, then $\partial_q \mathfrak{A}$ is the smallest compact subset of M which satisfies the condition: whenever $f, g_1, \dots, g_q \in A$ and Re $f \leq \sum_{j=1}^{q} |g_j|$ on K, then Re $f \leq \sum_{j=1}^{q} |g_j|$ on M.

When \mathfrak{B} is a commutative Banach algebra with unit, $\partial_q \mathfrak{B}$ has an interpretation in terms of quotient algebras. To see this, recall that when I is a closed ideal in \mathfrak{B} , the spectrum of \mathfrak{B}/I is naturally identified with $V(\hat{I}) = \{\varphi \in M(\mathfrak{B}) | \forall f \in I, \hat{f}(\varphi) = 0\}$. Thus we obtain:

THEOREM 2. For a commutative Banach algebra B with unit,

 $\partial_q \mathfrak{B} = \text{Closure} \left[\cup \{ \partial_0(\mathfrak{B}/I) : I \text{ is an ideal of codimension at most } q \text{ in } \mathfrak{B} \} \right].$

For the remainder of this section, we consider a function algebra A on a compact Hausdorff space X, and show how the qth order boundaries for A are related to extensions of A by conjugates of functions in A.

NOTATION. If $S \subseteq C(X)$, let A(S) denote the function algebra on X generated by A and S; i.e.,

$$A(S) = \left\{ \sum_{|I| \leq N} g_I f_1^{i_1} \cdots f_r^{i_r} | f_1, \cdots, f_r \in S, g_I \in A, 0 \leq r, N < \infty \right\}$$

where $I = (i_1, \dots, i_r)$ and $|I| = i_1 + \dots + i_r; i_1, \dots, i_r \ge 0$.

THEOREM 3. Let Γ be a closed subset of X. Then Γ is a qth order boundary for A if and only if for all $S \subseteq A$ with $\#S \leq q, \Gamma$ is a boundary for $A(\overline{S})$.

Proof. First assume that Γ is a *q*th order boundary for A. Let $S = \{f_1, \dots, f_q\} \subset A$, and let $F \in A(\overline{S})$, so that

$$F = \sum_{\scriptscriptstyle I} g_{\scriptscriptstyle I} ar{f}_{\scriptscriptstyle 1}^{i_1} \cdots ar{f}_{\scriptscriptstyle q}^{i_q}$$

for some $g_I \in A$. Choose $y \in X$ with $|F(y)| = \max_X |F|$, and let

$$egin{aligned} h_j &= f_j - f_j(y) \qquad j = 1, \ \cdots, \ q \ ; \ T &= \{h_1, \ \cdots, \ h_q\} \subseteq A \ ; \ f &= \sum\limits_I \ g_I \overline{f_1(y)}^{i_1} \cdots \overline{f_q(y)}^{i_q} \in A \ . \end{aligned}$$

Then $y \in V(T)$, so $V(T) \neq \emptyset$. Since Γ is a qth order boundary for A, $\max_{V(T)} |f| = \max_{V(T) \cap \Gamma} |f|$. But $y \in V(T)$ and f = F on V(T), whence $\max_{X} |F| = |F(y)| = \max_{\Gamma} |F|$ as desired.

Now suppose that for all $S \subseteq A$ with $\# S \leq q$, Γ is a boundary for $A(\overline{S})$. Let $S \subseteq A$, $\# S \leq q$, $V(S) \neq \emptyset$. Given $f \in A$ we will show that $\max_{V(S)} |f| = \max_{V(S)\cap \Gamma} |f|$.

Let $S = \{f_1, \dots, f_q\}$ and let $M = 1 + \max_{\mathcal{X}} \sum_{j=1}^q |f_j|^2$. Set

$$F=rac{1}{M}\Bigl(M-\sum\limits_{j=1}^q |f_j|^2\Bigr)$$
 ,

and observe that F = 1 on V(S) while 0 < F < 1 on $X \setminus V(S)$. For each $m \ge 0$ we have $f F^m \in A(\overline{S})$, so that

$$\max_{X}|fF^{m}|=\max_{r}|fF^{m}|$$
 .

Since F peaks on V(S), it follows that

$$\max_{\scriptscriptstyle V(S)} |f| = \max_{\scriptscriptstyle V(S) \cap \varGamma} |f|$$
 .

2. Relationship with q-holomorphic functions. In [3], [4] we defined a function f on C^{*} to be q-holomorphic if $\bar{\partial}f \wedge [\partial\bar{\partial}f]^{q} = 0$. The motivating example of such a function is one which is holomorphic in (n-q) variables and arbitrary in the other q variables. (Compare Example 4 and Theorem 1 in [3].) We showed that an (n-1)-holomorphic function on C^{*} satisfies the maximum principle, and we related "q-holomorphic convexity" to q-pseudoconvexity (Theorems 2 and 3 of [3]). Hunt and Murray [9] have since related these q-holomorphic functions to the complex Monge-Ampere equations, obtaining results which extend Bremermann's work [6] on a generalized Dirichlet problem.

In order to develop some of the connections between the generalized Šilov boundary and the q-holomorphic functions, let us define

 $egin{aligned} A(K) &= \{f \in C(K) \,|\, f ext{ is holomorphic on int } K\} \ A^q(K) &= \{f \in C(K) \,|\, f \,|_{\operatorname{int} K} \in C^{(2)}(\operatorname{int} K), \, f \ & ext{ is } q ext{-holomorphic on int } K\} \end{aligned}$

for K an arbitrary compact subset of C^* . So, for example, $A^o(K) = A(K)$ and $A^n(K) = \{f \in C(K) | f |_{intK} \in C^{(2)}(int K)\}$. A(K) is a uniform algebra but $A^q(K)$ is not even a linear space when 0 < q < n, although it does have some algebraic closure properties; for example, if $f \in A(K)$ and $g \in A^q(K)$, then f + g, fg, $g^2 \in A^q(K)$ ([3], Proposition 4). We will still say that a subset Γ of K is a boundary for $A^q(K)$ if for all $f \in A^q(K)$, $\max_K | f |$ is achieved on Γ . The maximum principle for q-holomorphic functions mentioned above shows that ∂K is always a boundary for $A^q(K)$ when $0 \leq q < n$, and certainly K is the only boundary for $A^q(K)$ when $q \geq n$. Similarly, it is clear that ∂K is a qth order boundary for A(K) when $0 \leq q < n$, and that the only qth order boundary for A(K) when $q \geq n$ is K. One reason for this similarity is given by the following result.

THEOREM 4. Let Γ be a closed subset of the compact set $K \subseteq \mathbb{C}^n$. If Γ is a boundary for $A^{\mathfrak{q}}(K)$, then Γ is a qth order boundary for A(K).

Proof. Let $S \subseteq A, \# S \leq q$. It is easy to verify that $A(K)(\overline{S}) \subseteq A^{q}(K)$. Since Γ is a boundary for $A^{q}(K)$, it is a boundary for $A(K)(\overline{S})$. By Theorem 3, Γ is a qth order boundary for A(K).

Now suppose that Ω is a bounded open subset of C^n with C^2

300

boundary. Recall that Ω is (strictly) q-pseudoconvex at a point $x \in \partial \Omega$ if the Levi form in the complex tangent space to Ω at x of a defining function for Ω has at least n - 1 - q nonnegative (positive) eigenvalues. Let

 $F_{q,\varOmega} = \text{Closure} \left\{ x \in \partial \Omega \, | \, \Omega \text{ is strictly } q \text{-pseudoconvex at } x \right\}$.

THEOREM 5. Let Ω be a bounded open subset of C^n with C^2 boundary. Then $F_{q,\Omega}$ is a boundary for $A^q(\overline{\Omega})$.

Proof. For q = 0, see Epe [7] (or [5] or [8]). The same argument used in, say, [5] can be applied when q > 0. We outline a proof, based on this argument, for the case 0 < q < n.

Let $f \in A^{q}(\overline{\mathcal{Q}})$; we will show that $\max_{\overline{\mathcal{Q}}} |f| = \max_{F_{q,\mathcal{Q}}} |f|$. By the closure properties of $A^{q}(\overline{Q})$ mentioned above, we know that $A(\overline{\mathcal{Q}})(\{f\}) \subseteq A^{q}(\overline{\mathcal{Q}})$. Let B denote the uniform closure of $A(\overline{\mathcal{Q}})(\{f\})$, so that B is a uniform algebra on $\overline{\Omega}$. We will show that $F_{q,\Omega}$ contains $\partial_0 B$, which will complete the proof. For this it suffices to show that any peak point $x \in \partial \Omega$ for B is a limit of strictly q-pseudoconvex boundary points of Ω . Now given any small neighborhood U of such an x, there is a $g \in A(\overline{\Omega})(\{f\})$ for which Re g achieves its maximum value, say 1, only in U. Since $\operatorname{Re} g$ is q-plurisubharmonic on Ω (Theorem 3.3 of [9]), $\varphi(z) = -1 + \varepsilon \sum_{j=1}^{n} |z_j|^2 + \operatorname{Re} g(z)$ is strictly q-plurisubharmonic on Ω for any positive ε . If we choose ε to be a small positive number, and c to be a small negative number for which $W = \{z \in \Omega | \varphi(z) = c\}$ is smooth, and if we then translate the hypersurface W in the outward normal direction to Ω at x until W is externally tangent to Ω , any point of tangency of W provides a strictly q-pseudoconvex boundary point of Ω near x.

Note. There does not seem to be a simple way to apply the above argument directly to the original function $f \in A^{q}(\overline{\Omega})$, as the set $\{z \in \partial \Omega \mid \operatorname{Re} f(z) = \max_{\overline{\Omega}} \operatorname{Re} f\}$ may extend over a large portion of $\partial \Omega$. Then we cannot simply translate a level hypersurface to make it externally tangent.

Putting Theorems 4 and 5 together, we see that $F_{q,\Omega}$ always contains $\partial_q A(\bar{\Omega})$. In fact, Sibony has shown that $\partial_q A(\bar{\Omega}) = F_{q,\Omega}$ when Ω is a C^{∞} pseudoconvex domain which is an " S_{δ} ". ([13], Proposition 4.) In this case $\bar{\Omega}$ is the spectrum of the corresponding Banach algebra $\mathfrak{A}(\bar{\Omega})$, so we also have $\partial_q \mathfrak{A}(\bar{\Omega}) = F_{q,\Omega}$. Furthermore, it is easy to see that $F_{q,\Omega}$ is the smallest closed boundary for $A^q(\Omega)$ in this case. For an arbitrary bounded Ω with C^2 boundary it would seem to be a difficult question to determine whether a given strictly qpseudoconvex boundary point x of Ω must be included in every closed boundary for $A^q(\overline{\Omega})$ or in $\partial_q A(\overline{\Omega})$, as these involve global existence questions; but it is not hard to see that for any such x there is a closed ball B centered at x for which $x \in \partial_q A(\overline{\Omega} \cap B)$ and for which x is any closed boundary for $A^q(\overline{\Omega} \cap B)$. (See the proof of Theorem 3 in [3] for the construction of an appropriate peaking function.)

3. Generalizations of \mathfrak{A} -convexity. Throughout this section let A be a uniform algebra on the compact Hausdorff space X. As in section one, \mathfrak{A} denotes the corresponding Banach algebra and Mdenotes its spectrum; we will also regard \mathfrak{A} as a uniform algebra on M. K, K_j , etc. will always denote closed subsets of M. We recall briefly some facts about \mathfrak{A} -convexity.

The \mathfrak{A} -convex hull of K is defined by

$$h(K) = \left\{ x \in M | \, orall f \in \mathfrak{A}, \, |f(x)| \leq \max_{\scriptscriptstyle K} |f|
ight\}$$
,

and the rational \mathfrak{A} -convex hull of K is

$$rh(K) = \{x \in M | \forall f \in \mathfrak{A}, f(x) \in f(K)\}$$
.

K is a boundary for \mathfrak{A} if and only if h(K) = M. One says that a set K is \mathfrak{A} -convex if and only if h(K) = K. The simplest \mathfrak{A} -convex sets are the \mathfrak{A} -polyhedra. If $D = \{|z| \leq 1\}$ and if $F_1, \dots, F_r \in \mathfrak{A}$, the corresponding \mathfrak{A} -polyhedron is

$$\pi(F_1, \dots, F_r) = \{x \in M | F_j(x) \in D, j = 1, \dots, r\}.$$

 $h(K) = \bigcap \{\pi : \pi \supseteq K, \pi \text{ is an } \mathfrak{A}\text{-polyhedron}\}.$

There is an obvious generalization of h(K) parallel to the generalized Šilov boundary.

DEFINITION.

$$h_q(K) = \left\{ x \in M | \, orall S \subseteq \mathfrak{A}, ext{ if } \# S \leq q ext{ and } x \in V(S) ext{ ,}
ight.$$
 $ext{ then } orall f \in \mathfrak{A}, |f(x)| \leq \max_{V(S) \cap K} |f|
ight\} ext{ .}$

(Here $V(S) = \{x \in M | \forall f \in S, f(x) = 0\}$.) Evidently K is a qth order boundary for the algebra \mathfrak{A} on M if and only if $h_q(K) = M$.

A similar generalization of \mathfrak{A} -polyhedron is also possible, and in fact one was made by Rothstein [12] in studying Hartogs' theorems for analytic varieties. Our definition is based on his. Let

$$D^n=\{z\in C^n\,|\,z=(z_{\scriptscriptstyle 1},\,\cdots,\,z_{\scriptscriptstyle n}), ext{ and for some }j,\,|\,z_{\scriptstyle j}|\leq 1\}$$
 ,

and let $\mathfrak{A}^n = \{F = (f_1, \dots, f_n) | f_1, \dots, f_n \in \mathfrak{A}\}.$

DEFINITION. If $F_1, \dots, F_r \in \mathfrak{A}^{q+1}$, the corresponding q-polyhedron is

$$\pi(F_1, \dots, F_r) = \{x \in M | F_j(x) \in D^{q+1}, j = 1, \dots, r\}$$

Note for future reference that the q-polyhedra are precisely the subsets of M which are finite intersections of unions of q + 1 \mathfrak{A} -polyhedra; for example, if $F = (f_1, \dots, f_{q+1})$, then $\pi(F) = \bigcup_{j=1}^{q+1} \pi(f_j)$.

The q-polyhedra are related to $h_q(K)$ in the same way that \mathfrak{A} -polyhedra are related to h(K). In proving this we will make use of some alternative descriptions of $h_q(K)$, two of which are based on decomposing K into q + 1 pieces and examining their hulls. We need a preliminary lemma which describes this kind of decomposition in C^q .

LEMMA. If $B^n = \{z \in C^n \mid |z| \leq 1\}$, then there are compact polynomially convex sets $L_0, L_1, \dots, L_n \subseteq B^n$ such that:

(i) $B^n = \bigcup_{j=0}^n L_j$ and

(ii) 0 is a peak point for $P(L_j)$, $j = 0, \dots, n$.

Such a decomposition is not possible with fewer than n + 1 subsets of B^n . (Here $|z| = (\Sigma |z_j|^2)^{1/2}$.)

Proof. Let

$$M_j = \left\{ z \in C^n \, | \, ext{for each nonzero coordinate } z_i \, ext{of } z \; , \ rac{2\pi j}{n+1} \leq rg \, z_i \leq rac{2\pi (n+j)}{n+1}
ight\} \; , \hspace{0.2cm} k = 0, \, \cdots , \, n \; .$$

Each M_j is a product of one dimensional sectors about the origin, and $\bigcup_{j=0}^{n} M_j = C^n$. It follows that

$$L_j=M_j\cap B^n$$
 , $\ \ j=0,\,\cdots,\,n$

yields the desired decomposition. That n + 1 pieces are needed will follow from the next result applied to $P(B^n)$, since $\partial_{n-1}(P(B^n)) = \partial B^n$.

As a final preliminary, suppose $S \subseteq \mathfrak{A}$ and define

$$h_{S}(K) = \left\{ x \in M | \, orall f \in \mathfrak{A}(ar{S}), \, |f(x)| \leq \max_{\kappa} |f|
ight\}$$
 .

Of course this is just the \mathfrak{B} -convex hull of K, where B is the uniform algebra generated by A and $\{\overline{f}: f \in S\}$.

THEOREM 6. For any closed subset K of M, the following sets are equal:

$$\begin{split} H_{1} &= h_{q}(K) ; \\ H_{2} &= \bigcap \left\{ h_{s}(K) \, | \, S \subseteq \mathfrak{A}, \, \# \, S \leq q \right\} ; \\ H_{3} &= \bigcap \left\{ \pi \, | \, \pi \text{ is a q-polyhedron containing } K \right\} ; \\ H_{4} &= \left\{ x \in M \, | \, \text{for any decomposition } K = \bigcup_{j=0}^{q} K_{j}, \, x \in \bigcup_{j=0}^{q} h(K_{j}) \right\} ; \\ H_{5} &= \left\{ x \in M \, | \, \text{if } K_{1}, \, \cdots, \, K_{q} \subseteq K \text{ and } x \notin \bigcup_{j=1}^{q} rh(K_{j}), \text{ then there} \right. \\ &\text{ is a compact set } L \subseteq K \backslash \bigcup_{j=1}^{q} K_{j} \text{ with } x \in h(L) \right\} . \end{split}$$

Proof. $H_1 = H_2$: This follows readily from the definitions by considering $A|_{H_1}$ and $A|_{H_2}$ together with Theorem 3.

 $H_1 \subseteq H_5$: Let $x \in h_q(K)$, let $K_1, \dots, K_q \subseteq K$, and assume $x \notin \bigcup_{j=1}^q rh(K_j)$. We will exhibit a compact set $L \subseteq K$, L disjoint from K_1, \dots, K_q , with $x \in h(L)$.

For $j = 1, \dots, q$ choose $f_j \in \mathfrak{A}$ with $0 = f_j(x) \notin f_j(K_j)$. Let $S = \{f_1, \dots, f_q\}$. Then $x \in V(S) \cap h_q(K)$, so $\forall f \in \mathfrak{A}, |f(x)| \leq \max_{V(S) \cap K} |f|$. $L = V(S) \cap K$ has the desired properties.

 $H_5 \subseteq H_4$: This is obvious.

 $H_4 \subseteq H_1$: Let $x \in H_4$, let $S = \{f_1, \dots, f_q\} \subseteq \mathfrak{A}$, and assume $x \in V(S)$. We will show that $x \in h(V(S) \cap K)$. Assume $\Sigma |f_i|^2 \leq 1$.

By the above lemma there are compact polynomially convex sets $L_0, \dots, L_q \subseteq B^q$ with $B^q = \bigcup_{j=0}^q L_j$ and 0 a peak point for $P(L_j), j = 0, \dots, q$. Let

$$K_j = \{x \in K | \, (f_1(x), \, \cdots, \, f_q(x)) \in L_j\}$$
 , $j = 0, \, \cdots, \, q$.

Since $x \in H_i$, there is a j such that $x \in h(K_j)$. Let ψ be a function in $P(L_j)$ which peaks at 0, and let $\Psi = \psi(f_1, \dots, f_q)$. Then $\Psi \in \mathfrak{A}_{K_j}$, the uniform closure of the restriction algebra $\mathfrak{A}|_{K_j}$. From the facts that $x \in V(S) \cap h(K_j)$ and that Ψ peaks on $V(S) \cap h(K_j)$, it follows that any representing measure for x on K_j is supported on $V(S) \cap K_j$. Thus $x \in h(V(S) \cap K_j) \subseteq h(V(S) \cap K)$ as desired.

 $H_4 \subseteq H_3$: Suppose $x \notin H_3$. Let π be a q-polyhedron for which $K \subseteq \pi$ but $x \notin \pi$. As noted above, π can be written in the form $\pi = \bigcap_i \bigcup_{j=0}^q \pi_{ij}$, where the π_{ij} are \mathfrak{A} -polyhedra. Then for some i we have $x \notin \bigcup_{j=0}^q \pi_{ij}$. Let $K_j = K \cap \pi_{ij}$, $j = 0, \dots, q$. Evidently $K = \bigcup_{j=0}^q K_j$ and $x \notin \bigcup_{j=0}^q \pi_{ij} \supseteq \bigcup_{j=0}^q h(K_j)$, so $x \notin H_4$.

 $H_3 \subseteq H_4$: Suppose $x \notin H_4$. Then there are K_0, \dots, K_q with K =

 $\bigcup K_j, x \notin \bigcup h(K_j). \quad \text{Choose } f_j \in \mathfrak{A} \text{ with } |f_j(x)| > 1 \ge \max_{K_j} |f_j|, j = 0, \dots, q. \quad \text{Let } F = (f_0, \dots, f_q). \quad \text{Then } x \notin \pi(F) \supseteq K, \text{ so } x \notin H_3.$

COROLLARY. $\partial_q \mathfrak{A}$ is the smallest compact subset K of M having the property: for every decomposition of K into q + 1 compact subsets, $K = \bigcup_{j=0}^{q} K_j$, one has $\bigcup_{j=0}^{q} h(K_j) = M$.

4. \mathfrak{A} -holomorphic convexity and the first order boundary. Again let A denote a uniform algebra on X, with M, \mathfrak{A} as in section three. Since the higher order boundaries reflect higher dimentional structure in M, and since holomorphic convexity first becomes interesting in \mathbb{C}^2 , it is reasonable to expect some connection between the first order boundary and uniform algebra generalizations of holomorphic convexity. An appropriate notion of \mathfrak{A} -holomorphic convexity was studied by Rickart [11], which we now recall.

DEFINITION. Let U be an open subset of M and let $\mathcal{O}(U)$ denote the locally \mathfrak{A} -holomorphic functions on U, i.e., $\mathcal{O}(U) = \{f \in C(U) | \forall x \in U \exists a \text{ compact neighborhood } N \text{ of } x \text{ such that } f \mid_N \in \mathfrak{A}_N \}$. For a compact set $K \subseteq U$, set

$$\hat{K} = \left\{ x \in U | \forall f \in \mathscr{O}(U), |f(x)| \leq \max_{_K} |f|
ight\}.$$

Then U is called A-holomorphically convex if for all compact sets $K \subseteq U, \hat{K}$ is compact.

THEOREM 7. There are no proper \mathfrak{A} -holomorphically convex open subsets of M containing $\partial_1 \mathfrak{A}$.

Proof. Let U be an open subset of M contaiging $\partial_1 \mathfrak{A}$. Assume $K = M \setminus U \neq \emptyset$. We will show that U is not \mathfrak{A} -holomorphically convex by showing that $(\partial_1 \mathfrak{A})^{\uparrow}$ is not compact.

Let x be a peak point for \mathfrak{A}_K . Then $x \in K$, and the local maximum modulus principle implies that $x \in \partial[h(K)]$. Choose $x_{\alpha} \in M \setminus h(K)$ with $x_{\alpha} \to x$, and for each α choose $f_{\alpha} \in \mathfrak{A}$ with $f_{\alpha}(x_{\alpha}) = 1 > \max_{K} |f_{\alpha}|$. Fix α and take $S = \{f_{\alpha} - 1\}$. Then $x_{\alpha} \in V(S) \subseteq U$, and $\partial_0[\mathfrak{A}_{V(S)}] \subseteq \partial_1\mathfrak{A}$, whence (using, say, Corollary 28.9 in [14]) $x_{\alpha} \in (\partial_1\mathfrak{A})^{\uparrow}$. Thus $(\partial_1\mathfrak{A})^{\uparrow}$ is not compact.

Let us say that a compact set $K \subseteq M$ is "large" when the only \mathfrak{A} -holomorphically convex open set containing K is M, so that the content of Theorem 7 is that $\partial_1\mathfrak{A}$ is always large. Clearly any large set must contain $\partial_0\mathfrak{A}$, so that when $\partial_0\mathfrak{A} = \partial_1\mathfrak{A}$, this is the smallest large subset of M. (This happens, e.g., for $A = P(B^n)$, $n \geq 2$.) When $\partial_0\mathfrak{A} \neq \partial_1\mathfrak{A}$, it may happen that there is a smallest large set K with either $K = \partial_0 \mathfrak{A}$ or $K = \partial_1 \mathfrak{A}$ or $\partial_0 \mathfrak{A} \subsetneq K \subsetneq \partial_1 \mathfrak{A}$; or there may be no smallest large set. For example, if $A = P(\Delta^1)$ (where $\Delta^n = \{z \in \mathbb{C}^n \mid |z_j| \le 1\}$), then $\partial_0 \mathfrak{A} = \partial \Delta^1$, but $\partial_1 \mathfrak{A} = \Delta^1$ is the smallest large set. If A = R(X) where X is one of the compact subsets of $\partial \Delta^2$ in [1] or [15], $\partial_0 \mathfrak{A} = X$ is the smallest large set while $\partial_1 \mathfrak{A} = h_r(X) \ne X$. Finally, consider $A = P(\Delta^2), K_1 = \partial_1 \mathfrak{A} = \partial \Delta^2, K_2 = \{(z, w) \in \Delta^2 \mid |z| = 1 \text{ or } |z| = |w|\}, K_3 = \{(z, w) \in \Delta^2 \mid |w| = 1 \text{ or } |w| = |z|\}$. Then K_1, K_2, K_3 are all large, but $K_1 \cap K_2 \cap K_3 = \partial_0 \mathfrak{A}$ is not large.

References

1. R. Basener, On rationally convex hulls, Trans. Amer. Math. Soc., 182 (1973), 353-381.

2. ____, A generalized Šilov boundary and analytic structure, Proc. Amer. Math. Soc., 47 (1975), 98-104.

3. _____, Nonlinear Cauchy-Riemann equations and q-pseudoconvexity, Duke Math. J., 43 (1976), 203-213.

4. _____, Nonlinear Cauchy-Riemann equations and q-convexity, Proc. Sympos. Pure Math., Vol. 30, Part 1, Amer. Math. Soc., Providence, R. I., (1977), 3-5.

5. ____, Peak points, barriers, and pseudoconvex boundary points, Proc. Amer. Math. Soc., 65 (1977), 89-92.

6. H. J. Bremermann, On a generalized Dirichlet problem for plurisubharmonic functions and pseudoconvex domains, characterization of Šilov boundaries, Trans. Amer. Math. Soc., **91** (1959), 246-276.

7. R. Epe, Charakterisierung des Schilovrandes von Holomorphiegebieten Schr. Math. Inst. Univ. Munster, 25, 68 (1963).

8. M. Hakim and N. Sibony, Frontière de Šilov et spectre de $A(\overline{D})$ pour des domaines faiblement pseudoconvexes, C. R. Acad. Sc. Paris, **281** (1975), 959-962.

9. L. R. Hunt and J. Murray, A generalized Dirichlet problem for q-pseudoconvex domains, preprint.

10. B. Kramm, Eine funktionalanalytische charakterisierung der Steinschen algebren, preprint.

11. C. Rickart, Holomorphic convexity for general function algebras, Canad. J. Math., **20** (1968), 272-290.

12. Rothstein, Zur Theorie der analytischen Mannigfaltigkeiten in Raume von n komplexen Veränderlichen, Math. Ann., **129** (1955), 96-138.

13. N. Sibony, Multi-dimensional analytic structure in the spectrum of a uniform algebra, Spaces of Analytic Functions (Kristiansand, Norway 1975), Lecture Notes in Math., no. 512, Springer-Verlag, Berlin and New York, (1976), 139-165.

14. E. L. Stout, *The Theory of Uniform Algebras*, Bogden and Quigley, Tarrytown-on-Hudson, 1971.

15. J. Wermer, On an example of Stolzenberg, Sympos. Several Complex Variables (Park City, Utah, 1970), Lecture Notes in Math., no. 184, Springer-Verlag, Berlin and New York, (1971), 79-84.

Received June 24, 1977. This research was supported in part by NSF Grant MCS 76-04661.

Lehigh University Bethlehem, PA 18015