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TENSOR PRODUCTS OF IDEAL SYSTEMS AND
THEIR MODULES

KARL EGIL AUBERT AND ISIDORE FLEISCHER

We prove the existence and furnish an explicit construction
of the tensor product in various categories of ideal systems
and module systems, structures previously introduced and
studied by the first author as a setting for abstract com-
mutative algebra.

1* Introduction* Among the various notions of commutative
algebra which until recently had not been carried over to the general
framework of ideal systems and module systems was the notion of
tensor products. In [5] P. Ezust filled this gap for module systems
by a fairly laborious categorical approach. He showed namely that
the category of module systems (with zero element) over a given
ideal system (with zero element) has the requisite properties, in-
cluding the existence of an appropriate internal Hom-f unctor in order
to secure the presence of a left adjoint to this functor—and hence
of the tensor product. In spite of the fact that a direct construc-
tion of the tensor product of module systems is to some extent
implicit in his work, he makes the comment that it is not clear
how such a direct construction might be carried out.

It is the purpose of this paper to give some clarifications and
complements to [5] which in particular lead to a direct construction
of the tensor product for various categories of module systems and
ideal systems. Among these is the tensor product whose existence
is established indirectly in [5]. These constructions will be preceded
by a general discussion of coinduced ("final") structures for the two
basic categories. From the tensor product as constructed in these
basic categories, tensor products in more special subcategories are
derived by a process of reflection. What gives the present situation
a somewhat unusual character is the fact that we are dealing not
with purely algebraic systems which are equationally defined, but
rather with systems which are similar to combined algebraic-topological
structures, like topological monoids.

We would like to thank our good friends Paulo Ribenboim and
Larry Cummings as well as Le Centre de Recherches Mathematiques
for providing excellent material assistance which enabled us to carry
out this work1.

1 Assistance from a Canadian National Research Council operating grant and a
Quebec-Ontario Exchange Grant is also acknowledged.
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2* Ideal systems and module systems* Let S be a commutative
monoid. We shall say that there is defined an ideal system (or x-
system) (S, x) in S if to every subset A of S there corresponds a
subset AxaS such that

(2.1) A c Ax

(2.2) BcΛ — B.Cil.

(2.3) SAm c i4.

(2.4) Bil .c(Bii). .

We say that il. is the x-ideal generated by A and in case A = Ax

we say simply that A is an x-ideal. The crucial axiom of the
theory is (2.4) which for obvious reasons is referred to as the con-
tinuity axiom. An equivalent way of formulating (2.4) is to require
that the family <%f of all ^-ideals in (S, x) is closed under the operation
of taking residuals:

(2.4') Axz£f = > A9\hG<3f for all beS .

In contradistinction to what seems to be a tacit assumption in
some earlier papers on ideal systems we do not exclude the possibility
0 6 <%f which means that the intersection of all the x-ideals in S
might be void.

By a morphism of ideal systems f: (Slf xt) —> (SZf x2) we mean a
mapping of St into S2 such that

(2.5) f(ab) = f(a)f(b) for all α, b e S,

(2.6) f(AXl)<z(f(A))X2 for all AczS,.

The condition (2.6) amounts to saying that the inverse image by / of
an #2-ideal in S2 is an α -̂icleal in SL. The category of ideal systems
and morphisms of ideal systems will be denoted by IDS.

To define module systems we postulate that the elements of S
in an ideal system (S, x) act on a set M which is equipped with a
closure operation U —>Uy (UaM) such that the following conditions
are satisfied

(2.7) {ab)n = a(bu) w h e n e v e r a,beS and ueM

(2.8) SUyaUv for all UczM

(2.9) AUy(z(AU)y

for all sets AaS, UaM.
(2.10) AxUcz(AU)y)

(In the case of an ordinary module over a ring (2.9) and (2.10) are the
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analogues of the two distributive laws one has in such a situation.)
If JJ= Uy we say that U is a y-module.

We call the whole set-up (Sf x, M, y) or more shortly (M, y) — or
just M — a module system over the ideal system (S, x) whenever the
above requirements are fulfilled. Denoting the family of ^-ideals in
S by M? and the family of ^/-modules in M by ^/ we can give the
following equivalent forms of the two continuity axioms (2.9) and
(2.10) which will be particularly pertinent in what follows

(2.9') Uye& =>Uy:ae%/ f o r a l l aeS

(2.10') Uy 6 g/ =>Uyiue^T for all ueM.

A morphism of module systems is a map /: (Mlf yλ) —> (Λf2, y2) such
that the following two conditions are satisfied

(2.11) f(au) = af(u) for all aeS and all ueM,

(2.12) /(Uyι) c (/(U))y2 for all C7 c M, .

Again (2.12) means that the inverse image of a 2/2-module in M2 is a
2/rmodule in jfeflβ The category of module systems over (S, x) and
morphisms of such module systems will be denoted by MODS(S, x)
or simply by MODS when there is no danger of confusion. For a
more ample treatment of the fundamentals of the theory of ideal
systems and module system one may refer to [1], [2], [3], and [5].

3* Coinduced structures for ideal systems and module systems*
The question of coinduced (or "final") structures in a certain category
of module systems was treated in [5]. It is desirable, however, to
have a more general and fuller treatment of the matter than that
presented there.

Let us first look at the category MODS(S, x) without any restric-
tion on the ideal system (S, x). If in a module system (S, x, M, y)
we ignore the closure operations x and y and keep only the action
of S on M in accordance with (2.7), we are left with what is called
an S-set. Any subset U of M such that SU aU is called an S-set
in (or S-subset of) M. An S-set can thus be conceived of as a
module system with respect to the generation processes xs: A —> SA U
A (AdS) in S and ys:U->SU\jU (UczM) in M respectively. The
morphisms, or S-maps, between such systems are those satisfying
just (2.11) ((2.12) being a consequence in this case). This provides an
isomorphism between the category of S-sets with their S-maps and
the category of module systems (S, xs, M, ys).

PROPOSITION 1. Let {(Mi9 yt)\iel} be a family of module systems
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over ($, x) and let M be an S-set. Assume further that for each
iel there is given an S-map g{: Mt-^M. Then there exists a unique
finest closure system y on M such that (M, y) is a module system
over (S, x) and such that all the g/s become morphisms of module
systems. The family ^/ of nil the y-modules in (ilί, y) may be
described explicitly as follows: Let W* be the family of all those
S-sets in M which have the property that the inverse image by each
gt is a ycmodule. Then

& = {Uy*\U9. e ^ * and Uy*: mej?f for all meM}

where <%f denotes the family of x-ideals in (S, x).

The proof of this proposition is largely a routine matter and
may be left to the reader. Just one point may deserve special men-
tion, namely that ^/ verifies not only the continuity axiom (2.10')
(which is already built into its definition) but also verifies (2.9').
Indeed, let Uy e Ψ. In order to show that Uy: s e & for an s e S we
must show that: (i) Uy:se%/* and that (ii) (Uy: s): m€<gf for all
meM. Now Uy: s is an S-set in Mf and gτ\Uy:s) = gϊ\TJy):se^ for
all i, which shows (i). The condition (ii) follows from the identity
(17/. s): m = Uy: sm together with the definition of <§/.

We shall say that y (or <%/) is coinduced by the S-maps gt. In
certain cases it is not necessary to require explicitly that the sets
of %/* are S-sets (i.e., that SUy*czUy* for all ET^ef*), since this
condition will automatically be fulfilled if the given family of maps
{&} satisfies a certain covering condition. It should be emphasized,
however, that the existence of coinduced structures in the category
MOUSES, x) is not dependent on any such covering condition, a fact
which seems to have been overlooked in [5] where the existence of
coinduced module systems is made to depend on a very strong covering
condition. (It should also be noted that if a covering condition is
imposed in order to make all the Uy*e%/* S-sets it would suffice to
replace the covering condition given in [5] by the following weaker
and more easily applicable one: Any set U in M whose inverse
images by the g/s are ^-modules for all i is contained in the union
of the images gt(Mi) (and not necessarily in any single g^Mi) as
required in [5]). It is easily seen that this covering condition assures
that such a set U is an S-set.)

The subject of coinduced ideal systems may be treated analogously
and is even simpler than in the case of module systems.

PROPOSITION 2. Let {(Sit xt)} be a family of ideal systems and
let gs. Si —> S be a family of maps to a commutative monoid S such
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that glab) = &(<&)&(&} for all ay be Si and all i. Then there exists
a unique finest ideal system x on S making g^ (Sϊf #J -* (S, %) a
morphism of ideal systems for all i. The family ^ of x-ide<ds in
this coinduced ideal system in S is given by

£f = {Ax* | Ax* e gf* and Ax*: s e JT* for all seS}

where J%f* is the family of all s-ideals in S whose inverse images
by the g/s are x^ideals for all i.

The proof is quite simple and is essentially contained in the proof
of Proposition 6 in [1],

4* Tensor products of module systems* In this and the follow-
ing paragraph we turn to tensor products for module systems and ideal
systems, i.e., within the categories MODS(S, x) and IDS. We construe
these tensor products in the usual way as objects which provide a
canonical factorization of bimorphisms from M1 x M2: meaning that
fixing either of the two arguments at any value mx 6 Mλ or m2 e M2

always results in a morphism in the other argument. In the case
of module systems over a fixed ideal system (S, x) we consider com-
mutative diagrams of the form

(4.1) /

Mι x M2

where M1 and M2 are given, and the task is to determine a unique
module system M1 (x) M2 equipped with a bimorphism g from M1 x M2

to M1 (x) M2 such that every bimorphism / from Mγ x M2 is a com-
position of the canonical bimorphism g and a unique morphism h from
Mι (x) M2. In this way all the bimorphisms from Mt x M2 are obtained
by letting the morphisms from Mι (g) M2 "operate on" the fixed bimor-
phism g — which may thus be considered as a generator of the set
of all bimorphisms which have M1 x M2 as a domain of definition.

The categories we are dealing with here are of a mixed algebraic —
topological kind. The algebraic part will be equational so that the
tensor product within their poorer structure may be obtained as in
the classical case via the free algebra on the (unstructured) set
Λfj. x M2 modulo the congruence generated by the minimal identifica-
tions which make the quotient map induce a bimorphism of Mι x M2\
More precisely it will be this factor algebra equipped with the
restriction to MιxM2 of the quotient map as bimorphism. One will
be able to convert this algebraic solution into one for the richer mixed
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category whenever the latter has coinduced structures. Indeed the
mixed tensor product is then just the algebraic one equipped with
the finest closure operation which makes each of the maps obtained
by fixing an argument in the canonical bimorphism into a morphism
of module systems (or ideal systems as the case may be).

THEOREM 1. The category MODS(S, x) has tensor products.

Proof. As already indicated we first consider the module systems
Mx and M2 merely as S-sets and take the free S-set «J^(MΊ x M2) on
the set M1 x M2, which will be the disjoint union of copies of S
indexed by M1 x M2. Instead of using the cumbersome notation
S(mvm2) for an element in ^'S{M1 x M2) we shall denote this element
by β(mw m2) and remark that the congruence in question is here
generated by the relations

(4.2) s(mlf m2) = (smlf m2) = (m19 sm2) .

(Other relations such as s^m^ m2) = 8 ^ , s2m2) = ( S A , s2m2) etc. are
easily seen to be derivable from 4.2). Denoting this congruence
relation by ~ we put

Mγ ®s M2 = jTsiMt x M2)l~

and let g: M1 x M2 —> M1 (x) M2 be the restriction of the canonical
quotient map. (This could just as well be obtained as the quotient
map for the equivalence generated by (4.2) as in [4] or [9].)

Proposition 1 now tells us how to equip Mι 0 M2 with a coinduced
structure relative to the union of the two families of S-maps {mig}
and {gm2} defined by m,g(x) = m1 (x) x for m1 e M1 and gm2(x) = x (x) m2

for m2 e M2, thus providing M1 0 M2 with the finest module system
making g into a bimorphism. This module system on M1 (x) M2 is
denoted by yt (x) y2 and the corresponding family of yx (g) ̂ -modules
by ^ (x) g 2̂.

Finally the map h defined by h{m1 (x) m2) = f(m19 m2) will now be
a morphism of module systems making the diagram (4.1) commutative.
Clearly, h is a well-defined S-map. To show that h is also a morphism
it will thus suffice to show that h~\Uy) e ^ (g) :f2 whenever Uyz e ̂ 3 .
First of all h~\Uys) is an S-set since h is an S-map and Uy3 is an
S-set. Using the notation m/ and /TO2 analogously to mχg and gm2

above, we have mjf = h o mig and fm? = h ° gm2. Since / is a bimorphism

mif and /m2 are morphisms of module systems i.e.,

(4.3) mχg-\hΓ\UyJ)e&% and giβr\U^)e^x for all mw TW, .

Taking into account that the structure on Mι®M2 is the coinduced
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one, this means that h~\Un) belongs to the family which corresponds
to g^* in Proposition 1. But h~\Uyz) also belongs to the "cut-down"
family (designated by ^/ in Proposition 1) since h~ι{Uy^:me<g? for
all m = m1(g)m2eJlί1(g) Mz. Indeed, from f~\( UV3) e g^ for UV3 e %/z

it follows that fm\(Uy3): mxe^ for all m.eM^ and since fm2 = hogm2

this means that gm\(h~\Uy3)): m1 = h~\Uy3): g^im,) = h~\Uy3): {m^m^ e
for all mx (x) m2 e Afi (g) Λf2. This completes the proof of Theorem 1.

5* Tensor products of ideal systems* In the present paragraph
we prove

THEOREM 2. The category of ideal systems has tensor products.

Proof. Let (S u xt) and (S2, x2) be two ideal systems. In line
with our general approach we first look for a monoid bimorphism g
which factors every bimorphism / from S± x S2 the other factor
being a unique monoid morphism h from Sx ® S2 as in the following
diagram.

(5.1)

x X O 2 TΓ* O3

That / is a bimorphism means that

(5 2 ) /(»w s2£2) = /(Si, s2)/(s1, ί2) and

for all sx, tx in S3 and s2, t2 in S2. We first form the free commutative
monoid ^{Sx x S2). In accordance with (5.2) one considers the
congruence relation ~ generated by the two relations (sίf szt2) =
(sλ, s2)(slf t2) and (sA, β2) = (s» ^)(^i, s2) and puts

iSi (x) S2 = ^ - ( ^ x

(See also [6] and [7].)

In complete analogy with the previous development for module
systems, consider the coinduced structure on Si ® S2 which results
from the family of maps {Slg} and {g$2\ in accordance with Proposition
2. This defines an ideal system xt (x) x2 on Sx (x) S2 with a corresponding
family of x, (x) ̂ 2-ideals denoted by <%fλ (g) ^g?.

It is again easy to see that map fe defined by h(sί ® s2) = /(s3, s2)
will be a morphism of ideal systems from (S^ (g) S2, ajj. ® a?2) into (S8, αa).
Since fe is already a multiplicative (monoid) morphism we need only
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verify that h~ι{Ax)e^[ (x) jg? for every A ^ e ^ - w h i c h means
according to Proposition 2 that the following conditions hold for all
8lf t, e S19 s2i t2 6 S2 and all A9z e

(5.3) h~\AX3) is an s-ideal in S, (x) S

(5.4) ff2(h-χA.J)eJgrι and . ^ ( f c - ^

flr VίΛ-^il.,): fo <g> £2)) 6 ^Γ and

To prove (5.3) let 6 e / r 1 ^ ) , hence Λ(6) e AXi and Λ(8)A(6) 6 A,3 for
all s 6 Si ® jSa. Thus /&(8δ)6iiβ8 and sδ efc"1^^) as required* The
verification of (5.4) is similar to the verification of (4.3) above and may
be left to the reader. Finally (5.5) results easily by using the identity
h-^AiJ: (t, <g) t2) = h"\A^. h(t, (x) t2)) together with . / = hoSιg and
fS2 = hogS2.

6. Tensor products in certain subcategories of IDS and
MODS(S, x). Many of the ideal systems and module system which
have been considered in the literature, e.g., those mentioned in [1], [2],
and [3], are more restricted than those we have chosen here for the
comprehensive categories IDS and MODS(S, x) in that they require
the presence of zero elements. However, the notion of a zero gen-
eralizes slightly differently in the context of ideal systems and that
of module systems.

A multiplicative zero in a commutative monoid S is an element
0 e S such that αO = 0 for all a e S. Such a multiplicative zero in
S, if it exists, is unique.

If (S, x) is an ideal system we shall say that the element 0.6 S
is an x-zero if {0}̂  = {0}. If 0 is an ίc-zero it is also a multiplicative
zero. Any nonvoid ^-ideal in an ideal system with a multiplicative
zero will contain this zero element and the possibility 0 e <̂ f may
safely be dispensed with as uninteresting. Hence we postulate that
the presence of a zero rules out the possibility that the void set
be counted as an cc-ideal. We define the x-kernel of an ideal system
(S, x) as the #-ideal A°x which is the intersection of all the ^-ideals
in S: thus the smallest a?-ideal in (S, x). According to the above
convention A°x Φ 0 whenever (S, x) has a multiplicative zero 0, and
then A°x = {0}β.

The notion which in the "module" situation parallels that of
a multiplicative zero is that1 of an element θ in an S-set M such
that aθ — θ for all a e S. If (M, y) is a module system over (S, x)
then θ is said to be a ί/*-zero if {θ}y — {θ}. Again aθ = θ for all a 6 S
when θ is a #*-zero. Whereas an #-zero is uniquely determined by
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the requirement {0}x = {0} the corresponding requirement {θ}y = {θ}
does not determine θ uniquely in M. In order to obtain uniqueness
it is reasonable to define a y-zero in M as an element θ such that
{θ} is equal to the intersection of all the nonvoid /̂-modules in (Λf, y).
On the other hand if S has a multiplicative zero 0 such that 0m = θ
this requirement will of itself impose unicity on θ. In the case of
module systems also we agree to discard the void set as a /̂-module
in the presence of a y-zeτo. Furthermore the y-kernel U% of (M, y)
is defined as the intersection of all the ^/-modules in (M, y).

Let IDSo denote the category of ideal systems with an x-zero
and morphisms of ideal systems. Correspondingly MODS0(ί>, x) will
denote the category of module systems with a y-zero over (S, x) and
morphisms of module systems. The categories IDS0 and MODS0(S, x)
sit as full subcategories in IDS and MODS(S, x) respectively. In
order to construct the tensor products in IDS0 and MODS0(S, x) we
shall employ the notion of a Rees-congruence and the corresponding
formation of factor systems. By means of this we can show that
IDS0 and MODS0(S, x) are reflective subcategories in IDS and MODS(S, x)
respectively and this categorical fact will tell us how to obtain the
tensor product in the smaller category when we know it in the
bigger. We shall return briefly to this general categorical viewpoint
after we have treated the special cases of IDS0 and MODS0(S, x).

Given an ideal (s-ideal) in the monoid S (i.e., a subset A8 of S
such that SAS c As) the Rees-congruence modulo As is defined by
declaring any two elements in As as congruent to each other whereas
any element outside of A8 is only congruent to itself. A similar
definition applies also in the "module" situation modulo S-subsets
instead of s-ideals. In particular this applies to an #-ideal Ax in
an ideal system (S, x) and to a /̂-module Uy in a module system (M, y).
Denoting the factor systems modulo the Rees-congruence by a double
bar, we obtain an ideal system (S//Ax, x) and a module system
(M//Uy, y) by imposing the finest systems x and y which make the
canonical quotient maps into morphisms (by Propositions 1 and 2 for
a single i).

THEOREM 3. The categories MODS0(S, x) and IDS0 have tensor
products.

Proof. We give the proof only in the case of MODS0(S, x), the
proof for IDS0 being quite similar. We first note that the full
subcategory MODS*(S, x) consisting of those module systems for
which the ^/-kernel is nonvoid is closed under the taking of tensor
products in MODS(S, x). This follows from the definition of the
tensor product together with the fact that MODS5K(S, x) is closed for
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coinduced structures since the inverse image of the void set is void.
Moreover, this subeategory contains MODS0(S, x). The advantage of
restricting ourselves to the subcategory MODS* is that the Rees
factor system modulo the ^/-kernel in this subcategory will always
yield a module system with a y-zero. Thus if we first form the
tensor product in MODS(S, x) of systems Mlf M2 in MODS0(S, x) and
then pass to the Rees quotient modulo its nonvoid ^/-kernel U^V2f we
obtain in M,® M2//U^y2 an object of MODS0(S, x). This gives rise
to the following extension of the Diagram (4.1) where also Mz is now
supposed to be in MODS0(S, x).

(6.1)

M1 x M2

Here φ is the canonical quotient morphism, ψ = φ o g and h is defined
by k(m! ® m2) = Λ(m1(g)m2)(=/(m1, m2)) where mι®m2 denotes the
Rees residue class to which m, ® m2 belongs modulo the y1 (x) y2-kernel.
The map h is well-defined because of the definition of the Rees-
congruence together with the fact that Uy]β)y2c:h~ι{θ^fh being a
morphism and M3 having a ys-zeτo θ3. Finally one easily verifies
that h is a morphism taking into account that the Rees factor system
modulo Uilβy2 is coinduced by φ.

Prom the unique factorization / = h ° ψ it is clear that the bimor-
phism ψ solves the universal problem for bimorphisms in the category
MODS0(S, x) and establishes the module system

(6.2) (M, 0 M2// U^y2, y, (x) y2)

as the tensor product of (Mlf yx) and (Afa, y2) in the category MODS0(S, x).
The Diagram (6.1) just represents the conjunction of the solutions

to two different universal problems. Whereas the lower left triangle
consisting of the arrows /,. g, and h gives the canonical factorization
of bimorphisms in MODS(s, x) the upper right triangle consisting of
the arrows h, φf and % gives the canonical factorization of a morphism
which goes into an object in MODS0(S, x): Any morphism of the
latter kind can be uniquely factored through the Rees factor system.

7* Tensor products in reflective subcategories* A subcategory
έ% of Jzf is said to be reflective in J%f [8] when the inclusion functor

has a left adjoint. This left adjoint functor R is sometimes
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called a reflector and the adjoint functor *.§/ —> & a reflection of
j y in its subcategory έ%. A reflection may be described in terms
of universal morphisms: έ%f c j y is reflective if and only if to each
A 6 Jϊ? there is an object RA of the subcategory & and a morphism
in j y gA: A —> iM such that every morphism f: A-* B where B is in
^ has the form f = hogA for a unique morphism &: iM —> B of ^
What we have made use of in constructing the tensor product in
MODS0(S, x) is that it is a reflective subcategory of MODS*(S, 05) with
the functor R: (ikf, y) —> (M//Uζ, y) as reflector. In general, the tensor
product in any reflective subcategory & of a concrete category j ^
may be obtained from the tensor product in ,s>f according to the
formula

(7.1) B, ®^ B2 = R{B, ® ^ B2) .

As a further illustration of this procedure consider the subcategory
MODSEP0(S, x) consisting of module systems over (S, x) with a se-
parating y-zero. According to [2] and [5] a module system (M, y)
is said to have a separating y-zero θ if θ is a y-zero and (mj, =
(m2)1/ =>m! = m2(mίf m2eM). A y-zevo may be made separating, and
more generally a Rees factor system may be reduced to a MODSEP0

system, by dividing out by a strengthened congruence: Given a
/̂-module Uy in (M, y) one introduces as in [3] a y-congruence modulo

Uy by putting u = v(Uy) whenever (J7y, %)y = (Uy, v)y. The resulting
factor module system (M, y) = (M/Uy, y) over (S, a?) where ?/ is the
finest module system in M making the canonical map (M, y) —> (iff, y)
into a morphism of module systems, is in MODSEP0 whenever Uy is
nonvoid. In fact, that the y-zeτo θ is separating amounts to say-
ing that the ^-congruence modulo θ reduces to equality. Thus
MODSEP0(£, x) is reflective subcategory of MODS*(,S, x) with R: (Λf, y)-+
(M/Uy, y) as reflector. It is also possible to view MODSEP0(S, x) as
a reflective subcategory of MODS0(S, x) with (Λf, y) -> (M/(θ)v, y) as
reflector. In either case the tensor product in MODSEP0(S, a?) may
be obtained from the general formula (7.1). It goes without saying
that the same procedure applies to the corresponding category IDSEP0

in the case of ideal systems. In [6] this procedure has been used
implicitly to construct tensor products of commutative semigroups
as well as tensor products of semigroups with zero from an initial
construction of tensor products for general (i.e., noncommutative)
semigroups.
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