
PACIFIC JOURNAL OF MATHEMATICS
Vol. 75, No. 1, 1978

A SIMPLE PROOF OF THE EXISTENCE OF
MODULAR AUTOMORPHISMS IN APPROXIMATELY
FINITE DIMENSIONAL VON NEUMANN ALGEBRAS

ROBERTO LONGO

An elementary direct proof of Tomita-Takesaki Theorem
for an AFD von Neumann Algebra.

1. Introduction. After that M. Tomita [5] proposed the
existence of the modular automorphisms several proofs of
Tomita-Takesaki theorem have been given by Takesaki, van Daele,
Haagerup (unpublished) and Zsido [4, 6, 7, 8], but none of these is
elementary. However a simple proof of the theorem for approximately
finite dimensional von Neumann algebras (with a cyclic* separating
vector) may be extracted by an article of N.M. Hugenholtz and J.D.
Wieringa 1], which was published very soon after the appearance of
Tomita's original preprint. Motivated by the great interest that approxi-
mately finite dimensional von Neumann algebras have in Mathematics
and in Physics, we present a simplified shorter version of the proof of
Hugenholtz and Wieringa.

2. Statement and Proof. Let S/l be a von Neumann algebra
acting on the Hubert space $f and ξ E $f a cyclic separating vector for 0i
and then also for its commutant 3i'. As usual we introduce the
antilinear operators

So: Aξ,AE%-+A*ξ, 3>(S0) =

So (and Fo) is a closable operator: in fact if A E 01 and B E £%'

(S0Aξ, Bξ) = (A *ξ, Bξ) = (ξ, ABξ) = (ξ, BAξ)

so that S* 3 Fo and 2ΰ(S*) is dense.
In what follows we call F = 5* the adjoint of 50, S = F* the closure

of So and Δ = FS the modular operator which is non singular and
positive. For the moment we suppose $1 finite dimensional; then there
exists a faithful tracial state r and for each state ω of $i there exists a
positive operator H E £% s.t.
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ω(A) = τ(AH) = τ(HmAHιl% A em,

moreover H is invertible iff ω is faithful. Let π: £%->£8($fT) be the
GNS representation given by r and ω a faithful state of 0i: we have
K = % π(A)B =AB if A,B G $i and

ω (A ) = (ττ(A )H1/2, H1/2), A G 98,

where Hm G ί% is a cyclic separating vector for ττ(£%). It is easily seen
the operator Δ of π(S?) relative to the vector H1/2 is given by

from which it follows

Δ"V(A)Δ* = π(/r*Aff*), A G ̂ , t G R,

and then

" = π(9t), t(ΞR.

By the uniqueness of the GNS representation we then see that for each
finite dimensional von Neumann algebra 2fc the modular operator Δ
relative to a cyclic separating vector is such that

Δ^flϊΔ* = 9fc, f GR,

which is a particular case of Tomita-Takesaki theory.
Next step is proving the theorem when 0i is approximately finite

dimensional, in the sense that there exists an increasing sequence MnC$i
of finite dimensional von Newmann algebras s.t.

Then we have to prove:

THEOREM 1. Let 0i be an approximately finite dimensional von
Neumann algebra acting on the Hubert space %C and ξ G $f a cyclic
separating vector for 0i. The modular operator Δ relative to ξ is such that

Our proof requires some lemmas. Let Jίn be an increasing se-
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quence of finite dimensional von Neumann algebras generating Θt and
put 31 = Ux

n=ιMn so that 2ί is a weakly dense * subalgebra of 3ί.

LEMMA 1. The linear subspace of ^t %ξ = {Aξ\A E 21} is a core
forS.

Proof. It is enough to show that for each A E&l there exists a
sequence An E 2ί s.t.

Anξ->Aξ and A*nξ->A*ξ

and this follows because the selfadjoint elements of SI are dense in the
selfadjoint elements of έ% in the strong topology.

Now we call W the domain of 5 with scalar product

(x, y)' = (x, y) + (Sy, Sx), x, y E ®(S).

As the topology of %' is that of the graph of S, we see that 3Γ is a Hubert
space and by lemma 1 Sί^ is a dense linear subspace of $?'.
Now the sesquilinear form (x,y), x , y £ $?', is bounded in $T

(\\x W = (JC, JC)/1/2) and therefore there exists a linear operator T
of norm less than 1 s.t.

(1) (7Xy)' = (x,y)? x , y E 2 T

Let En EM'n be the selfadjoint projection of $? onto Mnξ and MnEn =
{A \Eti(π)\A EMn} the von Neumann algebra Jίn cut down by En. The
application

(2) ^ Λεit^A^εi^

is a * isomorphism between Mn and J ί nHn because ξ is a separating vector
for Mn moreover £ is a cyclic separating vector for Jί nEn and therefore if
5n is the antilinear operator

Sn: Aξ = πn(A)ξ->A*ξ = πn(A)*ξ, AEMn

then, by what we know, the modular operator Δn = S*Sn is s.t.
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We see also that Sn = S \Mnξ and if %C'n is the linear space 3)(Sn) with scalar
product

(*,y )' = (*, y) + (Sny, Snx), x,y<= 2(Sn)

then Wn is*a Hubert subspace of 2T; as in (1) there exists Tn G d&(Wn) of
norm less that 1 s.t.

(3) (Tnx,y)' = (x,y) x,y£ΞW'n.

LEMMA 2. Let Pn G S8(#Γ) ftβ ίΛe self adjoint projection of %€' onto
%'n. The operators fn = TnPn + (I - Pn) eSS(%') are s.t.

/. As U: = 1 ^ ; ,= 3l£ is dense in 5ίf' by Lemma 1, the or-
thogonal projections Fn strongly converge to / in W (we use the symbol /
to indicate both the identity of SίΓ and the identity of 5ίf).

By (1) and (3)

(Tx,y) = (Tnx,y) if JC,yG^:

and therefore

it follows that

if x belongs to the dense subspace UΓ=i Wn and then for each x £ Γ

because the fn are equibounded.

We extend the modular operators Δn = S*nSn to the whole space

π by

Δn = AnEn + I-Em

then each Δn is a positive invertible operator and we may consider Δ",
ίGR.

LEMMA 3. For each real ί, Δ" is the strong limit of Δ" i.e.

| | ^JC -Δ/rjc II->0, xEW.
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Proof. The lemma is proved if we show that

(4) (Δr .+IΓ^CΔ + J ) 1 strongly;

in fact by a classical theorem on generalized convergence [3, Th. VIII. 20]
it follows from (4) that

(5) /(Δn)-*/(Δ) strongly

for each bounded continuous complex valued function / on the real line;
moreover the same argument shows that (5) holds also when / is bounded
continuous on an open subset A of the real line of spectral measure 1 for
Δ and each Δn in particular for A = (0, oo) and /(λ) = λ" the conclusion
of the lemma follows from (4).

Note that the range of (Δ + I)1 is equal to ®(Δ)C®(S) so that we
have by (1), for each JC, y E 2){S\

((Δ + iy%yy = ((Δ +1)-1*,y ) + (Sy,S(Δ + iy*χ)

which implies

Γ = (Δ + JΓU<s).

By the same argument Tn = (Δn +1)"1 and then

t\Mnξ=(An + lΓ\Mnξ

Applying Lemma 2, if x E %ξ we have for large n

|| (Δn + I)" 1 * - (Δ + I)" 1 * || ^ || (Δn + I)'ιx - (Δ + I)'ιx II'

and as | |(Δn+ I ) ~ 1 | | ^ 1, n E N , and 2Ϊ | is dense in %, we obtain the
lemma.

By the isomorphism πn defined in (2) we may define the modular
automorphisms σ", t ER, of Mn by

ττn (σn

t(A)) = Δ-'Vn (A )ΔΪ, A 6 i n , t E R.
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LEMMA 4. If A E 21 then the sequence cr"(A), defined above a
certain integer, strongly converges to Δ~"AΔ", i.e.

||σn

t{A)x - A'uAAux ||->0, JC G %, t ER.

Proof. As we suppose A E% there exists N EN s.t. A EMn,
n^N. Take JC E %ξ: there exists N Έ N s.t. x E Λίn£ n ^ N'. Then
we have for n ^ max (N, N')

σ»(A)x = τrn(

and Lemma 3 implies

\\σn

t(A)x -A-uAAux | |-^0, A E », JC E » £ t ER.

As 2ί^ is dense in 2C and | |σ"(A) | | g | | A || is an equibounded sequence
the lemma follows.

Proof of Theorem 1. In view of Lemma 4 if A E 21 then Δ~"AΔ",
ί E R, belongs to the strong closure of 21 i.e.

ί E R ;

by continuity

Δ-ft»Δ* Cflϊ, ί E R

and then by symmetry

REMARK 1. The essential tool we have used in the proof is the
existence of a faithful tracial state on each approximating von Neumann
algebra Mn
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