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THE NON-ORIENTABLE GENUS OF THE n-CUBE

M. JUNGERMAN

For the purposes of embedding theory, a graph consists
of a collection of points, called vertices, certain pairs of
which are joined by homeomorphs of the unit interval, called
edges. Edges may intersect only at vertices, and no vertex
is contained in the interior of an edge. The graph thus
becomes a topological space as a subspace of Rό. An em-
bedding of a graph G in a compact 2-manifold (surface) & is
then just an embedding of G in S as a topological space.
The genus, γ(G), of G is the minimum genus among all
orientable surfaces into which G may be embedded. The non-
orientable genus, f(G), is defined analogously. The %-cube,
Qn, is a well known graph wnich generalizes the square and
the standard cube. In this paper the following formula is
proven:

THEOREM.

2 + 2n~*(n — 4) n ^ 6

f(Q.) = J3 + 2"-2(^-4) n = 4,5

Introduction* In 1955, Ringel [3] showed that the orientable
genus of the w-cube is given by

(1) 7(Q.) = 1 + ϊ?-\n - 4) .

This result was also obtained independently by Beinecke and Harary
[1]. Since then, genus formulae, both orientable and non-orientable,
have been obtained for several classes of graphs, including the complete
bipartite graph, the octahedral graphs and many of the other multi-
partite graphs (see, for example [2]). As a result, the w-cube is
perhaps the best known graph for which a genus question has remained
open. The present paper fills this gap.

Preliminaries* Let Zl be the elementary abelian 2-group of rank
n, Z2X XZ2. If x e Z?, let [x]k be the kth ordinate of x, so that
x — ([$L •••> [#]«)• Let lkeZ% be the element such that [lfc]m = 1
iff m = k, and let An = {lk e Z? 11 ^ k ^ n). Then the w-cube, Qn,
is the Cayley graph (Z?, Δn)\ that is, Zl is the vertex set of Qn,
and for x, y e Z?, {x, y) is an edge iff x + y e A%. If {x, y) is an edge,
it is said to have the color x + y, and is called a (x + y)-eάge.

Let (x; clf , cm), where x e Z? and et e Δn, denote the walk x, x+c19

x + d + c2, •••,» + (?, + + cm in Qn. Note that any walk α0, •••,»«
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may be represented in this manner by (xo; xγ + x0, xz + xί9 , xm + xm-i)
The walk (x; c19 , cm) is a circuit iff cx + + cm = 0. Thus any
circuit in Qn is of even length. A circuit of length m will be called
an m-circuit. An edge will be said to occur in a circuit once for
each time its incident vertices appear consecutively in the circuit.

If ε is a 2-cell embedding of a graph in a surface, the boundary
of each face is a circuit in the graph. If B is the set containing
the boundary circuit of each face in ε, the manifold structure of
the surface implies that B satisfies the properties:

PI: Each edge occurs exactly twice among the circuits of B.
P2: If x is any vertex and Bx is any subset of B such that no

edge incident to x occurs exactly once among the circuits in Bx9 then
one of B — Bx or Bx contains all occurrences in B of edges incident
to x.

If the surface is oriented and the induced orientation is given
to every circuit in B, then B satisfies

P3: Each directed edge occurs once in B.
Conversely, if a set B of circuits satisfies PI and P2, it is the

set of boundary circuits for some 2-cell embedding ε(B). The em-
bedding is orientable iff orientations may be assigned in B so that
P3 holds. A set B satisfying PI and P2 will be called a boundary
set for the embedding ε(B). If B contains only 4-circuits, e(J8) is
called quadrilateral. For convenience we refer to non-orientable
quadrilateral 2-cell embeddings as NQ-embeddings.

Tube adding and covering sets* We now describe the tube
adding construction of Beinecke and Harary (see also White [4]), and
a kind of inverse to it.

A set A of circuits in Qn is called a covering set if every vertex
in Qn occurs exactly once among the circuits in A. We will be
particularly concerned with covering sets contained in boundary sets
for Qn, where n ^ 3. In such a case, P2 implies that the covering
set consists of disjoint cycles. Suppose B is a boundary set in Qn-19

n > 3, containing a covering set A. We define a boundary set
B*(B, A) for Qn containing a covering set D*(B, A) as follows. Take
two copies of the embedding ε(B). Let F be a face in one copy of
ε(B) whose boundary circuit is in A, and let F1 be the corresponding
face in the other copy. Delete a 2-cell from the interiors of both
F and F1. Identify the boundaries of the deleted 2-cells so that the
union of the remaining portions of F and F1 forms a cylinder or tube.
Perform the identifications in such a way that it is possible to draw
edges in the interior of the tube joining each pair of corresponding
vertices on the boundaries of F and F1, so that there are no crossings.
These new edges subdivide the tube into a necklace of quadrilaterals,
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the boundary circuits of which we denote by b(F). As F has even
length, we may choose a subset d(F) of b(F) containing pairwise
disjoint 4-circuits such that every vertex on the boundary of F or
F1 occurs once in d{F). Repeat this process for each face whose
boundary circuit is in A. The result is an embedding of Qnf with
a boundary set containing the circuits from the two copies of B — A
and the b(F)'s for each F whose boundary is in A. Call is boundary
set B*(B, A). Taking all d(F)'a produces a covering set D*(B, A)
contained in B*(B, A). If ε(B*(B, A)) is orientable, an orientation
is induced on ε(B). If e(2?) is orientable, choosing opposite orientations
on the two copies of ε(B) at the beginning of the construction results
in an orientation for ε(B*(B, A)). Thus we have

PROPOSITION 1. Let B be a boundary set for Qn-ί9 n > 3, and let
AdB be a covering set. Then there are sets B*(B, A) and D*(B, A)
such that

(a) JD* (JB, A) c £* (J5, A). B*(B, A) is a boundary set, and
D*(B, A) is a covering set, for Qn.

(b) ε(B*(B, A)) is orientable iff ε(B) is orientable.

Note that if B — A contains only 4-circuits, B*{B, A) will be
quadrilateral. In turn, £*(£*(£, A)) and £>*(£, A) will be quadrila-
teral. This may be repeated indefinitely giving

PROPOSITION 2. If there is a non-orientable embedding ε(B) of
Qn-lf n > 3, where B contains a covering set A such that B — A
contains only quadrilaterals, then there is an NQ-embedding of Qm

for each m ̂  n.

Below this proposition will be used in the case where n — 6.
Note also that if I c B is a covering set disjoint from A, then the
two copies of X in B*(B, A) form a covering set in 2?*(J5, A). This
fact will be used in constructing the embedding of Q5 to be used in
the application of Prop. 2.

We now describe an inverse to the construction of ί?*(J5, A).
Suppose ε(B) is a quadrilateral embedding of Qnf n ^ 3. Let S be
the set of edges not colored ln but lying on a face containing a
l%-edge, and let x be a vertex. There is exactly one l%-edge incident
to x, so x lies on at most two faces containing 1^-edges. As n ^ 3,
the faces containing a given 1,,-edge are distinct with distinct boun-
daries. It follows that x is incident to exactly two distinct edges
in S, and that each edge in S lies on one face which does not contain
a lw-edge as well as on one which does. Thus S spans a set A of
disjoint cycles, which is a covering set for Qn. Let J5έ = {CeB\xe
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C => [x]n = %} and define At analogously. Note that if {x, y) e S, then
{x, y] lies on (x; ln, x + yfln,x + y) so t h a t {x + lnf y + 1 J 6 S. Thus

if xOf xm_ίf x0 6 At then x0 + ln, , a?m_! + lu, xc + 1» 6 A ^ . Also,
as no l«-edge lies in S, A = Ao U Alβ Now delete every 1 -̂edge, the
interior of every face containing a l%-edge, and all nth ordinates
from e(J5). The result is disjoint embeddings ε0 and ελ of Qn_x in
compact 2-manifolds with boundary. The boundaries of the faces in
εt comprise Bt and the manifold boundary in εt is the union of the
cycles in A*. Thus J5* U At is a boundary set for Qn_lβ Since A was
a covering set and A = A0\J A19 At is a covering set in Bt U -4<e

Moreover since wth ordinates have been deleted Ao = i4lβ If So = Bί9

then 5 = B*(B0, Ao). Thus we have

PROPOSITION 3. Let B be a boundary set for a quadrilateral
embedding ε(B) of Qn and let At and Bi be defined as above. Then
for, i = 0, 1

(a) Bi is a boundary set containing the covering set At.
(b) Λ = Λ
(c) If e(B) is non-orientable and both ε(J50) and 6(1 )̂ are orien-

table then Bo Φ Bλ.

Proof of the theorem. Since Q19 Q2 and Q3 are planar, they
trivially embed in the projective plane, as claimed.

For n ^ 2, Qn has girth four. The standard Euler formula argu-
ment then gives

7(Q ) ^ 2 + 2n'\n - 4) n ^ 2

where equality holds iff there is an JVQ-embedding of Qφ. For any
graph G, τ((?) ^ 2τ(G) + 1, since a crosscap may be added to any
orientable embedding producing a non-orientable embedding with Euler
characteristic lowered by one. Using (1) it follows that

7(Q.) ^ 3 + T~\n - 4) .

Thus in order to complete the proof, it suffices to exhibit NQ-
embeddings for n ^ 6, and to show that iVQ-embeddings do not exist
for Qι and Q5.

ΛΓQ-Embeddings of Qft, n ^ 6. Figure 1 depicts a 2-cell embedding
ε of Q4 in the nonorientable surface of genus four. The sides a and
β of the rectangle are to be identified in the standard way to produce
a torus. The labelled edges are to be identified so that labels and
directions coincide. The regions inside the rectangles of labelled
edges are deleted from the torus so that the identification of the
edges results in a manifold.
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FIGURE 1

Let B be the boundary set for ε, and A the covering set in B
comprising the boundaries of those faces labelled A in the figure.
The faces marked X give a second covering set in B disjoint from
A. All circuits in B — X — A have length four. Thus J3*(J5, A) is
a boundary set for Qδ containing a covering set X* which arises
from the two copies of X in the construction of B*(B, A). B(B, A) — X*
contains only 4-circuits. ε(B*(B9 A)) is non-orientable. Applying
Prop. 2 we get the desired NQ-embedding of Qm, m Ξ> 6.

Non-existence of iVQ-embeddings for Q4 and Q6. Suppose there
is an MJ-embedding of Qn, n^Z. By Prop. 3 there are two bounda-
ry sets of Qn_x both containing the same covering set which contains
all non-quadrilateral faces. Moreover, if both of these boundary
sets give orientable embeddings, they must be distinct. We prove
that this cannot occur for Q4 or Qδ by showing that there is at most
one such boundary set for Q3 or Q4 containing a given covering set,
and that all the resulting embeddings are orientable.

Suppose B is a boundary set for Qn9 n = 3, 4, containing a covering
set A such that B — A contains only 4-circuits. Certain arguments
regarding this situation will be used repeatedly below. We therefore
represent them symbolically, as now described.

Al: If {x, y} is known to occur in A, Tu •••, !V_2 are distinct
4-circuits containing {x, y} known not to be in B — A, and R is the re-
maining 4-circuit containg {x, y}, then ReB—A. This follows from
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the fact that B — A contains only 4-circuits, that every edge occurs
in B — A, and that there are precisely n — 1 4-circuits in Qn containing
any given edge. We denote this argument by Al({α, y}, Tu , Tn_2) =>
ReB- A.

A2: If {x, y} is known not to occur in A, Tlt , T%_3 are distinct
4-circuits containing {x, y) not in B — A and R is either of the
remaining two 4-circuits containing {x, y}, then ReB —A. This
follows from the fact that if {x, y} does not occur in A, it occurs
twice in B - A. The notation is A2({a, y}9 Tl9 , T%_3) =* R e B - A.

A3: If {x, j/J and {&, y2} are distinct edges incident to x occurring
in A and {x, z} is a third edge incident to x, then {x, z) does not
occur in A. This is denoted AΆ{[xf yj, {x, y2}) => {x9 z) ί A. By abuse
of notation we let {x, z} ίA mean {x, z) does not occur in A.

A4: If {xί9 yx}, •••,{», yn-2} are distinct edges not occurring in A
and {x, z) is either of the remaining two edges incident to xf then
{xf z) occurs in A. This is denoted A4({#1, yt), •••,{», i/»_2})

==> {#> ̂ } 6 A.
A5: Since n ^ 3, P2 implies that distinct circuits in J5 cannot

share consecutive edges. Thus iί ReB shares consecutive edges
with T, TίB. This is denoted A5(R) => T$B.

A6: Suppose n = 4, jβt and i?2 are circuits in I? and Γ is a third
circuit such that every edge incident to x occurs either twice or not
at all in {Rlf R2, T). Then by P2, T i B. This is denoted A10(x, Rlf R2) ==>
T<ίB.

PROPOSITION 4. Suppose B is a boundary set for Qn. AczB is
a covering set, and B — A contains only ^-circuits. Then

( 1 ) If n — 3, B is of the form {(x; b, c, &, c), (x; c, a, c, a),
(x + a + 6; 6, c, 6, c)(cc + α + b; c, a, c, a)} U A, where A — {(x; a, b, a, &),
(x + c; δ, α, &, α)}, α? e Zl and {a, δ, c} = J3.

( 2 ) Suppose n — 4. jPor a; 6 iί2

4 α^ώ J 4 = {α-, b, c, d}, define the
following circuits in Q4:

Rι = (x; d, a, df a) R2 = (»; 6, c, b, c) i?3 = (x; e, d, c, d)

R4 = (x + a + c; d, a, d, a) R5 = (x + α + c; δ, c, δ, c)

J?β = 0» + α + c; c, dE, c, d) R7 = (a? + δ + d; ώ, α, ώ, α)

iίg = (a + 6 + d; δ, c, b, c) R9 = (x + b + d; c, d, c, d)

R10 z= (x + a + b + c + d; d, α, d, a)

Rn = (x + a + b + c + d b, c,b, c)

R12 = (x + a + b + c + d; e, d, c, d) i?13 = (x + α; d, δ, d, δ)

jβu = (a? + a + c; d, δ, d, δ)

C t = (a? a, bf a, δ) C2 — (x + c; a, b, a, b)

C3 = (x + d; α, δ, α, δ) C4 = (x + c + d; α, δ, α, δ)
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C5 = (x; a, c, a, δ, a, e, a, δ)

C6 = (x + b + d; a, c, a, b, a, c, a, b) .

Then B has one of the following three forms, for some choice
of x and a, δ, c, d:

(a) B = {Rlf R2, , Rn) U A, where A = {Clf C2, C3, C4}.
(b) £ = {i?t, , R7, R9y R10, R12, C3, C4} U A, where A = {d, C2,

(c) J5 = {R19 , R5, R7, , i2n, i213, #14} U A, where A = {C5, CJ.

Proof. (1) Suppose C e A contains a walk of the form (a?; a, b, c).
A3({ίc + a, x}, {x + α, α? + α + b}) => {α? + α, a? + α + c} g A A2({α; + α,
# + α + c}) => 72 = (a? + a; 6, c, 6, c) 6 B — A However A5(C) =>R$B.
Thus there is no such walk in a circuit in A, so that A contains
only 4-circuits. Thus B must contain all six 4-circuits in ζ>3. The
result follows easily by proper choice of a, b, c.

( 2 ) We first show that if A contains circuits of length greater
than four, then (c) holds,

Suppse CeA has length greater than four. Then C contains
a walk of the form (x + b; b, a, c). A3({#, x + 6}, {x, x + a}) ==>
{&, x + c} e A. A5(C) => ϊ\ = (a;; α, c, α, c) g 5 . A2({sc, a? + c}, Γx) =>
JB2, R?e B — A. Similarly, Cγ e J5 and i25, R13 e B — A. Since
{ίc + α, x + α + c} occurs twice in {C, iϋβ} c 5, PI implies that iϋ6 g β.
Suppose {x + α + c, x + c} £ A. Then A2({x + a + c, a? + c}, ϊ\) =>
i24, C%eB — A. Then every edge incident to cc + c occurs twice in
5 — A, implying that # + c does not occur in A. This is not possible,
as A is a covering set. So {x + a + c, x + c} e A. A3({& + a + c, x + c},
{# + α + c, a? + a}) => {x + α + c, x + a + c + d} g A. A2({x + α + c,
x + a + c + d), R9)=>Rif RueB — A. {x + c, x + c + d} occurs twice
in {jβ3, J?4} c B — A, so PI implies that {# + c, a? + c + d] does not
occur in A. A4({x + c, a?}, {x + c, a? + c + eϊ}) => {x + c, x + 6 + c) 6 A.
Thus we have shown that if a walk of the form (x + b; δ, α, c) is
contained in a circuit C e A , then (a? + δ; δ, α, c, α, δ) is contained in
C. It follows that since (a? + a; c, a, δ) is in C (a? + a; c, a, δ, α, c) is
in C. Continuing in this fashion, we get C = C5. Then A5(C5) =>
Γ2 = (a? + δ; α, c, α, c) g B. A3({x + δ, a?}, {# + δ, a? + a + δ}) => {x + δ,
x + δ + c} g A. A2({# + δ, x + δ + c}, Γ2) => i29 e B - A. Al({a?, x + a),
Tl9 Cβ) => R,eB- A. Al({a? + δ, x + α + δ}, Γ2, Cδ) .-> J 2 7 e B - A.
A5(C5) =^C2<ίB. Al({a? + δ + c, cc + α + δ + c}, C2, Γ8) =>i210e J5 - A.
A6(B10, Ru =>CaB. A6(i213, JS7) =- C3 g 5 . A6(i?7, i29) => T3 = {x + b + d;
a, c, a, c) 0 B. A6(Rif R3) ==> T4 — (x + cZ; a, c, a, c) g i?. Two of three
4-circuits containing {x + δ + d, x + α + δ + d}, namely Γ3 and C3 are
not in B. Thus {x + b + d, x + a + b + d} occurs at most once among
the 4-circuits in B. It follows that [x + b + d, x + a + b + d) occurs
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in A. Similarly, {x + d, x Λ- a + d), {x + b + c + d, x + a + b + c + d}
and {x + c + d, x + a + c + d} each occur in A. Let C1 be the circuit
in A containing {x + d, x + a + d). Suppose {x + d, x + c + d) e A.
Then {x + d, x + c + d] e C1 and A θ ^ , Rz) =* Cι$B. So {x + d,
x + c + d} £ A. A4({x + d, x + c + d}, {x + d, x}) =>{x +d, x + b + d}e
A. A4({x + c + d, x + d}, {x + c + d, x + c}) ==> {x + c + d, x + δ + c + d) e
A. Thus C1 contains (a? + α + d; a, b, a). As C,ίB, C1 Φ C3 so
{x + α + d, x + α + b + cί} $ A. A4({# + α + d, x + α + 6 + d),
{x + a + d, x + a}) => {x + a + d, x + a + c + d} e A. Ai({x + a + bJrd,
x + a + d}, {x + a + b + d, x + a + b} => {x + a + b + d, x + a + b + c + d} e A.
Thus C1 = Cβ. Finally, A2({x + d, a? + c + d}, T4) => R8 e 5 - A and
A2({£ + α + d, a? + α + 6 + d}, C8) ==> 22U e B - A. Thus (c) holds.

Now suppose A contains only 4-circuits. We show that either
(a) or (b) holds.

Since there are 4-circuits in A, let x, α, 6, c, and d be chosen so
that d e A and R^eB — A. By A3, no edge incident to a vertex
in d but not itself in d occurs in A. AβC^, d ) =* ϊ7! = («; &> ^̂  &» d)>
Γ2 = (a? + α; 6, d, 6, d) g β. By A2, it follows that i23, J?6, i?7, R9, R12 e
B—A. By Al, J?22?5, 6 β—A. At this point, the set of circuits known
to be in B — A and the circuit in A are fixed under the permutation
(ab)(cd). Thus if either {x + c, x + b + c} or {x + d, cc + a + c£} occurs
in A, we may assume without loss that {x + c, a? + 6 + c} 6 A. Suppose
neither does occur in A. Then, A4({x + d, x}, {x + d, x + a + d}) ==>
{x + d, x + 6 + d}, {x + d, x + c + d} 6 A and ({x + c, a?}, {cc + c, a? + δ + c}) =>
{a? + c, x + c + d) e A. It follows that walk (x + 6 + d; δ, c, d) is
contained in some circuit in A. But then this circuit is not of length
four, contrary to hypothesis. We conclude that, in fact, {x + c,
x+b + c} e A. Then A6(i?2, R3) => Γ3 = (x + c; 6, d, 6, d) 0 J5. As R2 e
J5 — A, the only remaining 4-circuit containing {x + c, x + 6 + c}
which may be in A is C2 Thus C2 6 A. A2({a; + c, x + c + d}, T3) =>
R,eB- A and A2({aj + b + c, x + b + c + d}, Γ8) =^JB10e J5 - A. A6
shows that Γ4 = (a? + a + c; 6, d, 6, d), Γ5 = (a? + b + d; α, cf a, c)t T7 =
(x; α5, cβα3c), T8 = (a; + b; α, c, α, c) and Γ6 = (a; + d; α, c, α, c) ί JB. Thus
the only remaining 4-circuits which may be in B are C3, C4, R8, Rn.
All four must be in B in order to satisfy PI. A must contain a
disjoint pair of them in order to be a covering set. The two possible
choices for such a pair yield (a) and (b). This completes the proof
of the proposition.

It is easily checked that each of the boundary sets B in Prop.
4 represent orientable embeddings. Moreover, if two such JB'S are
distinct, so are the covering sets A contained in them. It follows
from Prop. 3 that none of the sets B in Prop. 4 may arise as B\>
where ε{Bx) is an iSΓQ-embedding. Thus there are no iVQ-embeddings
of Q4 or Qδ.
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This completes the proof of the theorem.
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