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MINIMAL (G, r)-EXTENSIONS

H. B. KEYNES AND D. NEWTON

In this paper, we are concerned with lifting minimality
and topological transitivity through skew-extensions—the
fibres being a compact group and the action intertwines
with a group automorphism. It is shown that in the class
of cocycles respecting the automorphism, these properties
can be lifted when the automorphism is distal. This is
obtained by a dynamical decomposition of an automorphism
on a group, and subsequent analysis based on this decom-
position. The lifting fails for hyperbolic automorphisms on
a torus.

1* Introduction* Suppose (X, ψ) is a free abelian group exten-
sion of a minimal flow (Y, η). Then it was shown in [2] and, via
different techniques, in [8] that under mild assumptions, almost all
cocycle perturbations of (X, <f) over (Γ, η) are minimal. In this
paper we study the corresponding problem in the more general situa-
tion when (X, ψ) is a free (G, τ)-extension of (Y, rf) (see § 2 for
definitions). The major dynamical results (Theorem 3.13 and Co-
rollary 3.14) state that in cases which include finite or countably
infinite dimensional tori, almost all cocycles lift topological transi-
tivity, and, when (G, τ) is distal, they lift minimality.

In preparation for these results, detailed information on the
dynamical properties of group automorphisms of compact abelian
groups is necessary, and we carry out this analysis in § 2. To this
end, we use a particular inverse limit decomposition of (G, τ) which
identifies a distal tower and an ergodic extension. Certain aspects
of this decomposition were previously studied by Seethoίf and Brown,
see [1]. Our results in §2, which might be of independent interest,
are the identification of the maximal equicontinuous factor in this
case, and the fact that on an ti-torus, distality is equivalent to some
power being unipotent. Finally some indications of extensions to
more general actions are given.

In order to show the main results, a notion of admissibility is
required, and we discuss which (G, τ) are admissible in § 3. The
remainder of § 3 is devoted to proving these results and noting some
examples to illustrate the theory. One of the examples (Example
3.19) shows that even in the case of a periodic automorphism, the
major result cannot be deduced from Ellis' original result.

The proof of Theorem 3.13 is a modification of Ellis' proof in
[2] and we acknowledge our indebtedness to that paper.
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2* The dynamics of group automorphisms* The basic situa-
tion which we will examine in this paper will be a discrete flow
(X, ψ), with X compact Hausdorff, a compact Hausdorff abelian
group G acting freely on X and an automorphism τ of G such that

ψ(gx) = τ(g)f(x) (xeX,geG).

Letting {Y,rj) be the induced flow on X/G, and π: X-^ Y the ca-
nonical map, we say that (X, ψ) is a free (G, τ)-extension of (Y, rj).
Note that if τ — id, we get the usual group extension. To simplify

notation we will sometimes write (X, Ψ) —'-^-> (Y, η).
In addition to the dynamics of (Y, η) we will also be concerned

with the dynamics of (G, τ). Thus to say that (X, ψ) is an equi-
continuous-(G, τ)-extension means that (G, τ) is equicontinuous, and
so on.

The following lemma is routine, and its proof will thus be
omitted.

LEMMA 2.1. Let (X, ψ) be a distal-(G,τ)-extension of (Y,τj).
Then (X, ψ) is a distal extension in the usual sense. In particular,
if (Y, rj) is distal, then (X, ψ) is distal, and, if (Y, η) is minimal,
then (X, ψ) is pointwise almost periodic.

We now turn to an examination of the dynamics of (G, τ). We
denote the character group of G by Γ(G) and normalized Haar meas-
ure on G by λ. We recall that (G, τ) is ergodic relative to λ if and
only if aeΓ(G), aoτp = a for some p > 0 implies a = 1.

We define inductively a sequence of subgroups of G.

DEFINITION 2.2. Put Go = G, Γo = {1} c Γ(G). Having defined
Γn, and Gn — ann Γn, we put

Γn+1 = {a e Γ(G)\aozp- a'1 e Γn for some p > 0}

Each Γn is a τ-invariant subgroup of Γn+ι and G%+1 is a r-invariant
subgroup of Gn. We put G^ - Γl^o Gn and Γ.. = Uϊ=o Γn. Then
Goo = ann Γ^, G^ is a τ-invariant subgroup of G and Γ^ is a τ-
invariant subgroup of Γ(G). We will denote by τ all the various
restrictions and induced automorphisms associated with τ and these
τ-invariant subgroups. We note that if (Gn, τ) is the restricted ac-
tion on Gn then (GJX = Gn+1.

It is clear from this definition and the characterisation of er-
godicity that (G, τ) is ergodic relative to Haar measure if and only
if Gx — G, and hence, if and only if G^ = G.
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The sequence of subgroups above was first introduced by T. L.
Seethoff, see [1]. He mainly considered the case G^ = {e} and ob-
tained some of the results of this section.

The dynamical portrait of this sequence is summed up by:

(G, τ) ̂ % (G/Gco, T) = inv. lim (G/Gn, z) ,

where (G/Gn+lf τ) ®Ϊ!!™L$ (G/Gn, z) for each n^l.

PROPOSITION 2.3.

1. For each n ̂  0, (GJGn+1, z) is equicontinuous.
2. (Goo, z) is ergodic relative to Haar "measure on G^.
3. (G/G%, z) is distal, 1 :g n <I co.

Proof.
1. Since (Gn\ = Gn+1, it suffices to show that (G/Glf z) is equi-

continuous. We identify Γt with Γ{GjGx). Let F = {alf •••,«,} be
a finite subset of /\ and let (F) denote the smallest r-invariant
subgroup of Γx containing F. Put GF = ann (F). Then (G/Gx, τ) =
inv. limflnite P(G/GF, z). It now suffices to show that each (G/GF,z)
is equicontinuous. Since aίf , an e Γv there exist plf , j)Λ > 0
such that «!oτPi ar 1 = 1. Put p = 77̂ .̂ Then a°zp -a~ι — 1 for all
cue (F). Therefore (G/GF, z) is periodic and hence is equicontinuous.

2. Since Γ{G^) ̂  Γ{G)IΓ^ we have to show that if a e Γ(G)
satisfies ao^ΌΓ1 e Γ^ for some p>0 then α: 6 Γ^. But if tfor^-or1 e JΓ^,
then for some n, aoτp -a~1eΓn and hence α e Γ f t + 1 c Γ M as required.

3. This follows from part 1 of this proposition, Lemma 2.1 and
the comment immediately preceding this proposition regarding the
structure of (G/Gnf z).

We note that a consequence of part 2 of Proposition 2.3 is that
(zp - I)Gn = Goo for all p > 0; here (τ* - I)g denotes zp(g) flΓ1. It
is also useful to note that Gn+ί = Π?=i (τP — I)Gn.

Regarding the induced automorphisms (GJGn+lf z) simple examples
show that in general z Φ I. However if z = I on G/Gx, then z — I
on GJGn+1 for each n as the following argument shows. First we
note that z — I on GJGn+ί is equivalent to saying Γn+ι =
{α6Γ(G)|αor α~ 16ΓJ. We are assuming this is true for n = 0.
Suppose that it is true for w = k — 1 and consider Γk+1. ϊί βe Γk+X

then there is a j> > 0 such that β o r*-^ 1 = To e Γfc. Put 7 = /9 o τ-βr\
Then 7 7 o τ 7 ° τ11"1 = 70 and so 7rw 7"1 = 70 o z 7̂ "x 6 rfe_!. Thus
7 e Γ k and so we have shown Γk+ι = {aeΓ(G)\a<>τ cc1 eΓ k } , as

required.
Our next two propositions deal with the cases Gx — {e} and

G.O - {e}.
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P R O P O S I T I O N 2.4.

1. If ((?, τ) is equicontinuous, then for each a e Γ(G) there is
an n ^ 1, depending on a, such that a © τn — a.

2. If H is a closed τ-invariant subgroup of G such that (G/H, τ)
is equicontinuous then Gt c H. Hence (G, τ) is equicontinuous if
and only if G1 = {e}.

3. If G has a finitely generated character group, that is, G is
isomorphic to the direct product of an m-torus and a finite group,
then (G, τ) equicontinuous implies τn = I for some n.

4. (G/G19 τ) is the maximal equicontinuous factor of (G, τ).

Proof.
1. Let K denote the circle group, aeΓ(G). Since τ is equi-

continuous, Oτ(a) = {<χoτn\ne Z) is compact in ^{G, K) and hence
is compact in L\G,X). Since aφaoτn implies a±aoτn and hence
| |α — aoτn\\2 = 2 in U, it follows from compactness that there is an
n > 0 for which a = a © τn.

2. To show that G1aH, we have to show that if α e a n n i ϊ
then a e ann Gx — TV Now a e ann H implies a e Γ(G/H) and hence,
by equicontinuity of (G/H, τ), there is an n such that a o τn = a,
that is α e / V The last statement follows from this and part 1 of
Proposition 2.3.

3. Let aίf •••, ak be generators of Γ(G). By equicontinuity of
τ there exist nlf •••, nk such that c^ot** — cci9 1 ̂  i ^ h. Putting
n = 77% we get aoχn — a for all α 6 Γ(G) and hence τ% = I.

4. Let 37: (G, τ) -> (X, ^) be a homomorphism with (X, ^) equi-
continuous. We must show η factors through (G/Glf τ). If we
regard G(X) as a subset of C(G) via the map f-*f°i} then we must
show that feC(X) implies / is constant on cosets of Gx. Since
(X, φ) is equicontinuous, G(X) is generated by linear combinations
of eigenfunctions (this is well known for minimal (X, φ) and is easily
extended to the nonminimal case). Thus we must show that if fe
C(X) satisfies f°τ — kf, |fc| = 1, then / is constant on cosets of
(?!. Since λ is a supported measure, it suffices to show that as an
L\G, λ)-function / is in the closed linear span of Γt. So write

/ = Σ Ka, Σ \K\2< - .
aeΓ(G) aeΓ(G)

Since /or = kf, \k\ = 1, it follows that |fcΛ|, as a function of a, is
constant on orbits under τ. Thus ka — 0 whenever a has an infinite
orbit, and so / is in the closed linear span of Γ1 as required.

PROPOSITION 2.5. The following statements are equivalent:
1. (Gr, τ) is distal.
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2. (G, τ) has zero topological entropy.
3. (?„ = {*}.
4. (G, τ) is pointwise almost periodic.

Proof.
1. implies 2. It is known that a minimal distal flow on a com-

pact Hausdorff space has zero topological entropy, and also that
h(X, Φ) = supα h(Xa, φ), if X = U« X " where the Xα are ^-invariant
closed sets [4]. This yields the result since a distal flow is a dis-
joint union of minimal distal flows.

2. implies 3. It is known that an ergodic automorphism on a
nontrivial compact group has positive entropy. Since ((?„, τ) is
ergodic and has zero entropy if (G, τ) has zero entropy, it follows
that Goo = {e}.

3. implies 1. This is immediate from part 3 of Proposition 2.3.
1. implies 4. This is a well known property of distal flows.
4. implies 3. First suppose G is metric. If (G, τ) is pointwise

almost periodic (p.a.p.) then (Goo, T) is p.a.p. Since (Goo, τ) is ergodic
relative to a supported measure λ and G^ is metric then there is a
point with dense orbit, that is, (Goo, τ) is minimal. But {e} is a
closed invariant subset of (G^, r) therefore GTO = {β}.

Now consider the general case of G not necessarily metric.
Take any character on Goo and form the smallest τ-invariant sub-
group of /"(Goo) containing it. This subgroup is countable and hence
the factor group of Goo having it as its dual group is metric. But
τ on this factor group is p.a.p. and ergodic and so by the metric
proof above the factor group is trivial. But this means every
character of G^ annihilates G ,̂ in other words, G^ = {e}.

COROLLARY 2.6. Let K be a closed τ-invariant subgroup of G
such that (G/K,τ) is distal. Then Kz^G^. Thus (G/G^τ) is the
maximal distal group factor.

Proof. Since (G/JBΓ, τ) is distal it follows that (G/K)^ = {e}. Let
K = ann Γκ. Thus Γκ ^ Γ(G/K). If a e Γκ, then a e (Γ(G/K))n for
some n. Clearly (Γ(G/K))naΓn. Therefore aeΓκ implies aeΓn

for some n, and so Γκa\JnΓn = Γoo. Thus R-DG^.

In view of this corollary it is natural to conjecture that (G/G^, τ)
is the maximal distal factor of (G, τ). We have however made no
progress towards settling this.

We now recall the definition of unipotence, and study its rela-
tionship to distality and equicontinuity. We note that the notion
of unipotence has proved to be important in the study of minimal
affine transformations on connected groups.
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DEFINITION 2.7. Let τ be an automorphism of a compact abelian
group G. (G, τ) is called unipotent if Π"=o (τ — I)*G = {e}, and
strongly unipotent if there is an w such that Πί=o (τ — I)ύG = {e}.

PROPOSITION 2.8. Let G be an n-torus.
1. If τ is unipotent, then Πi=o (τ — I)yG = {&}, that is, τ is

strongly unipotent.
2. If τ is unipotent and equicontinuous, then τ — I.

Proof.
1. Put G{m) = (r - I)mG. Then G(w) | {e}. We will prove by in-

duction that G(m) is a torus whose dimension does not exceed
max {n — m, 0}. This is clearly true for m = 0. Assume true for
m = k. li k^n, then G(A:) will be a 0-torus and automatically
G ( / m ) will be a 0-torus. If k < n, then dim G(&) ̂  n - k. Now
£(*+i) = ( r - j)G(fc) is a subtorus of G(fc) and so either G{k+1) = G{k),
in which case Gk+m = Gfc for all m ̂  0 and Gfc+1 will be a 0-torus,
or Gk+1 Φ Gk, in which case dim Gk+1 ̂  dim Gk - 1 and so dim Gfc+1 ^
max {̂  — m — 1, 0} as required. It now follows that Gw = {β}.

2. By 1, τ is strongly unipotent, say (τ — l)mG = {e}. By 3 of
Proposition 2.4, τk — I for some & > 0. Now let τ be given by an
n x n matrix A. Then A satisfies (A — I) m = o and Ak — I = 0.
The minimum polynomial of A is a factor of both (t — l)m and £& — 1,
that is, is t — 1. Thus A = I and hence τ — I.

COROLLARY 2.9. Let τ be an automorphism of a compact con-
nected group G which is both unipotent and equicontinuous. Then
τ = I.

Proof. Let Γ(G) be the torsion free character group of G. Let
F == {alf " ,an} be any finite subset of Γ(G), and let (F) be the
smallest τ-invariant subgroup of Γ(G) containing F. Putting GF =
a n n ^ ) , we have (G, τ) = inv. limflnitejp (G/GF, τ). To complete the
proof we need only show τ = I on each G/G .̂ By equicontinuity of
τ, the a^F have finite τ-orbits and so (F) is finitely generated.
Therefore G/GF is a finite-dimensional torus, and the result follows
from Proposition 2.8.

We note that this result does not hold if G is not connected.
For example, let G = Zif τ{x) = x~\ Then τ is equicontinuous,
unipotent since (τ — IJG = {e} and clearly τ ^ J.

COROLLARY 2.10. Let A — a τ be an affine transformation of
a compact connected abelian group G. If τ is equicontinuous and
τ Φ I, then A is not minimal.
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Proof. It is a result of H. Hoare and W. Parry, [6], that a
minimal affine transformation of a compact connected group has
quasi-discrete spectrum, and hence, [5], τ is unipotent if A is
minimal. The result now follows from Corollary 2.9.

Before proving our next result we need a lemma.

LEMMA 2.11. Let G be an n-torus and τ an automorphism of
G. Let Go D (?! ID z> Goo be the sequence of subgroups associated
with τ by Definition 2.2. Then each Gk is an m-torus for some
m :£ n, and there is a k such that Gk = Gk+i for all i ^ 0.

Proof. Noting that Gk+1 = (Gk\, we need to show that if G is
a torus, then Gx is a torus. Since Γ{GX) = Γ/Γ19 and hence is finitely
generated, we must show that ΓIΓ^ is torsion free. Let a = aΓ1 e
Γ/Γ19 aeΓ(G), and suppose ak = 1. Then akeΓlf and so there is a
2? > 0 such that (α&) ° τp (α*)"1 = 1, that is, (a<>τp -α"1)* = 1. But
Γ(G) is torsion free, therefore α o f or1 = 1 and a e Γx. Thus a = 1.

Since Gfc+1 is a subtorus of (?fc, we have either dim Gk+1 < dim GΛ

or Gk+1 = Gfc. Since dim G is finite the latter must occur for some
k and then we get Gk — Gk+i for all i ^ 0.

We can now state the best result we have on the relation be-
tween distal and unipotent.

PROPOSITION 2.12. Let τ be an automorphism of a compact
abelian group G such that τp is unipotent for some p > 0. Then τ
is distal. If, in addition, G is n-torus, then τ distal implies that
τp is unipotent for some p > 0.

Proof. Recall Gx = fl?=i (τk - I)G a {τv - I)G. Inductively, Gncz
(τp - I)nG. Thus Goo c ΠSU (Γ?> - Σ)nG = &)> a n d s o ' ^ Proposition
2.5, τ is distal.

Now let G be a torus. By the distality of τ and Lemma 2.11,
there is a k such that G0^Gι^ Ξg Gk = {e}. Dually we have
{l} = f o C Λ c c Γ f c = Γ(G). Consider Γt: Γi is finitely generated
with generators a[*\ , a^., say, and there are integers p^, , p{£.
such that αy'oT^ ί O ^ e Γ M . Letting pt = JIiPff then Γ€ =
{άlaoτ^ a'1 e Γ^J. Next, putting p = ΠLi Pi yields Γi={a\aoτp*arι 6
Γ^J, 1 ̂  i ^ &. Thus Γ, = (τp - 1 ) ' ^ ^ and hence G, = (τ» - I)G^.
Thus ΠJ=O (^P — I)jG — {e} and rp is strongly unipotent.

We note that Proposition 2.8 implies that a nontrivial equicon-
tinuous automorphism of a torus is not unipotent. There are also
distal, nonequicontinuous automorphisms of a torus which are not
unipotent, for example, the automorphism
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1° λ °\
τ of the 3-torus given by the matrix A = I 0 0 1

\l 1 -ll
Finally we point out a relationship between the sequence of

groups defined in this paper and a different sequence defined by P.
Walters [11]. Walters defined his sequence as follows: if τ is an
automorphism of a compact abelian group G, put GO — G, G'n =
Π£=i(τ"Λ - I)pG'n^, GL = ΓinG'n* Then it can be shown that G^Gi.

We end this section with a few comments on generalizations.
If T is a locally compact separable metric abelian group which acts
on G by automorphisms then one can define as before the notion of
(X, T) being a free (G, Γ)-extension of (Y, T). However, the situa-
tion relating to the action (G, T) reduces in some sense to T — Zk

9

k^l. To see this, if S = {t e T\π* = id), then T/S acts effectively
on G and so is isomorphic to a subgroup of the automorphism group
of G. Since this group is totally disconnected, Iwasawa [7], it fol-
lows that TjS is isomorphic to Zk x F, where F is a totally dis-
connected compact group. Now Definition 2.2 utilizes finiteness of
orbits of characters and since every character has finite orbit under
F this property depends on the Zfc-part of the action.

Looking briefly at the Zk situation, k > 1, we let (G, Zk) be an
action of Zk generated by pairwise commuting automorphisms
τ19 , τk. We put Go = G, Γo = {1}. Having defined Γn and Gn =
annΓ% we put Γn+1 = {aeΓ(G)\aoT

p

ί^a~1 eΓn for some pt > 0, each
1 <̂  i ^ k), Gn+ί = ann Γn+1, etc. Proposition 2.3 still holds and so
we get a splitting of the action into an ergodic extension of a distal
action and the distal action is an inverse limit of equicontinuous-r-
extensions. We shall make no use of these results and so omit the
details.

3* Minimality in (G, τ)-extensions* We will assume that X, Y,
and G are metric spaces. By a τ-cocycle for (X, ψ) —^-* (Γ, η) we
mean a continuous map φ: Y x Z —> G such that φ(nny, m) =
τm(Φ(V> w)) φ(y, n + m). Setting φ(y) = φ(y91) we can define a new
flow on X by ψ>(&) = φ(πx)ψ(x). It is direct to verify that (X, ψφ)
is still a (G, r)-extension of {Y, η). We note that there is a one-to-
one correspondence between τ-cocycles and C(Y, G) as follows: if
φeC(Y, G) then we put

Φ(V, n) = n = 0

- 1
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Conversely, if φ is a r-cocycle we put φ(y) — φ(y, 1).

DEFINITION 3.1. We will say that (G, τ) satisfies (A) if for all
ε > 0 there is an N ^ 1 such that for all n ϊ> N and g09 , gn^ e G
we have Π S 1 τ%St(gt)) = G. Hence S,(flr) denotes the sphere of radius
ε about g relative to an invariant metric d on G.

We will say that G satisfies (B) if the following extension prop-
erty holds: let feC(Yf G), ε > 0. Then there exists 8 > 0 such that
if F is a finite subset of Y and u: F -* G satisfies d(f(y)f u(y)) < δ
for y 6 F then there exists veC(Y, G) with v\F — u\F and d(f(y), v(y))<ε
for all y eY.

Finally we say that (G, r) is admissible if (G, r) satisfies (A)
and G satisfies (B). Note that if (G, r) is admissible, then (G, r"1)
is admissible.

Our main results are for admissible (G, τ) and our first task is
to show that this includes a reasonable class of groups and auto-
morphisms. We first deal with condition (A). We will show that
this holds for an arbitrary automorphism on a compact connected
metric abelian (c.c.m.a.) group G. We do it by a series of lemmas.

LEMMA 3.2. (G, r) satisfies (A) if and only if for all ε > 0 there
is an N^ 1 such that for all n^N we have Aε

n = ΠΓ^^S/β)) = G.

Proof. Clearly (A) implies the above condition on taking gQ =

& = • • • = ff -i = e.

Suppose the above condition is satisfied. Let g0, , gr̂ _1 be any
n elements of G. Then

n-l n-1

Π τKS8(gt)) = Π τKβiSβ(e)) by invariance of metric
ΐ=0 ΐ=0

Π

Thus (G, T) satisfies (A).

LEMMA 3.3. Suppose H is a closed τ-invariant subgroup of G
and suppose (H, τ) and (G/H, τ) satisfy (A). Then (G, τ) satisfies (A).

Proof. Let p: (G, τ) -> (G/jff, r) be the natural map. We first
show that for each 8 > 0 there is a ^ > 0 such that for all g e G

Let δi be a Lebesgue number for the open cover {p(Sδ/2(g)): geG}.
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If ge G then there is a g'eG such that Sδl(p(g))czp(Sδ/2(g')). In
other words, for some h e H we have hg e Sδ/2(g'). Thus #' 6 Sδ/2(hg)
and hence Sδ/2(g')aSδ(hg) = hSδ(g). Therefore p(Sδ/2(g'))ap(Sδ(g)).
Thus we have the required Sδl(p(g))dp(Sδ(g)).

Let ε > 0. Then there is a <5 > 0 such that for all geG we
have Sδ(e)Sδ(g) a Sε(g). Choose δx as above corresponding to δ. Apply
(A) for (G/H, τ) using δt as ε, and apply (A) for (H, τ) using δ as ε
to obtain corresponding N± and NQ. Put N = max {iVΊ, iV0}.

If n^ N and #0, , ^ - i 6 G, then

and

Thus

si

Hence (G,

0
τ)

=0 /

satisfies (A).

ί = 0

Γ S Λ

'S,

\

/

is)

) =
ϊ = 0

= TLτi(St(e)St(gt))c:fίτtS.(gt) .
i0 ϊ0= 0

LEMMA 3.4. Lei {Hn} be a decreasing sequence of closed τ-
invarίant subgroups of G with f\n Hn — {e}. Suppose that for each
n, {GjHny τ) satisfies (A). Then (G, τ) satisfies (A).

Proof. Let ε > 0. Choose δ > 0 so that for all geG we have
Sδ(e)Sδ(g)dSε(g). Since Hn j {e}, there is an N such that diam (HN) < <5.
Let πN: G —> G/iϊ^ be the canonical map. Then, as in the proof of
Lemma 3.3, there is a δλ > 0 such that for all geG we have
Sh(πN(g)) c πN(Sδ(g)). Now we use the fact that (G/HN, τ) satisfies
(A) and choose Nx corresponding to δx.

Then for n^ N± and say g09 , gn^ e G we have

^ = G/HN

and so

G - HJUTKS^))) cS^fffr'ftCft)) c S
/ \ /

i = 0

Hence (G, τ) satisfies (A).
So far we have not shown that any (G, τ) actually satisfies (A).

Our next proposition remedies this.
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PROPOSITION 3.5. Let G be a c.c.m.a. group and τ equίcontίnuous.
Then (G, τ) satisfies (A).

Proof. Let ε > 0. Since τ is equicontinuous there is a d > 0
such that τ*(St(e)) 3 S,(τ'β) = Sδ(e) for all i. Thus

Since G is connected there is an N such that Πf=i Sδ(e) = G. Thus
A; = G for n ^ N and by Lemma 3.2 we have that (G, r) satisfies
(A).

LEMMA 3.6. Let G be a c.c.m.a. group and τ an automorphism
of G. Let GODGJD O G ^ D be the subgroups of Definition
2.1. Then each Gn is connected.

Proof. Since Gn+1 = (GJX it suffices to show that G1 is connected
and use induction. For this we have to show that Γ torsion free
implies Γ/Γ1 is torsion free and a proof of this is contained in the
proof of Lemma 2.11.

PROPOSITION 3.7. Let G be a c.c.m.a. group and τ a distal auto-
morphism of G. Then (G, τ) satisfies (A).

Proof. Let Go D G1Z) Z) G^ be the sequence of subgroups as-
sociated with (G, τ) by Definition 2.2. Since (G, τ) is distal it fol-
lows by Proposition 2.5 that (?«, = {e}. Thus, by Lemma 3.4, we
need only show that each (G/Gnf τ) satisfies (A). First (G/Glf τ)
satisfies (A) since G/Gt is connected and τ is equicontinuous. Now
assume (GJGn, τ) satisfies (A) and consider (G/Gn+1, τ). Then GJGn+ι

is a r-invariant subgroup of G/Gn+1 and (GJGn+1, τ) is equicontinuous,
by Proposition 2.3. Now GJGn+ι is connected by Lemma 3.6 and so
(GJGn+1, τ) satisfies (A) by Proposition 3.5. Since (G/Gn+1\GJGn+1, τ)
is isomorphic to (GjGn, r), we can use Lemma 3.3 to assert that
(G/Gn+1, τ) satisfies (A).

It now follows by induction that (G/Gn, τ) satisfies (A) for each n.

PROPOSITION 3.8. Let (G, τ) be ergodic. Then (G, τ) satisfies (A).

Proof. Let Aε

n = ΠΓ-o1 τ*(St(e)). Since Aε

n c Aε

n+1, each Aε

n is open
and G is compact we need only show UϊU -Ai = C? for each ε > 0
and then we can apply Lemma 3.2 to get the result.

Since G is metric and τ is ergodic we can find xoeSε(e) such
that {τ%\i ^ 0} is dense in G. Let yeG and denote the invariant
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metric by d. Then there is an n such that d(τnx0, y) — d(y(τnx0)~\ e)<ε.
Therefore y = (y(τnx0)~y)τnx0 e Sε(e)τnS£(e)aAε

n+1. Therefore \J~=1 A
ε

n = G
and the result is proved.

We remark that in Proposition 3.8 we make no connected re-
quirement on G.

THEOREM 3.9. Let τ be an automorphism of a c.c.m.a. group.
Then (G, τ) satisfies (A).

Proof. Let Gc z) G1 z> Z) G^ be the sequence of subgroups as-
sociated with (G, r). Consider the closed τ-invariant subgroup G^.
By Proposition 2.3, (G^, τ) is ergodic and hence by Proposition 3.8
satisfies (A). Since (Cr/CL, τ) is distal and G/Goo is connected, then,
by Proposition 3.7, (G/G ,̂ τ) satisfies (A). An application of Lemma
3.3 yields the result.

We now turn to consideration of condition (B) in the definition
of admissibility. In [2] Proposition 2 it was shown by R. Ellis that
if G is a connected Lie group whose left and right uniform struc-
tures coincide, then G satisfies (B). Moreover if G is compact his
proof gives δ depending on ε and the metric and not on /. For our
situation of a compact abelian G this gives:

THEOREM 3.10 (R. Ellis). If G is a finite dimensional torus
then G satisfies (B). Moreover in condition (B) d can be chosen
independently of fe C(Y, G).

We now note a slight extension to a torus of countably infinite
dimension.

PROPOSITION 3.11. If G is a torus of countably infinite dimen-
sion then G satisfies (B).

Proof. We shall sketch the details.

If G = Πί°=i K, and d is the usual metric on K with diam K — 1,
we define d on G by

d(χ, y) = k

where x = (x^Zu V = (vJZ*. Let e > 0. Using Theorem 3.10, choose
δ for K and ε/2 and choose N so that

v JL = i < ±
<=*+i 2* 2N 2 '
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Put dQ = 1/2* δ.
Let fe C(Y, G), F a finite subset of Y and let u:F-*G satisfy

d(f(x), u(x)) < <?0 for #e Y. Now a continuous function h: Y->G is
determined by coordinate functions Λ,: Y —• K, so in order to de-
termine an extension v of u we will determine vt for £ = 1, 2, .
A direct application of Theorem 3.10 to the first N coordinates and
arbitrary extension in the remainder achieves this and shows that
δ0 satisfies (B).

Combining Theorems 3.9, 3.10 and Proposition 3.11, we have

THEOREM 3.12. Let G be an n-torus, l<.n<*°°9 and τ an
arbitrary automorphism of G. Then (G, τ) is admissible.

We now give our main result.

THEOREM 3.13. Let π: (X, <$>)-* (Y, η) be a (G, τ)-extension, Y
infinite with no isolated points and (G, τ) admissible. If {Y, η) is
point transitive, then for almost all φeC(Y, G), (X, ψφ) is point
transitive.

Proof. The proof follows the proof of Theorem 1 of [2].

Let yQ be a point with dense orbit in Y, and let xQeX satisfy
π(χ0) = y0. We will show that the set of φ for which x0 has a dense
orbit under ψφ is a dense Gδ in C(Y, G).

Let U be open in X. Since ((?, r"1) is admissible, we may con-
sider only n ^ 0 and thus set

E(U) - {φeC(Y, G)\ψn

φ(x0)eU for some n ^ 0} .

If φeE(U) with ψφ(x0)eU, then for φι sufficiently close to φ we
have Π^o1 rfyiO?*-1"*!̂ ) is close to Π S 1 τ^ψ-^y^), and hence <φ$(x0) e
U. Thus E(U) is open.

We now show E(U) is dense. Let fe C(Y, G) and ε > 0. Choose
δ by the admissibility property (B) of (G, τ) and let {F€|i = 1, , n)
be a covering of G by δ/2-spheres. Choose N for δ/2 from property
(A) of (G, τ).

Now if r > N and y]r{y^)^τc{U), then there is a geG for which
g, (ψr(x0)) 6 U. Next pick Vu with f{ψ~ι-jy,) e Viά (j = 0, . , r - 1).
Then by (A), we can find gά e Viό such that g = Π5=5
define a function φ: {τ)j(y0) (0 ^ i ^ r - 1)} -> G by ΨW
and then extend ^ to ^ 6 C(F, G) satisfying d(/, #) < ε. Now
(Π^o1 ̂ ΦW^XVo))) V(Xo) = flr tr(^o) 6 C/. Thus φeE(U) and so
is dense. Since X is a compact metric space, it has a countable
base {Un} for the open sets. Putting E = Γ\nE(Un) we get the set
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of φ for which x0 has a dense orbit and this is a dense G§ in C(Y, G).
The theorem is proved.
The simple example of X = Y x G, Y the orbit closure of an

isolated point, G the circle, τ the identity, shows that the condition
on isolated points is necessary. This is also true for Ellis' original
result.

COROLLARY 3.14. Let π: (X, ψ) ->(Y,η) be a (G, τ)-extension, Y
infinite with no isolated points and (G, τ) admissible and distal.
If (Y,yj) is minimal, then for almost all φeC(Y, G), (X9 ψφ) is
minimal.

Proof. Since (Y,η) is minimal and π is a distal extension, it
follows by Lemma 2.1 that (X, ψφ) is pointwise almost periodic for
any φeC(Y, G). The result now follows from Theorem 3.13.

Recalling that (Y, rf) is topologically weak-mixing if (Γx Y, ΎJXΎ])

is point-transitive, the following result is shown by techniques similar
to those in [9], Theorem 1.

COROLLARY 3.15. Let π: (X, ψ)-+(Y, η) be a (G, τ)-extensionf Y
infinite with no isolated points and (G, τ) admissible. If (Y, 7]) is
topologically weak-mixing, then for almost all φeC(Y, G), (X, ψφ)
is topologically weak-mixing. If, in addition, (Y, ΎJ) is minimal
and (G, τ) is distal, then for almost all φeC(Y, G), (X, ψφ) is
topologically weak-mixing and minimal.

Recall that two point-transitive flows (Z, p) and (W, θ) are weakly
disjoint if (Z x W, p x θ) is point-transitive, and two minimal flows
(Z19 pλ), (Wί9 θx) are disjoint if {Zx x W19 p1 x 0J is minimal.

COROLLARY 3.16. Let (Z, p) be a point-transitive flow and
π: (X, ψ)—*(Y9Ύ)) a (G, τ)-extension, Y infinite with no isolated
points and (G, τ) admissible. If (Z, p) is weakly disjoint from
(Y, η), then for almost all φeC(Y, G), (Z, p) is weakly disjoint from
(X, ψφ). If, in addition, (Z, p), (Y, η) are minimal, (G, τ) is distal,
and (Z, p) is disjoint from (Y, η), then for almost all φeC(Y, G),
(Z, p) is disjoint from (X, ψφ).

Proof. In either case we have that (X x Z, ψ x p) is a (G x 1,
τ x l)-extension of (Y x Z, rj x p). If (y0, z0) has a dense orbit, then
by considering points (xQ, z0) with π(x0) — y0, the proofs of 3.13 and
3.14 show that for almost all φ e C( Y, G), φ x 1: Y x Z-* G x 1 yields
the desired conclusion.

Note that if {Z, p) is weakly disjoint from (W, θ), their maximal
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equicontinuous factors (Z/S, p), (W/S, p) are minimal, and hence are
disjoint, since they have no common nontrivial eigenvalue. Now
suppose (X, ψ) is a ((?, r)-extension of (Y, η), (G, τ) admissible and
(Z, p), (Y, Ύ]) minimal. Suppose further that (Z/S, p) is disjoint from
(Y/S, η). By Corollary 6, [10], (Z, p) is weakly disjoint from (Y, η),
and so by Corollary 3.16, (Z, p) is weakly disjoint from (X, ψφ) for
almost all φ. Thus, (Z/S, p) is disjoint from (X/S, ψφ) for almost all
Φ, independent of the action of τ on G.

We now look at some examples in connection with the results
of this section.

EXAMPLE 3.17. Let (Γ, η) = (i£, i2α), where jBα(a?) = <ra is an
irrational rotation of the circle K. Let G — K and τ(g) = ^r1. Put
X = Γ x G = JK? and define <f (&„ â ) = (axlf xϊ1). Then (X, ψ ) is a
(G, r)-extension of (Y, η). If ^ e C(JL, iΓ), then (̂a?x, ^2) = («α;1, φ(x1)xϊ1).
Corollary 3.14 applies here to say that for almost all φ e C(K, K),
(K2, ψφ) is minimal. Suppose we choose a φ for which ψφ is minimal.
Then by connectedness of K2 it follows that (ψφf is also minimal.
But φl(xίf x2) — (a2xlf φ(ax1)φ(x1)~ίx2). In other words, it is a minimal
group extension of (K, RJ). Now this means the equation
[Φ(axί)/φ(x1)]n = h(ppχύlh(xύ has no continuous solution h: K->K unless
n — 0. In particular it has no solution for n = 1. Therefore the
function Φ(ccx1)/φ(x1), which is a continuous coboundary for Ra is not
a continuous coboundary for Ra%. Since this is true for 'most' φe
C(K, K) we get that 'most' continuous coboundaries for Ra are not
continuous coboundaries for Ra2.

EXAMPLE 3.18. The following example illustrates some qualita-
tive differences between distal and equicontinuous automorphisms,
and shows the strange situation that the equicontinuous automor-
phisms can have 'worse' dynamical behavior.

Let (Y, η) = (JBΓ, Ra), G = K2 and let τ be given by the matrix

Q J ; r is distal. Put X = Kz and let ψ be the affine transformation

ψ(xίf xz, xz) = (axlf τ(x,, x3)) = (axlf x2x3, x3) .

By Corollary 3.14, for almost all φ e C(K, K2), φ = (φl9 φ2), the trans-
formation

ψφ(xlf x2, x5) = (axlf Φ1(x1)x2x3, ΦtixM

is minimal. In fact, if a, β, Ύ are rationally independent, one can
use the constant cocycle φx(x^ = A 2̂(̂ 2) = ?•

Now (K2, τ) is a 2-step group extension of the identity (K2, τ) —>
(K, id) -> (e, id), and we can similarly decompose X into a pair of
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group extensions X-+Kx K->K. Applying Ellis' result on group
extensions twice we get that for almost all φ2 e C(K, K) there is a
residual subset RH of C{K\ K) such that for all φ\ e Rφ2 the trans-
formation

is minimal.

We now consider Y, rj, G, and X as above and take τ to be given

by the matrix L Q τ is equicontinuous. Let ψ be the affine trans-

formation

Since τ is equicontinuous and not equal to the identity, ψ is not
minimal, by Corollary 2.10. If we perturb ψ by constant cocycles
it will still be affine, and hence not minimal. Therefore ψ cannot
be perturbed into minimality by constant cocycles. However for
almost all φ = (φlf φ2) e C(K, K2) we have minimality of

ψφfa, x2, xz) = (axlf Φx{xx)h^ Φ2&ι)Kxi)

EXAMPLE 3.19. We now give the example, alluded to in the
introduction, to show that our theory does not follow from Ellis'
original result.

If (G, τ) is equicontinuous with τ% = id, then π: (X, ψ*)—>(lΓ, ψ)
is a group extension. If G is an w-torus, then Ellis' result gives
that for almost all φeC(Y, G), (ψn)φ is minimal. However, even in
this case, we cannot obtain Corollary 3.14, since there may not
exist φx e C( Y, G) with (ψn)φ = (ψΦl)

n. For example in the situation
of Example 3.17

(ψΦif = (a2xlf

In other words we would have to perturb ψ2 with continuous
coboundaries of Ra and Ellis' result does not allow us to do this,
since most cocycles are not continuous coboundaries for Ra.

EXAMPLE 3.20. Our theorem also enables us to extend certain
examples of Furstenburg. To see this, let (Y, η) = (K, Ra), G = Kr~ι

and let τ be given by an (r — 1) x (r — 1) lower triangular unimodular
matrix of integer entries with l's down the diagonal and 0's down
the lower subdiagonal. Put X — Kr and define ψ by

ψ(xίf , xr) = (axlf τ(x2f , xr)) .
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Then for almost all φ — (φz, , φr) e C(K, Kr~ι), we have ψφ is mini-
mal and <f is of the form

ψΦ(Xι, , xr) = (αa?i, , &<#iK'2 %lk\ Xi •) .

In other words, ψφ is in the class of transformations of Kr con-
sidered by H. Furstenburg, [3] Theorem 2.1, where, using Furstenburg's
notation, gs(x19 , xj) = ^i+i(^i)^22 ^ Γ 1 i ^ 2. However our ^
has degree 0 in xd and so Furstenburg's minimality condition (Remark
on p. 582 of [3]) of nonvanishing degree does not apply.

EXAMPLE 3.21. We are indebted to W. Parry and P. Walters
for the following example, which shows that in the absence of the
distal condition on ((?, τ) there may be no minimal lifts (see Corollary
3.14). Let (Y9η) = (K, Ra), G = Kn and let τ be a hyperbolic (hence
ergodic) automorphism of Kn. Put X = Y x Kn and

ψ(x, g) = (axl9 τ{g)) .

Then for φ e C(K, Kn) we have

) = Xax, Φ(x)τ(g)) .

We will show that if φ is null homotopic then ψ is (topologically)
conjugate to ψφ. Let S(x, g) = (x, p(x) g) and consider the equation
ψφS = Sψ. This holds if p satisfies

p(ax) = ^(a?)r(p(»)) .

Consider the equation in Rn

(*) Plax) = Φo(x) + τ(po(x))

where pQ, φ0 are maps K to iϋ% ^0 is a 'lift' of ^, that is

φ\

is commutative, and τ is the linear map on Rn which induces τ on
Kn. Since τ is hyperbolic Rn = Eξ&C where C is the sum of the
eigenspaces of τ corresponding to eigenvalues λ of r with |λ | < 1,
similarly E corresponds to eigenvalues with | λ | > 1. Let τ% τ°
denote the maps induced by τ on E and C. Then, with similar
notation, (*) may be written

p&ax) = φl{x) + τ\pl{x))

pl{ax) - φ&x) + τ\pl(x)) .
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Let αc = sup*e*l|$(A;)||, ae = sup,6i, \\φi(k)\\. Then \\(τ')*φ&oΓx)\\ £
\\τc\\na% \\(τ )-*φi(crnx)\\ ^ \\{τe)~ι\\nae and since τ° and (τ6)"1 are both
contracting it follows that the series Σ?=o (τc)\φl(anx)) and
Σ?=i(ΓT"W(^"^)) both converge uniformly and hence define con-
tinuous functions fc: K—>C, fe: K—> E. Formal manipulation shows
that — fc will serve as pc and fe will serve as p\ We now translate
to Kn by the exponential map to obtain a solution p = exp p0 of
p(ax) = Φ(x)τ(p(x)). Thus whenever φ is nullhomotopic the perturba-
tion ψφ is not minimal.

Now suppose we have two perturbations ψΦl and ψ>2 with φγ

homotopic to φ2. Then a similar argument to the above, using the
fact that Φίφϊ1 is null homotopic, shows that ψΦl is conjugate to ψΦz.
Hence we need only consider perturbations by some representative
of each homotopy class. Thus we consider maps φ:K-*Kn of the
form φ(x) = (xm\ x™2, , xmn), mlf • •••,mneZ. Then

where τ is given by the matrix (aiS). In other words ψφ in an
affine transformation of Kn+1 with automorphism part τ' given by
(δfi), where

1 i = i = 1

αi-!̂ -.-! 2 ^ i, j ^ n + 1

0 i = 1, 2 ^ i ^ n . + 1 .

Since the automorphism τ' is not unipotent it follows that ψφ is not
minimal. Thus there are no minimal perturbations of ψ.

We do not know of any examples of minimal perturbations of
ψ of this form if we drop the hyperbolic condition on τ, but retain
that τ be ergodic or even have positive entropy.

We again close the section with some remarks on ^-action.
For simplicity, we suppose k = 2. Thus we have commuting homeo-
morphisms ψίf ψ2 on X, projecting to η19 η2 on Y9 and automorphisms
τ19 τ2 on G with ψt(gx) = τt(g)ψt(x)9 i = 1, 2. If φ is a {rlf τ2}-cocycle,
then we must have ^(y, (m, n)) = φ(y9 (m, 0) + (0, n)) = ^(y, (0, w) +
(m, 0)) for all y eY, (m, w) e ^ 2 . This relationship, together with
the cocycle condition, enables us to identify the set of cocycles with
a closed subset of C(Y9 G) x C(Y9 G), and hence we have a complete
metric topology on the set of all {τ19 τ2}-cocycles.

We may replace condition (A) of admissibility, Definition 3.1, by:
for all ε > 0 there exist M9 N*zl such that for all (m, n) ^ (Λf, N)
and gQ, , gn+m-i 6 G we have
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Γll τίS.(ί7«)Tπ rίS.( f t + ί)Ί = G .
L*=o JLi=o J

Thus if either (G, τt) or (G, r2) satisfy (A), then (G, {r1? r2})
satisfies the above.

In attempting to generalize Theorem 3.13 a major problem is to
identify the set of cocycles and "fit" a cocycle to a finite set of data.
In general we have been unable to do this. One case we can deal
with is when (Y, Z2) is a free product of two flows (Yl9 ηt\ (Y2, η2);
in this case the set of cocycles coincides with C(Yί9 G) x C(Y2, G).
Thus the following extension of 3.13 and 3.14 holds.

THEOREM 3.22. Let π: (X, Z2)-> (Y, Z2) be a (G, Z2)-extension
with (Y, Z2) a free product of (Ylf η^ and (Y2, η2), F t and Y2 infinite
with no isolated points. Suppose (G, Z2) is admissible and (Ylf 7]j),
(Y2, ?]z) point-transitive. Then for almost all product cocycles {Φ19 φ2}
we have (X, Z2

Φlfφ2)) is point-transitive. If, in addition, (Ylf η^ and
(Y2, V2) are minimal and (G, Z2) is distal, then for almost all prod-
uct cocycles, (X, Z2

ΦvΦ2)) is minimal.
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