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SUMMABILITY OF MATRIX TRANSFORMS
OF STRETCHINGS AND SUBSEQUENCES

DAVID F. DAWSON

It is well known that if a regular matrix sums every
subsequence of a sequence x> then x converges. It follows
trivially from this result and row finiteness of the Ces&ro
summability matrix that if A is a regular matrix such that
Ay is Cesέro summable for every subsequence y of x, then
x is convergent (not merely Cesaro summable). The purpose
of the present paper is to give some general results of this
type involving matrix methods that are not necessarily row
finite. For example, it is shown that if T is any regular
matrix summability method and A is a regular matrix such
that Ay is absolutely T-summable for every stretching y of
x, then x is absolutely convergent. This is done without
assuming that x is bounded, and consequently, without the
benefit of associativity.

The well known result mentioned above is due to R. C. Buck
[2], and the trivial consequence involving the Cesaro summability
matrix (C, 1) can be seen as follows. If A is regular and Ay is
Cesaro summable for every subsequence y of x, then (C, Ϊ)A is a
regular matrix which sums every subsequence of x, since row finite-
ness of (C, 1) gives the associativity relation (C, ϊ)(Ay) = [(C, l)A]y.
Consequently by Buck's theorem, x is convergent.

When we say that a matrix A is semiregular, we will mean
that A is regular over the set of all convergent sequences of O's
and Γs. Thus A = (apq) is semiregular iff A satisfies the first two
of the following three conditions for regularity:

1) αOT -» 0 as j> -> o°, g = 1, 2, 3, ,
2) Σ ϊ U α M - » l as p->oo,
3) ΣΓ=iW <KAf p = l, 2, 3, . . . .
If ε is a positive term null sequence and each of x and y is a

complex sequence, then the statement that y contains an ε-copy of
x means that y contains a subsequence {ynp} such that \ynp — xp\ <
εp, p = 1,2, 3, . . . .

THEOREM 1. If T = (tpq) is a matrix such that ΣΓ=i 1***1 < £*>
p = 1, 2, 3, , A is a regular matrix, and Ay is T-summable for
every subsequence y of x, then either x converges or TA is a Schur
matrix, i.e., TA sums every bounded sequence.

Proof. Suppose x is unbounded. Clearly A is row finite since
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Az is defined for every subsequence z of x. It is somewhat less clear,
but nonetheless true, that T is row finite, and we gives a proof.
Suppose the pth row of T contains infinitely many nonzero terms.
Using only the semiregularity of A, we can construct a subsequence
y of x such that \tpj Σ~=i a>jqVq\ = \tpί(Ay)s\ > 1 for infinitely many
values of j, thus ruling out convergence of Σ~=i tpq(Ay)q, and con-
tradicting the fact that T{Ay) is defined. We see this as follows.
Suppose a finite subsequence ylf y2, •••, yn of x has been determined.
From the semiregularity of A, there exists a positive integer v such
that if i > v, then Σ*=i |α<*l < 1/2 and |ΣΓ=i α<ff - 1| < 1/2. Choose
j > v such that tP3- Φ 0. Let αJr be the last nonzero term in the
jth row of A. Then from the inequalities above, r > n. Determine
Vn+u * "f Vr such that ylf —, yr is a finite subsequence of x and

r-i

Σ α ί g J

Then regardless of how the remaining terms of y are chosen,

. 1
9=1

1q Σ « i
9=1

thus establishing our assertion above. Therefore T must be row
finite. Hence the associativity T(Az) = (ΓJL)2 holds for all z. There-
fore TA sums every subsequence of the divergent sequence x. Thus
by the theorem in [9], TA is a Schur matrix. This completes the
proof for the case that x is unbounded.

Next suppose \xp\ < M9 p = 1, 2, 3, . We note that if y is
any subsequence of x, then |ΣΓ=i *** ΣΠ=i ̂ 9s?/sl < Λf^ Σg°=i l̂ gl <
MKΛLP. Thus we can interchange the order of summation and
obtain

( * ) Σ tJ± aqsys) = Σ

The left side of (*) is the pth. term of the sequence T(Ay) and the
right side of .(*) is the pth term of the sequence (TA)y. Thus again
we have the associativity T(Ay) = (TA)y. Hence the matrix TA
sums every subspace y of x. Therefore if x is not convergent,
then TA is a Schur matrix by the theorem in [9]. This completes
the proof.

THEOREM 2. Suppose T is any regular matrix summdbility
method. If A is a regular matrix such that Ay is T-summable for
every subsequence y of x, then x is convergent.
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Proof. Since the hypothesis of Theorem 1 is satisfied, then
either x converges or TA is a Schur matrix. But TA is regular
since it is the product of regular matrices, and no regular matrix
is a Schur matrix. This completes the proof.

For stretchings, we obtain the following theorem which is
analogous to (but more comprehensive than) Theorem 2.

THEOREM 3. Suppose T is any regular matrix summability
method. If A is a regular matrix such that Ay is T-summable
(absolutely T-summable) for every stretching y of x, then x is con-
vergent (absolutely convergent).

We note that Theorem 3 is an immediate consequence of the
following result which we shall call the "Copy Theorem."

THEOREM 4. If each of T and A is a regular matrix, x is any
complex sequence (bounded or not), and ε is any positive term null
sequence, then there exists a stretching y of x such that T(Ay)
exists and contains an ε-copy of x.

Proof. Let K = KA + Kτ + max εp + 1, Mp = 1 + Σ?=i W , δP =
min{ex, •••, εp}, and Qp = KMP + 1. There exists a positive integer
Wi such that if p ^ nγ, then

Σ apq -
5 = 1

a,

There exists r1 such that

»1

nq Jkr and Σ «,lf -

There exists mx > nλ such that if 1 <Ξ p <. rx then

Σ It,

There exists an integer sx > 1 such that if 1 ^ p ^ mίf then

V \ a \ < o i .

Ά ' M l 16Q2

Suppose the finite increasing sequences {np}
a

pz\, {rp}pzif {mp}pz{,
and {sp)lz\ of positive integers have been determined. Choose na >
ma-γ such that if p >̂ wα, then

( 1 ) Σ apq — 1
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and

( 2 )
* α - l
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where &> = 1 and ikΓ0 = 1 .

Choose ra > rα_x such t h a t

( 3 ) Σ %J<-£- and Σ t.q - l

Choose ma > wα such that if 1 ̂  p ^ raf then

( 4 ) Σ \t,

Choose sa > sα_! such that if 1 ^ p ^ ma, then

( 5 ) Σlα^Ky+f^

From (3) and (4) we can obtain

( 6 ) Σ t r . - 1

From (1) and (5) we obtain

( 7 ) Σ aPQ - for na ^ p

Thus we have defined the increasing sequences {np}p=1, {rp}™=0, {m,}"=0,
and {sp}p=o of integers, where r0 = 0 and m0 = 0.

Let {yp}p=1 be the stretching of x induced by {βp}"=0 [3, p. 455].
If α > 1 and na ^ p ^ ma, then from (2), (5), and (7) we obtain

y i

*α-l—1

Σ

v

Σ c
Q=sa—1

Σ

( 8 )

Σ l*.
q=sυ_1

β«-i—i \

^ Σ Iβtpgl) max
g=ί /

sα 1

_Σ a,,-l

< δjSK + δj$κ + _Σ i \xv\ 2";~;.

< 3δα/8iΓ.

Also we can prove this inequality for n^ p ?== » i Thus we have
for a Ξ> 1 and na ^ p ^ ma,



( 9 ) Σ
l
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dpqVq = %a + f*a > WhβΓβ |jUβ| < 3<?α/8UΓ .
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If mα_i < p < naf then from (5) we obtain

Σ <*>pqVq Σ α* + Σ Σ «2>

<. I V l/y I i rnfliΓ f i r I I r II -4- V ! τ
> 9 = 1

< KMa + l = Qa.

From this inequality and (8) we can show that if ma_t < p
then

(10) Σ a>P
= Qa ,

since \xa\ < jKΓΛfα and 3δα/8ίL < 1.

If r ^ < p ^ ri9 then from (4) and (10) we obtain

Σ

(11) ^ Σ Q « 4
oo

^ ΣQ«-

Thus we see that T(Ay) is defined.
From (3), (6), (9), (10), and (11), we obtain

Σ trJAy)j - x,
3=1

Σ
^ Q , v

Λ i - l mi

Σ

triJ(Ay)j -

M&* + A) - Xi

Σ

Σ trti -1 Σ

Σ
+
S8JS



80 DAVID F. DAWSON

SδJB

This completes the proof.
We can use Theorem 4 to prove the following extension of a

theorem of Agnew [1].

THEOREM 5. Suppose T is any regular matrix summability
method. If A is a regular matrix and x is a sequence having a
finite limit point, then there exists a subsequence y of x such that
every finite limit point of x is a T-limit point of Ay.

Proof. Using the separability of the complex plane, we write
the finite limit points of a; in a sequence denoted by u. Let v
denote the sequence uγ\ uλ, u2; u19 u2, us; , and let ε be a positive
term null sequence. By the "Copy Theorem," there exists a stretching
z of v such that T{Az) is defined and contains an ε-copy of v. Let
y be a subsequence of x such that z — y is a null suquence. Since
T{Ay) = T{A[y - z\) + T(Az), we see that T{Ay) is the sum of a
null sequence and a sequence which contains an ε-copy of v. There-
fore every finite limit point of x is a limit point of T{Ay). This
completes the proof.

In [5] we proved theorems analogous to the results of this
paper, except that T was the identity matrix (ordinary convergence)
and A was a semiregular matrix. The following theorems are
trivial consequences of associativity, the results in [5], and the fact
that if T is a row finite regular matrix and A is a semiregular
matrix, then TA is a semiregular matrix.

THEOREM 6. Suppose T is any row finite regular matrix sum-
mability method. If A is a semiregular matrix such that Ay is
T-summable for every subsequence y of x, then x is convergent.

THEOREM 7. Suppose T is any row finite regular matrix sum-
mability method. If A is a semiregular matrix such that Ay is
T-summable {absolutely T-summable) for every stretching y of x, then
x is convergent {absolutely convergent).

REMARK. We give an example to show the necessity of "row
finite" in the statement " the fact that if T is a row finite
regular matrix and A is a semiregular matrix, then TA is a semi-
regular matrix," which precedes Theorem 6. Let B and A be
matrices defined as follows: bpq = 2P~9~1 if p is even and q ^ p,
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bpq — 0 if p is even and q < p, bpq = 1 if p is odd and q = p, bpq = 0
if p is odd and q Φ p, apq = 0 if g<2p — 1 or q>2p, apq = 2P~1 + 1 if
q = 2p — 1, aPq = —2P~1 if q — 2p. Simple calculations show that 5
is regular, A is semiregular, but BA is not semiregular.
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