A NEW FAMILY OF PARTITION IDENTITIES

D. M. Bressoud

Abstract

The partition function $A(n ; k)$ is the number of partitions of n with minimal difference k. Our principal result is that for all $k \geqq 1, A(n ; k) \equiv B(n ; k)$, where $B(n ; k)$ is the number of partitions of n into distinct parts such that for $1 \leqq i \leqq k$, the smallest part $\equiv i(\bmod k)$ is $>k \sum_{j=1}^{i-1} r(j)$, where $r(j)$ is the number of parts $\equiv j(\bmod k)$. This arises as a corollary to a more general result.

The particular case $A(n ; 2)=B(n ; 2)$ was recently proved by Andrews and Askey [1]. It is known from the Rogers-Ramanujan identities (e.g., Harby and Wright [2], p. 291) that $A(n ; 2)$ is equal to the number of partition of n into parts $\equiv \pm 1(\bmod 5)$. Andrews and Askey discovered a q-series identity due to Rogers which has the partition theoretic interpretation: $B(n ; 2)$ is equal to the number of partitions of n into parts $\equiv \pm 1(\bmod 5)$.

The general identity. Given $k \geqq 1$, let $q(1), q(2), \cdots, q(k)$ be any complete residue system $\bmod k$. We define the following partition functions:
$A(n ; k ; q(1), \cdots, q(k) ; r(1), \cdots, r(k))=$ number of partitions of n with minimal difference k and such that for $1 \leqq i \leqq k$, there are $r(i)$ parts $\equiv q(i)(\bmod k)$.
$B(n ; k ; q(1), \cdots, q(k) ; r(1), \cdots, r(k))=$ number of partitions of n into distinct parts such that for $1 \leqq i \leqq k$, there are $r(i)$ parts \equiv $q(i)(\bmod k)$, and the smallest part $\equiv q(i)(\bmod k)$ is $>k \sum_{j=1}^{i-1} r(j)$.
$C(n ; k ; q(1), \cdots, q(k) ; r(1), \cdots, r(k))=$ number of partitions of n such that for $1 \leqq i \leqq k$, there are $r(i)$ parts $\equiv q(i)(\bmod k)$.

Given $r(1), \cdots, r(k)$, we set $S=\sum_{i=1}^{k} r(i)=$ number of parts in the partition.

Lemma 1.

$$
\begin{aligned}
& A(n ; k ; q(1), \cdots, q(k) ; r(1), \cdots, r(k)) \\
& \quad=C(n-k S(S-1) / 2 ; k ; q(1), \cdots, q(k) ; r(1), \cdots, r(k))
\end{aligned}
$$

Proof. Given a partition of n with minimal difference k and $r(i)$ parts $\equiv q(i)(\bmod k)$, subtract k from the second smallest part, $2 k$ from the third smallest part, and, in general $k(j-1)$ from the j th smallest part. This gives us a partition of $n-k S(S-1) / 2$ with $r(i)$ parts $\equiv q(i)(\bmod k)$ for all $i, 1 \leqq i \leqq k$.

Similarly, given a partition of $n-k S(S-1) / 2$ with $r(i)$ parts \equiv $q(i)(\bmod k)$, add $k(j-1)$ to the j th smallest part. This yields a partition of n with minimal difference k and $r(i)$ parts $\equiv q(i)(\bmod k)$.

Lemma 2.

$$
\begin{aligned}
& B(n ; k ; q(1), \cdots, q(k) ; r(1), \cdots, r(k)) \\
& \quad=C(n-k S(S-1) / 2 ; k ; q(1), \cdots, q(k) ; r(1), \cdots, r(k))
\end{aligned}
$$

Proof. Given a partition of n into distinct parts such that $r(i)$ parts are $\equiv q(i)(\bmod k)$ and the smallest part $\equiv q(i)(\bmod k)$ is $>k \sum_{l=1}^{i-1} r(l)$, we subtract k from the second smallest part \equiv $q(1)(\bmod k), 2 k$ from the third smallest part $\equiv q(1)(\bmod k)$, and so on up to subtracting $k(r(1)-1)$ from the largest part $\equiv q(1)(\bmod k)$. We then subtract $k r(1)$ from the smallest part $\equiv q(2)(\bmod k), k(r(1)+1)$ from the second smallest part $\equiv q(2)(\bmod k)$, and so on up to subtracting $k(r(1)+r(2)-1)$ from the largest part $\equiv q(2)(\bmod k)$.

We continue this process, in general subtracting $k\left(j-1+\sum_{l=1}^{i-1} r(l)\right)$ from the j th smallest part $\equiv q(i)(\bmod k)$. Recall that the j th smallest part $\equiv q(i)(\bmod k)$ is

$$
\begin{aligned}
& \geqq k(j-1)+(\text { the smallest part } \equiv q(i)(\bmod k) \\
& >k(j-1)+k \sum_{l=1}^{i-1} r(l)
\end{aligned}
$$

Also note that:

$$
\sum_{i=1}^{k} \sum_{j=1}^{r(i)} k\left(j-1+\sum_{l=1}^{i-1} r(l)\right)=k S(S-1) / 2
$$

Thus, this gives us a partition of $n-k S(S-1) / 2$ with $r(i)$ parts \equiv $q(i)(\bmod k)$ for all $i, 1 \leqq i \leqq k$.

Similarly, given a partition of $n-k S(S-1) / 2$ with $r(i)$ parts \equiv $q(i)(\bmod k)$, add $k\left(j-1+\sum_{l=1}^{i-1} r(l)\right)$ to the j th smallest part \equiv $q(i)(\bmod k)$. This yields a partition of n into distinct parts such that $r(i)$ parts are $\equiv q(i)(\bmod k)$ and the smallest part $\equiv q(i)(\bmod k)$ is $>k \sum_{l=1}^{i-1} r(l)$.

As an immediate consequence of Lemmas 1 and 2, we have:

Theorem.

$$
\begin{aligned}
& A(n ; k ; q(1), \cdots, q(k) ; r(1), \cdots, r(k)) \\
& \quad=B(n ; k ; q(1), \cdots, q(k) ; r(1), \cdots, r(k))
\end{aligned}
$$

Corollary 1. $\quad A(n ; k)=B(n ; k)$.

Proof. For all $i, 1 \leqq i \leqq k$, let $q(i)=i$. Then

$$
A(n ; k)=\sum_{r(1), \ldots, r(k)=0}^{\infty} A(n ; k ; 1, \cdots, k ; r(1), \cdots, r(k)),
$$

and

$$
B(n ; k)=\sum_{r(1), \cdots r,(k)=0}^{\infty} B(n ; k ; 1, \cdots, k ; r(1), \cdots, r(k))
$$

Corollary 2. Let σ be a permutation function on the integers 1 through k. Given a function r defined on these integers, let $R(i)=r\left(\sigma^{-1}(i)\right)$. Then:

$$
\begin{aligned}
& B(n ; k ; \sigma(1), \cdots, \sigma(k) ; R(1), \cdots, R(k)) \\
& \quad=B(n ; k ; 1,2, \cdots, k ; r(1), \cdots, r(k)) .
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& A(n ; k ; \sigma(1), \cdots, \sigma(k) ; R(1), \cdots, R(k)) \\
& \quad=A(n ; k ; 1,2, \cdots, k ; r(1), \cdots, r(k))
\end{aligned}
$$

since they count exactly the same partitions.
In particular, letting $k=2$ in Corollary 2 gives us:
The number of partitions of n into distinct parts such that r of them are odd and s are even and the smallest even part is $>2 r$.
$=$ The number of partitions of n into distinct parts such that r of them are odd and s are even and the smallest odd part is $>2 s$.

Conclusion. One corollary of Lemma 1 is of interest. Using Lemma 1, we have that:
the number of partitions of n into parts $\equiv \pm 1(\bmod 5)$

$$
\begin{aligned}
& =\sum_{r, s=0}^{\infty} C(n ; 5 ; 1,2,3,4,5 ; r, 0,0, s, 0) \\
& =\sum_{r, s=0}^{\infty} A(n+5(r+s)(r+s-1) / 2 ; 5 ; 1,2,3,4,5 ; r, 0,0, s, 0)
\end{aligned}
$$

By the first Rogers-Ramanujan identity:
the number of partitions of n into parts $\equiv \pm 1(\bmod 5)$

$$
\begin{aligned}
& =A(n ; 2) \\
& =\sum_{R, S=0}^{\infty} A(n ; 2 ; 1,2 ; R, S) .
\end{aligned}
$$

Thus:

$$
\begin{align*}
& \sum_{R, S=0}^{\infty} A(n ; 2 ; 1,2 ; R, S) \tag{1}\\
& \quad=\sum_{r, s=0}^{\infty} A(n+5(r+s)(r+s-1) / 2 ; 5 ; 1,2,3,4,5 ; r, 0,0, s, 0)
\end{align*}
$$

The significance of equation (1) lies in the fact that if a purely combinatorial proof can be found for it, this will give us a purely combinatorial proof of the first Rogers-Ramanujan identity.

References

1. George E. Andrews and Richard Askey, Enumeration of Partitions, Proceedings of the NATO Advanced Study Institute "Higher Combinatorics," Berlin, Sept. 1-10, 1976, ed. by M. Aigner, publ. by Reidel, Dordrecht.
2. G. H. Hardy and E. M. Wright, An Introduction on the Theory of Numbers, fourth edition, Oxford.

Received December 28, 1976.
Temple University
Philadelphia, PA 19122
Current address: Pennyslvania State University University Park, PA 16802

