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GAUSSIAN NULL SETS AND DIFFERENTIABILITY
OF LIPSCHITZ MAP ON BANACH SPACES

R. R. PHELPS

In this note we introduce and briefly study the notion of
a Gaussian null set in a real separable Banach space E.
As a corollary to recent work of Aronszajn we then show
that a locally Lipschitz mapping from E into a Banach
space with the Radon-Nikodym property is Gateaux differen-
tiable outside of a Gaussian null set. This is an infinite
dimensional generalization of Rademacher's classical theorem
that such mappings from Rn to Rm are differentiate almost
everywhere (Lebesgue). This approach will be compared
with another generalization of Rademacher's theorem due
independently to Christensen and Kaier and to Mankiewicz.

In order to prove an extension of Rademacher's theorem, one
first needs a generalization of the notion of a set of Lebesgue
measure zero. Since we are interested in a question involving con-
tinuous functions, we restrict our attention to Borel sets. What
we want to define, then, is a class of Borel sets (which will even-
tually be considered as the class of null sets) which is closed with
respect to countable unions and translations. Moreover, we want
a Borel subset of a null set to be itself a null set, and we want
our class to coincide with the Borel sets of Lebesgue measure zero
in finite dimensional spaces. We also require that a nonempty open
set not be a null set. Now, it is well known that there is no
analogue to Lebesgue measure in infinite dimensional spaces; in fact,
there does not even exist a positive σ-finite measure on l2 whose
null sets are translation invariant [14, p. 108]. Thus, we cannot
simply use the class of null sets of some fixed measure. We can,
however, use the common null sets of a family of measures, namely,
the family of nondegenerate Gaussian measures.

DEFINITION. A nondegenerate Gaussian measure μ on the real
line R is one having the form

( * ) μ(B) = (2πb)~1/2\ exp [-(2&)"1(ί - a)2]dt

where B is a Borel subset of R and the constant b is positive. The
point a 6 R is called the mean of μ.

Such measures are obviously mutually absolutely continuous
with respect to Lebesgue measure (on the Borel sets) and the pro-
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duct of n such measures is equivalent to Lebesgue measure on Rn.
As we will see, any nondegenerate Gaussian measure on E is (essen-
tially) a countable product of such measures. First, we recall the
following definition.

DEFINITION. A probability measure λ on the Borel subsets of
the real Banach space E is said to be a nondegenerate Gaussian
measure of mean xQeE if for each feE*, / Φ 0, the measure
μ = λo/"1 has the form (*) (above), where a — f(x0).

The lemma which follows is proved by combining a number of
known results, but does not itself appear to be stated explicitly in
the literature.

LEMMA 1. Suppose that μ is a nondegenerate Gaussian measure
of mean 0 on the separable infinite dimensional Banach space E.
Then there exists a sequence {en} £ E and a one-to-one continuous
linear map T: E —> RN {the countable product of lines with the pro-
duct topology) with the following properties:

( i ) The linear span E^ of {en} is dense in E.
(ii) For each n, the image of en under T is δn9 the sequence

having 1 in the nth. place, 0 elsewhere.
(iii) For each Borel subset B Q E, the set TB is a Borel subset

of RN.
(iv) The measure v = μoT~ι is a countable product of non-

degenerate Gaussian measures vn on R of mean 0.

Proof. Kuelbs [8, 9] has shown the following: Let {xn} be
dense in E, choose {/„} £ E* such that fn(xn) = \\xn\\ and | |/w | | = 1
for each n and define

(x, y) = Σ2-nfn(x)fn(y) , x , y e E .

Then this defines an inner product on E with associated norm
IMI2 = (Xf aθ1/2 ̂  IMI The completion of (E, \\.. ||2) is a separable
Hubert space H and the natural embedding TX\E —> H carries Borel
subsets of E into Borel subsets of H. Moreover, the density of
TγE in H implies that μt — μ°Tΐι is a nondegenerate Gaussian
measure on H. From Chapter 1 of Skorohod [14] it follows that
there exists an orthonormal basis {en} for H and a sequence {vn} of
nondegenerate Gaussian measures on the line with the following
properties. First, the natural continuous linear embedding T2:H-+
RN [defined by T2(Σtnen) = (ίΛ)] maps Borel subsets of H into Borel
subsets of RN. [The basis {en} is the sequence of normalized eigen-
vectors for the strictly positive nuclear correlation operator associa-
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ted with μιm] Second, if v = Πvn, then v = μ^ Ti1; this makes sense,
since RN is separable and metrizable, so the Borel sets coincide
with the usual product space σ-algebra generated by the cylinder
sets based on Borel sets. Now, Kuelbs [8] has shown that the
sequence {en} is actually contained in TJΞ, i.e., in E. Moreover, he
has proved that given feE* there exists for each n a Borel measur-
able function Pn, defined ^-almost everywhere on E with values in
span {elf 9en}, such that the sequence f°Pn converges μ-almost
everywhere to /. Suppose that the span E of {en} were not dense
in E; then there would exist feE*, f Φ 0, such that f(EJ) = 0. In
particular, this would imply that /<>Pn = 0 a.e. μ and hence that
/ = 0 a.e.μ, contradicting the fact that μ°f~ι is nondegenerate on
R. This proves part (i). To prove the remaining parts we simply
let Γ = T2oT,.

DEFINITION. A Borel subset B of the separable Banach space
E will be called a Gaussian null set if μ(B) = 0 for every nondegen-
erate Gaussian measure μ on E. The family of all Gaussian null
sets will be denoted by 5f.

PROPOSITION 2. The family 5f of Gaussian null sets has the
following properties:

( i ) The countable union of members of & is an element of
& and a Borel subset of a member of ^ is in ^.

(ii) For all B e & and xeE, the translate x + B is in &.
(iii) If U £ E is open and nonempty, then U&&.
(iv) If S: E —> E is an isomorphism (that is, one-one, linear,

continuous and onto), then S(B)e& for every Be^.
(v) If E is finite dimensional (hence isomorphic to Rn for

some n), then a Borel set B is in ^f if and only if B has Lebesgue
measure zero.

Proof. Part (i) is immediate from the definition. Part (ii)
follows from the easily verified fact that a translate of a nondege-
nerate Gaussian measure is again such a measure (not necessarily
absolutely continuous with respect to the original [10]). Part (iii)
is shown in Corollary 4 below. Part (iv) is a consequence of the
observation that if μ is a nondegenerate Gaussian measure, then so
is the measure μ<>S; this fact is immediate from the definition.
Finally, part (v) is proved by noting [14] that a Gaussian measure
on a finite dimensional space is mutually absolutely continuous with
Lebesgue measure.

LEMMA 3. // the sequence {wn} £ E has dense linear span and
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satisfies | |ww | |-^0, then its symmetric closed convex hull K is
compact and is not a Gaussian null set.

Proof. Define L: l2 —• E by setting, for x = (xn) el2,

Lx = Σ2~nxnwn .

It is clear that L is linear and has dense range. Let U denote the
unit ball of l2. If x e U, then | xn | <; 1 for all n, hence Lx e K.
Since K is the closed convex hull of the compact set {±wn} U {0}, it
is compact. In particular, it is bounded, which shows that T is
continuous. It follows from the definition that if μ is any nonde-
generate Gaussian measure on lZJ then λ = μoT'1 is a nondegenerate
Gaussian measure on E. Moreover, if μ(U)>0, then, since T^KΏ,
U, we have \(K) = μiT^K) ^ μ(U) > 0. It is known (see, e.g.,
[13]) that any nondegenerate Gaussian measure μ on l2 assigns
positive measure to any nonempty open set, so K is not Gaussian
null.

COROLLARY 4. If U is any nonempty open subset of E, then
U is not a Gaussian null set.

Proof. Since E is separable, it can be expressed as a countable
union of translates of U, hence would itself be Gaussian null if U
were. Thus, we merely need to show the existence of at least one
nondegenerate Gaussian measure on E, and this is a consequence
of Lemma 3.

Note that the above result implies that the complement of
a Gaussian null set is dense in E.

We next define Aronszajn's class ό$? of exceptional sets and
compare them with the Gaussian null sets.

DEFINITION. Let {an} c E be a sequence of nonzero elements
which has dense linear span in E. Define J^{an) to be the family
of all Borel sets of the form \JZ=1An, where each An is a Borel set
with the property that for each xeE, the set

(An + x)f] Ran

has Lebesgue measure zero in the line Ran. Finally, let Jzf be the
intersection of the families J*f{an}, over all possible such sequences

Aronszajn [1] has shown that the family J ^ has all the proper-
ties listed (for the Gaussian null sets) in Proposition 2.
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PROPOSITION 5. If a Borel subset A of E belongs to Aronszajn's
class j y of exceptional sets, then it is a Gaussian null set.

Proof. Since J ^ is translation invariant it suffices to prove
that μ(A) = 0 for each nondegenerate Gaussian measure μ of mean
0 on E. Choose {en} Q E and T:E-^RN as in Lemma 1. By hypo-
thesis, it is possible to write A = U An where each Borel set An

has the property that An Π (x + Ren) is Lebesgue null for all x e E.
We need only show μ(An) = 0 for each n. By Lemma 1, B = TAn

is a Borel subset of RN and v = μ<> T~ι is a product of one dimen-
sional nondegenerate Gaussian measures vn of mean 0. Thus, we
want v(B) — 0. Since T is one-one, we have T(An Π (x + Ren)) = Bf]
(Tx + Rdn). The latter has Lebesgue measure zero in the line Rδ%,
since T maps Ren linearly onto Rdn. Thus, B Γ) (y + Rδn) is Lebes-
gue null for all yeTE. Let g=χB By the pointwise Fubini-Jessen
theorem [7, p. 209], v(B) = \gdv = lim^.^ gk(x) for v-almost all xeRM,
where, for x = (xn) e RN,

= \ -dvk(yk) .

Since v{TE) = 1, we can fix xe Ti£ such that the above limit exists.
It clearly suffices to show that gh(x) = 0 if k^ n. But for any
such fc, the integrand appearing in the definition of gk(x) can be
expressed (using Fubini's theorem) as the integral with respect to
dvx x x ώv,! x dvn+ι x x dvk of

••-,!/*, , l/*f »*+» %+2, -)dvn(yn) .

The integrand in this last integral is the characteristic function of
the set

B Π [(yιf , yw-!, 0, yn+1, , I/*, xfc+i, a?A+a, •) + RSn]

which is of the form B Π (s + Λ^J, where

- % , 0, 0, 0, . ..) + * .

Clearly, the finitely nonzero sequences are in TE and x e TE, so
z 6 TE and therefore this set has one dimensional Lebesgue measure
zero. It follows that gk(x) = 0 and the proof is complete.

We do not know whether &f is a proper subset of <&.

We now give the definitions which are needed to apply the
notion of Gaussian null sets to differentiability of Lipschitz mappings.
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DEFINITIONS. Suppose that G is a nonempty open subset of the
real Banach space X and that T: G —> Y is a mapping from G into
the real Banach space Y. We say that T is Gateaux differentiate
at a? e G if for each u e X the limit

( d ) lim T(x + tu) - T(x)
tt-*0

exists in the norm topology of Y and defines a linear (in u) map
which is continuous from X to Y.

We say that T is locally Lipsehitz if for each x e G there exist
positive constants M and δ such that

\\T(y)- T(z)\\ ^ M\\y - z\\

whenever y, zeG and \\y — x\\ < δ and ||g — x\\ < S.
Finally, a real Banach space F is said to have the Radon-

Nikodym property (RNP) provided every function of bounded
variation from [0, 1] into Y is differentiate almost everywhere.

The name for this class of spaces (which contains separable dual
spaces and reflexive spaces) arises from the fact that a Radon-
Nikodym theorem is valid for vector measures with values in such
spaces. For convenience we have chosen as our definition one of a
large number of known characterizations of the RNP; see [5] or
[6] for a comprehensive survey.

THEOREM 6. (Aronszajn) Suppose that X is a separable real
Banach space, that Y is a real Banach space with the Radon-
Nikodym property and that G is a nonempty open subset of X. If
T: (? —> Y is a locally Lipsehitz mapping, then T is Gateaux diffe-
rentiate at all points x of a Borel subset of G whose complement
is in jy\ In particular, it is Gateaux differentiate outside of a
Gaussian null subset of G.

This is essentially Theorem 1 of Chapter 2 of [1]. In the latter,
the space Y was assumed to be a separable dual space or a reflexive
space (hence a space with the RNP). Since T(G) is separable, so is
its closed linear span, hence one can assume that Y is separable.
It is an open question of some standing whether a separable space
with the RNP can be embedded in a separable dual space [5, 6].
If the answer is affirmative, then Aronszajn's proof is obviously
adequate as it stands. In any event, the hypothesis that the separa-
ble space Y be a dual space is only used in two places in Chapter
2 of [1]: In Lemma 1 it is used to show that a Lipsehitz map from
a real interval into Y is differentiate almost everywhere, and this
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is immediate from our definition of the RNP. In Lemma 2 it is
used to produce a dense sequence {bk} in the predual of Y, but the
proof is valid if {bk} is merely a total sequence in Y*. With these
changes in [1], then, the above theorem is valid as stated. (We
caution the reader that our terminology differs from that of [1].
For instance Aronszajn says T has a ''Gateaux differential at x" if
the limit in (d) exists for all u and for positive t, with no assump-
tion about linearity or continuity of the resulting map. Moreover,
where we say "T is Gateaux differentiate at x"9 Aronszajn writes
"DT(x) is a differential.")

A different class of Borel null sets has been defined by Chris-
tensen [2, 4] and used by him and Kaier [3] and (independently) by
Mankiewicz [11,12] to prove differentiability theorems for Lipschitz
maps in Frechet spaces. Christensen calls a Borel subset B of an
abelian Polish topological group G a Haar zero set if there exists
a Borel probability measure μ on G such that μ(B + x) = 0 for all
xeG. The family of all such sets is clearly closed under transla-
tions. It is less obvious (but true) that it is closed under countable
unions. Moreover, it is defined in any separable Frechet space and
agrees with Lebesgue null Borel sets in finite dimensional spaces.
In an infinite dimensional space every compact set is a Haar zero
set but (by Lemma 3) this is not true of the Gaussian null sets.
On the other hand, it is immediate from the definitions that any
Gaussian null set is a Haar zero set. Consequently, to say that a
map is differentiable outside of a Haar zero set is weaker than
saying that it is differentiable outside of an Aronszajn exceptional
set.

The following example shows that the Gaussian null sets (and
hence Aronszajn's exceptional sets) fail to have a useful property
possessed by Lebesgue measurable sets. Recall that any pairwise
disjoint family of sets of positive Lebesgue measure is at most
countable. Christensen [2] has posed the question as to whether
the analogous property is valid for the Haar zero sets; this seems
still to be open.1

EXAMPLE. There exists an uncountable collection of pairwise
disjoint compact subsets of l2, each of which is not a Gaussian null
set.

Proof. For each sequence s = (sj such that sn — ± 1 for each
n let

1 Added in proof. Christensen has informed us that Ryll-Nardjewski has constructed
a simple example in the countable product of lines which shows that the answer is
negative.



530 R. R. PHELPS

K(s) = {(xn) G l2: \xn - sn2~n\ ^ A"\ n = 1, 2, 3, ...} .

Each K(s) is a compact convex Hubert cube centered at the point
c(s) = (sn2~~n). If s Φ. s\ then there exists an index m such that
l«« — s»| = 2. Consequently, if xGiΓ(s) n i£(s')> then

mΔ — S m £ Sm^5 j ^ I Xm Smώ \ -f I X m — S w £ I ^ ώ 4t ,

a contradiction which shows that the sets K(s) form a pairwise
disjoint family, which is clearly uncountable. To show that each
K(s) is not a Gaussian null set it suffices to show that each translate

K(s) - c(s) = {x e l2: \xn\ ^ 4~n , w = 1, 2, 3, •}

is not Gaussian null. If en denotes the canonical wth basis vector
in l2, then the sequence wn = 4~we% satisfies the hypothesis of Lemma
3. Since its symmetric closed convex hull is contained in K(s) —
c(s), the latter is not a Gaussian null set.

As has been noted in [1], there is no possibility of replacing
Gateaux differentiability in Theorem 6 by Frechet differentiability
(where the limit in (d) is assumed to exist uniformly for \\u\\ <> 1).
The simplest example seems to be the norm in l19 which is Gateaux
differentiate at each point with all nonzero coordinates, but is
nowhere Frechet differentiable. For a discussion of Gateaux diffe-
rentiability of continuous convex functions (which are necessarily
locally Lipschitz) we refer the reader to [1], where it is shown that
for such functions the conclusion to Theorem 6 can be strengthened
a bit.

J. Diestel has informed us that a modification of the discussion
in [5, p. 107] shows that if E has the property that every Lipschitz
map from [1] into E is differentiable a.e., then E has the RNP.
Thus, the latter class of spaces is the most general one for which
Theorem 6 remains valid. For a discussion of the relationship
between differentiability of Lipschitz functions and the isomorphic
classification of Banach spaces, see [5, p. 118].

We wish to thank Professors R.A. Blumenthal and James D.
Kuelbs for conversations on material related to this paper.
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