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HOMEOMORPHIC MEASURES IN THE HILBERT CUBE

JOHN C. OXTOBY AND VIDHU S. PRASAD

A Borel probability measure μ in the Hubert cube is
homeomorphic to the usual product measure if and only
if it is positive for nonempty open sets and zero for points.
The transformation can be effected by a homeomorphism
equal to the identity on any prescribed μ-null Z-set. Several
extension, approximation, and embedding theorems are
obtained as applications.

1* Introduction and basic theorem* Let Q = J°° — ΐ[Tli denote
the Hubert cube, where each It = [0, 1], and let λ denote Lebesgue
product measure in Q restricted to Borel sets. If h is any homeo-
morphism of Q onto itself, then E\-*X(h(E)) defines a Borel measure
in Q which we shall denote by xh. Any measure μ that admits
such a representation is said to be homeomorphic (or topologically
equivalent) to X. Evidently any such measure in Q is a normalized
Borel measure and it must be zero for points (nonatomic) and
positive for nonempty open sets (locally positive). Our aim is to
prove the converse of this statement, with appropriate refinements
specifying what kinds of subsets can be kept fixed, and to give
several applications of this result: an extension theorem for measure
preserving homeomorphisms between subsets of Q, a version of
Luzin's theorem for measure preserving homeomorphisms, and a
characterization of the topological measure spaces that can be
embedded in Q by a measure preserving homeomorphism. The
potential usefulness of such a theorem in connection with the last
mentioned problem has long been recognized, especially by Dorothy
Maharam and A. H. Stone (cf. [9] and [10]). We include also a
couple of related results which do not depend on the basic theorem:
a characterization of sets topologically equivalent to nullsets, and a
version of Goffman's approximation theorem for one-one measurable
transformations, both of which were previously known only in the
finite-dimensional case.

We wish to thank Steve Alpern for many helpful discussions.
It is known [7] (see also [4]) that to characterize measures

homeomorphic to Lebesgue measure in J* (n finite) it is necessary
to require that μ(dln) = 0 in addition to the requirements mentioned
above. Since Γ° has no boundary it is not surprising that this con-
dition can be dropped but it is remarkable that no other condition
is needed to replace it.

Let Q be given the metric d(xy y) — ΣΓ I xt — Vt 1/2*. By an rset
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we shall mean a subset of Q of the form R = ΠΓ [α*, δ€] where 0 ^
&i < &i ̂  1 for all ΐ, and [ai9 6J = /̂  for all but finitely many values
of i; that is, the closure of a basic open set. A set of the form
{x e R: xt = c} with at ^ c ^ bύ is called a section or a /αce of ϋ?
according as at < c < bt or not. The union of all the faces of R is
a dense subset of R called its pseudoboundary; it will be denoted
by δR. The topological boundary dR of R is the union of the
(finitely many) faces of R for which at > 0 or 6< < 1. The set s =
Q — SQ is called the pseudointerior of Q.

Let H{Q) denote the space of all homeomorphisms of Q onto
itself with the topology of uniform convergence and the norm | | / | | =
supseρ d(x, f(x)). H(Q) is a complete metric group with respect to
the metric />(/, g) = ma,x {\\fg~11|, \\f~ιg ||} Let

H0(Q) = {heH(Q): h(W) = W for each face W of Q} .

When B α Q and Λ,(x) = x for all xeB, h is said to leave B fixed.
Let

, B) = {heH(Q): h leaves £ fixed}

and

, B) = {heJBΓO(Q): Λ leaves JB fixed} .

Each of these is a closed subgroup of H(Q).
The following lemma, which has no analogue for In, plays an

important role; it serves to reduce the general problem to the case
of measures that vanish on δQ. Methods similar to those used in
the case of In can then be applied.

LEMMA 1. If μ is α finite Borel measure in Q and B is the
union of a finite number of faces of Q with μ{B) — Q, then μh(δQ) =
0 for all h in a certain dense Gδ subset of H(Q, B).

Proof. Let W = {x e Q: xk = c}, c — 0 or 1, be an arbitrary face
of Q that is not contained in B. For each positive integer j let

E3 = {he H(Q, B): μh{W) < 1/j) .

It is clear that Eό is an open subset of H(Q, B). For any j and
0 < ε < 1 choose an integer n Φ k with 1/2W < e/2 such that neither
of the faces xn = 0 or 1 is contained in B. Let δ < ε/2h+1 be a
positive number such that the ^-neighborhood Bδ of B satisfies
μ(Bδ) < l/2i Choose an interval (α, 6) c In such that

μ({x eQ:a<xn< b})
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and define a continuous family ht(0 ^ t <̂  1) of homeomorphisms of
the square Ik x In onto itself such that (i) ht leaves fixed all points
of Ik x In for which | xk — c | ^ δ, (ii) h0 is the identity, and (iii) hx

contracts the edge {c} x In to a subset of {c} x (α, 6). Let F be the
union of the faces of Q that are contained in B and meet W. For
each x e Q let s(x) — min {d(x, F)/δ, 1} and define h(x) — (#0 by sett-
ing (x'k, x'n) = hs{x)(xk, xn) and x = aj< for all i Φ k, n. Then A e ίf(Q,
5). Each section of Q of the form x, = constant, i Φ k, n, is invari-
ant under h, and the δ-neighborhood of the face of Q opposite W
is fixed, therefore h(Bd)aB0. Hence

h(W) = h(WΓ\Bό)U h(W - Bδ) a Bδ U {x e Q: a < xn < b} .

Therefore μh(W) < l/2j + l/2j and so heE,-. Since \\h\\ ^ δ/2k +
l/2% < ε this shows that E3- contains elements with arbitrarily small
norm.

For any g e H{Q, B) let v = μg. Then viβ) = 0, and as just
shown there exists an h e H(Q, B) with arbitrarily small norm such
that vh(W) < IIj. Then gh is an element of E3 arbitrarily near g.
Thus Ej is a dense open subset of H(Q, B). Intersecting over j and
the countably many faces of Q that are not contained in B com-
pletes the proof.

The following basic theorem extends to I°° the result embodied
in Theorem 2 of [7].

THEOREM 1. Let μ be a nonatomίc, locally positive, normalized
Borel measure in Q, and let B be the union of a finite number of
faces of Q with μ(B) - 0. Then μ - λ/ for some feH(Q, B). If
μ(δQ) = 0 then μ - xf for some feH0{Q, B).

By virtue of Lemma 1 it is sufficient to prove the last state-
ment. Note that in Lemma 1 and Theorem 1 the measure μ may
be confined to δQ and the set B may necessarily be empty; for
example, μ may be a normalized sum of product measures on the
faces of Q. First we prove an easy lemma.

LEMMA 2. Let μ be a finite nonatomic Borel measure in Q, let
0 ^ a < β <= μ(Q) be given, and let F be a closed subset of Q with
μ{F) = 0. There exists an open set G such that G Π F = 0 and
a < μ(G) < β.

Proof. Since Q is compact and points have measure zero there
is a number η > 0 such that μ(U) < β — a for every open set U
with diameter less than rj. Choose a compact subset K of Q — F
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with μ{K) > a and let δ be a positive number less than η such that
Q — F contains the δ-neighborhood of K. Divide Q into r-sets of
diameter less than δ using sections that have ^-measure zero. Let
{Ulf , Un) be the interiors of the members of this partition that
meet K and let G = Ux U U Uk9 where k is the least integer such
that μ(G) > a. Then a < μ{G) < β and G Π F = 0 .

LEMMA 3 (cf. Lemma 7 of [7]). Let μ be a finite nonatomic
Borel measure in Q with μ(δQ) = 0, let B be the union of a finite
number of faces of Q, and let R1 — {x^ Q: xk ^ c) and R2—{xe Q: xk ^
c] be the two r-sets into which Q is divided by the section P = {x e
Q: xk = c}. Then for any two positive numbers at and a2 with αx +
a2 = μ(Q) there is an heHQ(Q, B) such that μh(Rt) — 0Lt (i = 1, 2).

Proof. Let H denote the set of all h e H0(Q, B) such that
μh(R{) ^Ot (i = 1, 2). H is a closed subset of H0(Q, B). To show
that H is nonempty note that unless it contains the identity we
must have either μ(Rx) < at or μ(R2) < a2. Assume that μ(Rj) < ax

and define ht:Q —> Q for 0 < t < oo as follows. Let JP denote the
union of the faces of Q that are contained in B and meet P. For
xeQ let s(x) = min {cZ(x, JP), 1/2} and define Λt(a;) = (α?{) by setting
a?! = #ί for all i^ifc and letting x'k be the piecewise linear function
of xk that maps 0, c, 1 into 0, c + (1 — φO) 1 7 ' , 1, respectively. Then
fef 6 H0(Q, B). μ(ht(RJ) is monotone increasing and continuous on the
right. It tends to μ(Rt) as t —>0 and to μ{Q) as ί-> oo, and μ(Rt)<
ax < μ(Q). Hence there is a least number τ such that μhτ(R^) ̂  αlβ

Since μ(ht{R2)) is monotone decreasing, continuous on the left, and
greater than a2 for 0 < t < r, it follows that μhτ{R2) ^ α2. Thus
feΓ 6 if. Similar reasoning shows that H is nonempty in case μ{R2) <

For each positive integer n let

fl". = \heH: μh{Rt) ^ αx + — ( .
' n >

Then J5ΓW is a closed subset of if. To show that Hn is nowhere
dense relative to H let g e Hn and define v = ^ . Then y is a finite
nonatomic Borel measure in Q with y(£Q) = 0 and v{P) ^ 1/n. Put-
ting a = x̂ jBi) — #i — 1/n and β — v(Rt) — at we have 0 <; α < β ^
v(P). P is a copy of Q, and v(F[Ί P) = 0. By Lemma 2 there is
a relatively open subset G of P such that S n ί 7 ί i P = 0 and a <
v(G) < β. Let π denote the projection map of Q onto P and define
s^x) = d(ττ(αθ, P — <?)• For any x = (a?f) e Q and 0 < ε < c define
0.0*0 = («ί) by setting x[ = a?< for all i ^ fc and letting xk be the
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piecewise linear function of xk that maps 0, c, 1 into 0, c-εs^x), 1,
respectively. Then gεeHQ(Q, B). Since #ε(2?2) =) 222 we have vg£R2)^
#2 Since gt(Rt) increases to Rx — G as ε j 0, and ^ < v(Rx — G) <
ax + 1/n, we have ax < vgt{R^) <a1 + 1/n for all sufficiently small ε,
and then ggεeH — Hn. This shows that Hn is a nowhere dense
subset of H. It follows that the equation μh{Rx) = ̂  holds for all
A in a dense Gδ subset of H, and similarly the equation μh(R2) — a2.
Any h belonging to the intersection of these two sets has the
required properties.

By a simple partition ^ of Q we shall mean a partition of Q
into r-sets defined by a finite number of sections of Q. Let | & \
denote the maximum of the diameters of the members of &.

LEMMA 4. Let μ be a finite nonatomic Borel measure in Q
with μ(dQ) = 0, let B be the union of a finite number of faces of
Q, let {R19 , RN] be a simple partition of Q, and let aί9 *—,aN be
positive numbers with o^+ + aN — μ{Q). Then there is an
h e H0(Q, B) such that μhfβ,) = a, (i = 1, •••,#).

Proof. This follows easily from Lemma 3 by induction on the
number of sections, using the fact that each r-set is a copy of Q
and that its boundary is the union of a finite number of its faces.

LEMMA 5. Let μ and v be finite, nonatomic, locally positive
Borel measures in Q with μ(δQ) = v(βQ) = 0, let B be the union of
a finite number of faces of Q, and let & be a simple partition of
Q such that μ{R) = v(R) and μ{8R) = v(δR) = Q for eachRe^. For
any ε > 0 there exists a simple refinement . ^ ' of 3^ with \ &' \ <
ε, and an heHQ(Q, B) that leaves each Re^ invariant and dR
fixed, such that v{R') = μh(Rf) and v(δR') = μh(dRf) = 0 for each

Proof. Let &*' be a refinement of 3? with | ̂ ' | < s defined
by taking additional sections of Q that have v-measure zero. Apply
Lemma 4 to each Re*0* taking for Rlf •••, RN the members of &'
that are contained in R, with α« = v(J?έ) and dR U (B Π 22) in place
of B. The homeomorphisms so obtained fit together to define an
h 6 HQ(Q, B) with the required properties.

Proof of Theorem 1. Assume that μ(3Q) — 0. For any 0 < ε<̂
1 and h 6 H(Q) let <p(h, ε) be a positive number (necessarily ^ ε) such
that ρ(h, hg) < ε whenever geH(Q) and \\g\\ < φ(h, ε). By Lemma
5 there is a simple partition ^ of Q with | ^ | < 1 and a & €
ί/o(Q, B) such that /ι(22) = Xg^R) and jt£(5JB) = Xg1(δR)=0 for 22 e ^ .
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Again by Lemma 5 there is a simple refinement &2 of ^ with
I ̂ 2 i < <P{9» 1/2) and an h^eHlQ, B) such that μhx(R) = λ&CR) and
μhλ(δR) = Xg^δR) = 0 for i? e ^ 2 . Applying Lemma 5 alternately
to triples of the form μh^ hn, Xg^-'-g*,, ^2n and μhx —hn,
Xgi—-gn+u ^2n+ι we can determine inductively a sequence {^J of
simple partitions of Q, and sequences {#J and {hn} in J2"0(Q, 5) such
that for each n ^ 1:

( i ) ^ U i is a refinement of &*n,
(ii) I ^ | < φ(gr .flrH, l/2 ) and | ^2n+1 \ < φ(hr -hn, l/2 ),
(iii) flfn+1 leaves each member of ^ 2 Λ invariant and hn+ί leaves

each member of ^2n+ι invariant,
(iv) . μhr hn(R) = Xg,- gn(R) and ^ hn(δR) = λ^ gn(δR) =

0 for J? 6 ^ 2 % .
It follows from (ii) and (iii) that the limits # = lim& ^ and

Λ = l im^ Λ,, exist in H0(Q, B), and from (i), (iii) and (iv) that
^(22) - λ^(i2) and μhiβR) = λ^(δΛ) = 0 for each i2 e U Γ ^ By (i)
and (ii) each open set in Q is the union of a sequence of nonover-
lapping r-sets belonging to (JΓ <^L Hence μh(E) — Xg(E) for every
open set E and therefore for every Borel set in Q. Thus / = gh~ι

fulfills the requirements of Theorem 1.

2* Refinements of Theorem 1* For some applications it is
important to be able to effect the transformation of one measure
into another by a homeomorphism that leaves fixed not only a finite
number of faces of Q but also some more general kinds of nowhere
dense sets of measure zero. In this section we shall derive two
such refinements of Theorem 1. First we need a preliminary result.

LEMMA 6. Let C be a closed subset of a section P of Q, let B
be the union of a finite number of faces of Q, and let μ be a finite
Borel measure in Q with μ{B U C) = 0. There exists an arbitrarily
small h e H0(Q, BΌC) such that μh(P) = 0.

Proof. Let π denote the projection map of Q onto P — {xeQ:
xk = c). For any xeQ define s(x) = d(π(x), (J?nP)L)C). (Put *(&) =
1 in case (BΠ P) U C = 0.) For any x = (x^eQ and 0 < t < 1 - c
define ht(x) = (&<) by setting x\ — xt for i Φ k and letting x'k be the
piecewise linear function of xk that maps 0, c, 1 into 0, c + ts(x)9 1,
respectively. Then ht e H0(Q, B U C). For 0 < t < V < 1 - c the sets
ht(P) and ht,(P) are ^-almost disjoint, since

Hence μht(P) > 0 for at most countably many values of t. Take
h == ht for any sufficiently small t that does not belong to this
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exceptional set.

LEMMA 7. Let G be a closed subset of the intersection of two
orthogonal sections P and P* of Q, let B be the union of a finite
number of faces of Q, and let μ be a nonatomic, locally positive,
normalized Borel measure in Q with μ(dQ U C) — 0. Then μ = Xf
for some fe HQ(Q, B{jC).

Proof. By Lemma 6 there is an h e H0(Q, B U C) such that
μh(P) = 0. If the conclusion holds for the measure μh, then it holds
for μ. Hence we may and shall assume henceforward that μ(P) = 0
and that C = Pf] P'.

Let Rί9 R2 and R[, R[ be the r-sets into which Q is divided by
P and P', respectively. Since μ{P) = 0 we have
and since

μ(RMR[) + μ(RiMRΰ = μ(R<) (ί - 1, 2)

we can apply Lemma 3 to Rγ and R2 separately and obtain an
h eH0(Q, B U P) such that

μh(Rt Π R's) - μiRMR'j) (i, j = 1, 2) .

Because these four numbers add up to 1 we have also μh{P) —
μh{Pr) — 0. Summing over i = 1, 2 we get

μh(R's) = MR',) (j = 1, 2) .

We can therefore apply Theorem 1 to the measures μh and λ in R[
and R[ separately (after normalizing them) and infer that μh = λ#
for some g eH0(Q, Bl) P'). Taking f — gh~x we have μ = λ/ and
feH0(Q,BUC).

Lemma 7 and the following theorem extend to I°° the type of
result embodied in Corollary 4 of [7] and Lemma 4 of [5], but the
method of proof here is quite different.

THEOREM 2. Let C be a closed subset of the intersection of two
orthogonal sections P and Pf of Q, and let B be the union of a
finite number of faces of Q. If μ and v are two nonatomic, locally
positive Borel measures in Q such that μ(Q) = v(Q) and

μ{B UC)

then μ = vf for some feH(Q, S U C).

Pooof. By Lemma 6 applied to μ + v there is a ^ e jffo(Q, BUC)
such that (μ + v)gι{P) = 0. We can apply Lemma 1 to each of the
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two r-sets into which Q is divided by Pand obtain a g2eH(Q, B\JP)
such that (μ + v)g1g2(dQ) = 0. Then μg.g.iβQ UC) = vgxg2{8Q UC)-0
and it follows from Lemma 7 that μgxg2 — vgxg2gz for some gz e
H0(Q, B U C). Taking / = g^g^gi1 we have μ-vf and fe
H(Q, B U C).

A Z-set (in Q) is by definition a closed subset A of Q with the
property that for each ε > 0 there exists a continuous map f:Q —>
Q — A such that eZ($, /(a?)) < e for all x e Q. It is known [2] that a
closed set AaQ is a Z-set if and only if it has topological infinite
codimension; that is, for some h e H(Q) the image h(A) projects to
an interior singleton in infinitely many coordinates. Moreover, the
following propositions are known (see [2]):

(2.1) If A is a Z-set and h e H(Q), then h(A) is a Z-set.

(2.2) Any compact subset of s or of δQ is a Z-set.

(2.3) Any finite union of Z-sets is a Z-set.

Any Z-set is closed and nowhere dense, but not conversely; for
example, a section of Q is not a Z-set, neither is the intersection of
two sections, or a wild Cantor set [12]. The following theorem is
therefore not as general as Theorem 2, but it is easier to apply
since it does not require the fixed set to be in special position.

THEOREM 3. Let μ and v be nonatomic, locally positive Borel
measures in Q with μ(Q) = v(Q), and let A be a Z-set such that
μ{A) = v(A) = 0. Then μ = vf for some fe H(Q, A).

Proof. Let h e H(Q) be such that h(A) projects into an interior
singleton in infinitely many coordinates. In particular, h(A) is con-,
tained in the intersection of two orthogonal sections of Q. Put
μf = μh~ι and vf = vh~K We can apply Theorem 2 to μ' and vf with
C = h(A) and B = 0 and infer that μ' = vff for some feH(Q, h{A)).
Then μ = vh~ιfh and h~ιfh e H(Q, A).

3, An extension theorem for measure preserving homeomor-
phisms* The following important Extension Theorem, due originally
to R. D. Anderson, is known to hold [2]:

(3.1) // A and B are Z-sets in Q and h is a homeomorphism
of A [onto B with 8uj)xeAd(x9 h(x)) < ε, then h can be extended to a
homeomorphism heH(Q) with \\h)\ < ε.

We shall obtain from this a similar theorem for measure preserv-
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ing homeomorphisms except that the norm of h can no longer be
restricted.

THEOREM 4. Let μ be a measure in Q homeomorphic to λ. //
A and B are Z-sets in Q and h is a μ-preserving homeomorphism
of A onto B, then h can be extended to a μ-preserving homeomor-
phism he H(Q). Howevert there exist arbitrarily small μ-preserving
homeomorphisms h for which the norm of any μ-preserving extension
h must be arbitrarily close to 1.

Proof. By (3.1) h can be extended to a homeomorphism ge
H(Q). Define Borel measures μf and vf in Q by setting μ\E) —
μ(E - A) and v\E) = μg{E - A) for Borel sets E in Q. Then μ'
and vr are nonatomic, locally positive (since A is nowhere dense in
Q), and μ'(Q) = χ/(Q). Evidently μ\A) = v'(A) = 0. Hence μ' = v'f
for some feH(Q,A), by Theorem 3. Put h = gf. Then h is
μ-preserving for subsets of A. For any Borel set EaQ — A we
have E = E - A and f{E) = /(JK) - A and therefore

- μg(f(E) ~A) = v'{f{E))

- μ\E) =

Thus fe is a //-preserving extension of h, as required.
That the norm of h cannot be restricted in any way is shown

by the following example, for which we are indebted to S. Alpern.
Let ε > 0 be given and suppose that μ=Xf, where feH(Q). There
is a number η > 0 such that d(f~\x), f~\y)) < e whenever d(x, y) <
η, and there exist basic open sets U and V such that d(f~\x),
f~\v)) > 1 — ε for all (x, y)e U x V. U and V are cylinder sets,
say on In. Take a sufficiently fine dyadic subdivision of In so that
the r-sets Rlf •••, RN based on it have diameters less than rj and at
least one is contained in U and one in V. Let them be numbered
so that Rx c V, Rκ c U, and so that Ri and Ri+ι have a face in
common for 1 <> i < K. For 1 <; ΐ < K let Ti denote the translation
that maps JBC onto Ri+1. Choose a ^-set AιdR1 — δRί with (iSΓ —
l)λ(Λ) >(N- 2)X(Rι)9 and f or 1 < i ^ iSΓ let At be the image of A,
by the translation that maps it^ onto J?^ Put

A= UiAtil^i^N, iΦK) and B = U{Λ: K i ^ N} and
define g: A~> B by setting # = T4 on Ax for 1 ̂  i < K and setting
£ equal to the identity on At sor K < i <^ N. Then A and B are
iJ-sets, # is a λ-preserving homeomorphism of A onto I?, and ώ(#,
g(x)) < v) for all xeA. ϊί g:Q->Q is any invertible and λ-preserv-
ing extension of g (not necessarily a homeomorphism!), then g maps
Rκ onto a subset of Q — B. Since ^ c Q - ΰ and
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λ(Q - B - R,) = (N - ΐ)(l/N - λ(A0) < 1/iSΓ

it follows that g(Rκ) must meet Rx in a set of positive measure.
Put h = Z"1^/. Then ft, is a ^-preserving homeomorphism of the
Z-set /^(A) onto the Z-set /^(B), and d(x, h(x))<e for all x ef~\A).
If heH(Q) is a ^-preserving extension of ft, then /ft/"1 is a λ-pre-
serving extension of g. Hence /ft/"1 takes some point of U into a
point of Vy and therefore || Λ || > 1 — e.

4* Luzin's theorem for measure preserving homeomorphisms*
Let T be an invertible transformation of /*, n ^ 2, onto itself such
that T(E) and T~\E) are measurable whenever 2£ is a measurable
set. It was shown by Goffman [3] that there exists a homeomor-
phism h of Γ onto itself such that h(x) = T(x) and h~\x) = T"1^)
except on a set of arbitrarily small Lebesgue measure. Goffman
asked whether h can be taken to be measure preserving in case T
is measure preserving. This was shown in [5] and independently
by H. E. White, Jr. [11]. In this section we obtain corresponding
theorems for J°°.

THEOREM 5. Let μ be a nonatomic, locally positive, normalized
Borel measure in Q, let B be the union of a finite number of faces
of Q with μ{B) = 0, and let T be an invertible, Borel measurable
and μ-preserving transformation of Q onto itself. For each e > 0
there exists a μ-preserving homeomorphism h e H(Q, B) such that
μ({x € Q: K(x) Φ T(x)}) < ε.

Proof. We may assume without loss of generality that μ — λ;
because μ — Xf for some feH(Q, B), by Theorem 1, and it suffices
to approximate the λ-preserving transformation fTf~x by a λ-pre-
serving homeomorphism. By Luzin's theorem there exists a compact
set E with X(E) > 1 — e such that the restriction of T to E is
continuous and therefore a homeomorphism. Since X(δQ) = X(T~1(δQ)) =
0 we can choose a compact set

CdE ίΐs Π T~\s) with λ(C) > 1 - ε .

Let h(x) = T(x) for x e C, and h(x) — x for x e B. Then ft, is a λ-
preserving homeomorphism of C U B onto T(C) U B, arid both of
these are i?-sets, by (2.2) and (2.3). The conclusion then follows
from Theorem 4.

An entirely different proof of Theorem 5 in the case μ=X was
found by S. Alpern and R. D. Edwards [1] shortly before Theorem
1 had been proved. They obtained h by a limiting process that
applies to In for any 2 <; n ^ co and involves neither homeomorphic
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measures nor extension of a homeomorphism from a subset. Their
proof shows in addition that the norm of h can be taken to be
arbitrarily small provided T belongs to a sufficiently small weak
neighborhood of the identity. They observed also that this refine-
ment of Theorem 5 is actually a corollary of that theorem; it
suffices to divide Q into r-sets Rt of small diameter using sections
of measure zero, to require that T be weakly near enough to the
identity so that it can be redefined on a set of small measure in
such a way as to leave each Rt invariant, and then to apply Theorem
5 to each of the sets Rt.

Goffman's theorem can be extended to Q as follows (cf [8]).

THEOREM 6. Let T be an invertible and Borel measurable map
of Q onto itself, and let μ be a finite Borel measure in Q. For
any ε > 0 there is an he H(Q) such that

μ({x 6 Q: h{x) Φ T(x) or h~\x) Φ T~\x)}) < e .

Proof. By Luzin's theorem there is a set E with μ(E)>μ(Q) —
ε/2 such that the restriction T \ E is continuous. The sets s, T~\s)
and their complements partition E into four sets and we can choose
compact subsets of each such that their union K satisfies μ(K) >
μ(Q) - ε/2. Then Γ | K is a homeomorphism and both K and T(K)
are Z-sets. Similarly we can find a compact set Kf contained in
Q - T(K) with

μ(K') > μ(Q - T(K)) - ε/2

such that JΓ"1 | K' is a homeomorphism and both Kr and T~\K')
are ^-sets. Put A = JBΓU T~ι{Kr). This is a disjoint union of
compact sets, so T \ A is a homeomorphism of A onto the set
B - T(K) U K', and both A and B are #-sets. By (3.1) there is an
h 6 H(Q) that agrees with T on A. The conclusion then follows
from the fact that the set where h differs from T, or h~ι from T~\
is contained in (Q — A) U (Q — B), which has ^-measure less than ε.

REMARK. In case μ is nonatomic and locally positive, the proof
of Theorem 4 (with μ' and v' normalized) shows that the extension
of T\ A can be made to be relatively /^-preserving on Q — A.
Consequently, in case μ is nonatomic and locally positive and T
preserves μ-nullsets the h in Theorem 6 can likewise be taken to
preserve μ-nullsets, and thus be ''absolutely measurable" (cf. White

5* Sets topologically equivalent to nullsets* The following
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theorem extends Theorem 9 of [7] to I°° and at the same time makes
its formulation more complete. The completion of a Borel measure
μ will be denoted by μ.

THEOREM 7. The following statements about a set EcQ are
pair wise equivalent:

(1) For each σ-finite Borel measure μ in Q and Z-set B with
μ(B) = 0 there is an arbitrarily small h e H(Q, B) such that
μih{E)) = 0.

(2 ) X(h(E)) = 0 for some h e H(Q).
(3) Q — E contains a sequence of perfect sets whose union is

dense in Q.

Proof. The implications (1) => (2) =* (3) are clear. In case μ is
nonatomic the implication (3) => (1) can be deduced from Theorem 3
by the method used in [7], but this method will not serve in
general. Instead we base our proof on the following lemma.

LEMMA 8. Given ε > 0 and disjoint Z-sets A and C in Q,
where C is a Cantor set, (3) implies that there exists a Cantor Z-
set Γ contained in Q — E — A and an heH(Q, A) such that h(Γ) —
C and \\h\\< ε.

Proof. Cover C by disjoint open sets Ul9 •••, Un that have
diameters less than ε and meet C but not A. Each Ut meets some
perfect set contained in Q — E, hence we can find Cantor sets
Λ> ••*, Γny each contained either in s or δQ, such that ΓiCQ — EΠ
Ut (i = 1, , n). Put Γ = U? Λ and let h:AUΓ-*A\jC be a
homeomorphism equal to the identity on A and such that ^(/7

ί) = Cn
Ut (i = 1, •••, n). By (3.1) h can be extended to a homeomorphism
h:Q-*Q with \\h\\ < ε, and we have h(Γ) = C andfteH(Q, A) as
required.

(3) => (1). Choose a sequence of mutually disjoint Cantor Z-sets
CjdQ - B such that

By Lemma 8 with A = B, C — Cu and any e0 > 0, there exists a
Cantor Z-set Γ^Q- E - B and an hγeH(Qf B) with || hx \\ < eJ2
such that h^Γi) = CΊ. Suppose disjoint Cantor Z-sets Γt9 fΓn

contained in Q — E — B and hίf , hn in H(Q, B) have been defined
so that for j = 1, , n,

( i ) hj(Γj) = Cjf

(ii) hjlihj is equal to the identity on B U Uί"1 Γh,
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and

(iii) p{h^u hά) < εo/2',
where h0 = idρ. Choose en > 0 so that

P(K, Kg) < εo/2n+1

whenever \\g\\ < εn. By Lemma 8 with B\J\JΐΓjy h»ι(Cn+1)9 εn in
place of A, C, ε there is a Cantor Z-set

and a (/ 6 JΪ(Q, 5 U UΓ Λ ) such that g(Γn+ι) = / ^ ( C U ) and || # | |<ε % .
Putting hn+1=hng it follows that (i) (ii) (iii) hold for j=l, « ,w + l .
Thus sequences {Γj} and {/&,•} can be defined inductively so that (i)
(ii) (iii) are satisfied for all j ^ 1. Then {hά} converges uniformly
to a homeomorphism heH(Q, B) with \\h\\ < ε0 such that h(Γj) = Cj

for all j ^ 1. Since

we have h(E) czQ - \J? C, and therefore μ(h(E)) = 0.
The following corollary is a far-reaching generalization of

Lemma 1.

THEOREM 8. If μ is a σ-finite Borel measure in Q, B is the
union of a finite number of faces of Q with μ{B) = 0, and A is an
Fσ set of first category in Q, then μh(A) — 0 for all h in a certain
dense Gδ subset of H(Q, B).

Proof. For any nowhere dense closed set F in Q and any g in
H(Q, B) we can take E=g(F) in (3) of Theorem 7. Then (1) implies
that for each positive integer j the set

E, = {he H(Q, B): μh(F) < 1/j}

is dense in H(Q, B). Since E3 is obviously open the conclusion
follows.

The corresponding result for Lebesgue measure in In ([6],
Theorem 1) can be shown to hold also for the completion of any
σ-finite Borel measure that vanishes on dln.

In concluding this section we remark that the proofs of Theo-
rems 8 and 10 of [7] carry over to Γ° without change.

6* Measure preserving embeddings in metric measure spaces*
By a metric measure space (X, μ) we mean in this section a metric
space X together with the completion μ of a finite Borel measure
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μ in X. Let μ* denote the outer measure in X induced by μ (so
that μ is just μ* restricted to the μ*-measurable sets). (Xlf jδj is
called a subspace of (X, μ) if XίaX and μ* is the restriction of μ*
to subsets of Xx. (X, μ) is said to be homeomorphic to (Y,V) if
there exists a homeomorphism of X onto Y that makes v corres-
pond to μ. Such a homeomorphism of (X, μ) onto a subspace of
(Y, v) is called an embedding of (X, //) in (Γ, v). In [9] and [10] A.
H. Stone considered the question: What metric measure spaces (X,
μ) can be embedded in (Q, λ)? Obviously X must be separable, and
μ must be nonatomic with μ(X) <ί 1. Assuming ^(X) < 1, Stone
obtained such an embedding in case X is finite-dimensional. Using
Theorem 1 in somewhat the same way as Stone used Theorem 2 of
[7] we obtain the following answer to his question.

THEOREM 9. Let X be a separable metric space and let μ be
the completion of a nonatomic Borel measure μ in X. There exists
an embedding of (X, μ) in (Q, λ) if and only if either (1) μ{X) < 1,
or (2) μ(X) = 1, μ is locally positive, and X is homeomorphic to
some dense subset of Q.

Proof. The necessity of either (1) or (2) is clear. Assume first
that μ(X) < 1 and let /: X —> Y be a homeomorphism of X onto a
subset Y of some section of Q, so that λ(F) = 0. For each Borel
set E in Q define

v{E) = μ{t\E Π Γ)) + (1 - μ(X)ME) .

Then v is a nonatomic, locally positive, normalized Borel measure
in Q. By Theorem l,,v = Xg for some geH(Q), and so v* = X*g.
Then h = gof is a homeomorphism of X onto g(Y), and for any
set A c X we have

= μ*f-\f(A) Π Γ) + (1 - μ(X))X*f(A)

Thus fc is an embedding of (X, μ) in (Q, λ).
Assuming (2), let / be a homeomorphism of X onto a dense

subset Γ of Q, and define v(j£) = μf~\E C\ Y) for Borel sets E in
Q. By Theorem 1, v = λgr for some ^ eH(Q). Putting fe= sfo/ it
follows, as above, that X*h(A) = μ*(A) for every set A c X .

Theorem 9 leaves open the question of what spaces can be
densely embedded in Q, but for compact spaces it furnishes a com-
plete answer to Stone's question: A compact metric measure space
(X, μ) can be embedded in (QfX) if and only if either' (X, μ) is
homeomorphic to (Q, λ), or μ(X) < 1 and μ is nonatomic.
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Note added in proof. In "A note on topological measure theory"
(preprint) Bejamin Weiss has independently obtained a different proof
of Theorem 1 in the case B = 0 and used it as above to answer
Stone's question for compact metric measure spaces.
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