THE 2-CLASS GROUP OF BIQUADRATIC FIELDS, II

Ezra Brown and Charles J. Parry

We describe methods for determining the exact power of 2 dividing the class number of certain cyclic biquadratic number fields. In a recent article, we developed a relative genus theory for cyclic biquadratic fields whose quadratic subfields have odd class number; we considered the case in which the quadratic subfield is $Q(\sqrt{l})$ with $l \equiv 5(\bmod 8)$ a prime. Here we shall extend our methods to the cases in which the subfield is $Q(\sqrt{2})$ or $Q(\sqrt{l})$ with $l \equiv 1(\bmod 8)$ a prime. We consider all such cases for which the 2 -class group of the biquadratic field is of rank at most 3 .
2. Notation and preliminaries.
Q : the field of rational numbers.
l : a rational prime satisfying $l=2$ or $l \equiv 1(\bmod 8)$.
p, q, p_{i} : rational primes.
k : the quadratic field $Q(\sqrt{l})$.
$\varepsilon=(u+v \sqrt{l}) / 2$, the fundamental unit of k, with $u, v>0$.
m : a square-free positive rational integer, relatively prime to l.
$d=-m \sqrt{l} \varepsilon$.
K : the biquadratic field $k(\sqrt{d})$.
h, h_{0} : the class numbers of K and k, respectively. $\left(\frac{x, y}{\pi}\right):$ the quadratic norm residue symbol over k.
$\left[\frac{\alpha}{\beta}\right]$: the quadratic residue symbol for k.
$\left(\frac{a}{b}\right)$: the rational quadratic residue (Legendre) symbol.
$\left(\frac{a}{b}\right)_{4}$: the rational 4th power residue symbol (defined if and only
if $(a / b)=1$).
$N()$: the relative norm for K / k.
H : the 2-Sylow subgroup of the class group of K.
It is easy to see that K is a cyclic extension of Q of degree 4 which contains k. Recall that ε has (absolute) norm -1 , that h_{0} is odd and that H has rank $t-1$, where t is the number of prime ideals of k which ramify in K.
3. Class number divisibility: The case $l \equiv 1(\bmod 8)$.

Theorem 1. Let $m=p \equiv 3(\bmod 4)$. Then

$$
\begin{aligned}
h & \equiv 2(\bmod 4) \quad \text { if } \quad\left(\frac{p}{l}\right)=-1 \\
& \equiv 4(\bmod 8) \quad \text { if } \quad\left(\frac{p}{l}\right)_{4}=-1 \\
& \equiv 0(\bmod 16) \quad \text { if } \quad\left(\frac{p}{l}\right)_{4}=1
\end{aligned}
$$

Proof. The number t of prime ideals of k which ramify in K is equal to 2 or 3 according as $(p / l)=-1$ or 1 . In the first case,

$$
\left(\frac{p, d}{\sqrt{l}}\right)=\left[\frac{p}{\sqrt{l}}\right]=\left(\frac{p}{l}\right)=-1
$$

so that only the principal ambiguous class is in the principal genus. By Theorem 1 of [1] we have $H \simeq Z_{2}$.

If $(p / l)=1$, then $p=\pi_{1} \pi_{2}$, where π_{1} and π_{2} are prime ideals of k. The ideals $\pi_{1}^{k_{0}}$ and $\pi_{2}^{k_{0}}$ are principal ideals, and

$$
\begin{aligned}
& \pi_{1}^{h_{0}}=a+b \sqrt{l}>0 \\
& \pi_{2}^{h_{0}}=a-b \sqrt{l}>0
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\left(\frac{a+b \sqrt{l}, d}{\sqrt{l}}\right) & =\left[\frac{a+b \sqrt{l}}{\sqrt{l}}\right]=\left(\frac{a}{l}\right) \\
& =\left(\frac{a^{2}}{l}\right)_{4}=\left(\frac{p}{l}\right)_{4}
\end{aligned}
$$

Also, $\quad\left(\frac{a+b \sqrt{l}, d}{\pi_{2}}\right)=\left[\frac{a+b \sqrt{l}}{\pi_{2}}\right]=\left(\frac{2 a}{p}\right)$.
Because $p \equiv 3(\bmod 4)$ and h_{0} is odd, a is even; if $a=2^{i} c$ with c odd, then $i=1$ if and only if $p \equiv 3(\bmod 8)$. Thus,

$$
\begin{aligned}
\left(\frac{2 a}{p}\right) & =\left(\frac{2}{p}\right)^{i+1}\left(\frac{c}{p}\right)=\left(\frac{c}{p}\right)=\left(\frac{-p}{c}\right) \\
& =\left(\frac{l}{c}\right)=\left(\frac{c}{l}\right)=\left(\frac{c^{2}}{l}\right)_{4}=\left(\frac{a^{2}}{l}\right)_{4}=\left(\frac{p}{l}\right)_{4}
\end{aligned}
$$

We then have the following table of characters:

Norm \backslash Character	\sqrt{l}	π_{1}	π_{2}
$\varepsilon \sqrt{l}$	1	$\left(\frac{p}{l}\right)_{4}$	$\left(\frac{p}{l}\right)_{4}$
$a+b \sqrt{l}$	$\left(\frac{p}{l}\right)_{4}$	1	$\left(\frac{p}{l}\right)_{4}$
$a-b \sqrt{l}$	$\left(\frac{p}{l}\right)_{4}$	$\left(\frac{p}{l}\right)_{4}$	1

If $(p / l)_{4}=-1$, then only the principal ambiguous class is in the principal genus; by Theorem 1 of [1], we have $H \simeq Z_{2} \times Z_{2}$, so that $h \equiv 4(\bmod 8)$.

If $(p / l)_{4}=1$, then all four ambiguous classes are in the principal genus, so that $h \equiv 0(\bmod 16)$.

Theorem 2. Let $m=p_{1} p_{2} \cdots p_{t} \equiv 3(\bmod 4)$ with $\left(p_{\imath} / l\right)=-1$ for all i. Then

$$
h \equiv 2^{t}\left(\bmod 2^{t+1}\right)
$$

Proof. H has rank t, so we just need to show that the only ambiguous class in the principal genus is the principal class. Now

$$
\begin{aligned}
& \left(\frac{p_{i}, d}{\sqrt{l}}\right)=\left[\frac{p_{i}}{\sqrt{l}}\right]=\left(\frac{p_{i}}{l}\right)=-1, \quad \text { and } \\
& \left(\frac{p_{i}, d}{p_{j}}\right)=\left[\frac{p_{i}}{p_{j}}\right]=1 \quad \text { for } \quad i \neq j
\end{aligned}
$$

It follows that $\left(p_{i}, d / p_{i}\right)=-1$ and $\left(\varepsilon \sqrt{l}, d / p_{i}\right)=-1$, by the product rule. Thus, no two of the ramified prime ideals belong to the same genus, and so the desired result follows.

THEOREM 3. Let $m=p q \equiv 3(\bmod 4)$ with $(p / l)=1$ and $(q / l)=$ -1. Then

$$
\begin{aligned}
& h \equiv 8(\bmod 16) \quad \text { if }\left(\frac{p}{l}\right)_{4} \neq\left(\frac{q}{p}\right) ; \\
& \equiv 16(\bmod 32) \quad \text { if } p \equiv 1(\bmod 4) \quad \text { and } \quad\left(\frac{p}{l}\right)_{4}=\left(\frac{q}{p}\right) \neq\left(\frac{l}{p}\right)_{4} \\
& \equiv 0(\bmod 32) \quad \text { if either } p \equiv 3(\bmod 4) \quad \text { and } \quad\left(\frac{p}{l}\right)_{4}=\left(\frac{q}{p}\right) \\
& \text { or } \quad p \equiv 1(\bmod 4) \quad \text { and } \quad\left(\frac{p}{l}\right)_{4}=\left(\frac{q}{p}\right)=\left(\frac{l}{p}\right)_{4}
\end{aligned}
$$

Proof. Here H has rank 3. Using the notation of Theorem 1, we have that

$$
\left(\frac{a+b \sqrt{l}, d}{\pi_{2}}\right)=\left[\frac{a+b \sqrt{l}}{\pi_{2}}\right]=\left[\frac{2 a}{\pi_{2}}\right]=\left(\frac{2 a}{p}\right) .
$$

If $p \equiv 3(\bmod 4)$, then $(2 a / p)=(p / l)_{4}$, as before. However, if $p \equiv 1$ $(\bmod 4)$, then

$$
\left(\frac{2 a}{p}\right)=\left(\frac{2}{p}\right)\left(\frac{a}{p}\right)=\left(\frac{2}{p}\right)\left(\frac{a^{2}}{p}\right)_{4}=\left(\frac{2}{p}\right)\left(\frac{b}{p}\right)\left(\frac{l}{p}\right)_{4} .
$$

Now $b=2^{i} c$ with c odd; furthermore, $i=1$ if and only if $p \equiv 5$ $(\bmod 8)$. Hence,

$$
\left(\frac{2}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{2}{p}\right)^{i+1}\left(\frac{c}{p}\right)=\left(\frac{c}{p}\right)=\left(\frac{p}{c}\right)=\left(\frac{a^{2}}{c}\right)=1 ;
$$

we deduce that $(2 a / p)=(l / p)_{4}$. Furthermore,

$$
\begin{aligned}
& \left(\frac{a+b \sqrt{l}, d}{q}\right)=\left[\frac{a+b \sqrt{l}}{q}\right]=\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right), \quad \text { and } \\
& \left(\frac{q, d}{\pi_{1}}\right)=\left[\frac{q}{\pi_{1}}\right]=\left(\frac{q}{p}\right) .
\end{aligned}
$$

The remaining characters are easily evaluated; if we set $(l / p)_{4}=(p / l)_{4}$ if $p \equiv 3(\bmod 4)$, we have the following table of characters:

Norm \backslash Character	\sqrt{l}	q	π_{1}	π_{2}
$\varepsilon \sqrt{l}$	-1	-1	$\left(\frac{p}{l}\right)_{4}$	$\left(\frac{p}{l}\right)_{4}$
q	-1	-1	$\left(\frac{q}{p}\right)$	$\left(\frac{q}{p}\right)$
$a+b \sqrt{l}$	$\left(\frac{p}{l}\right)_{4}$	$\left(\frac{q}{p}\right)$	$\left(\frac{q}{p}\right)\left(\frac{p}{l}\right)_{4}\left(\frac{l}{p}\right)_{4}$	$\left(\frac{l}{p}\right)_{4}$
$a-b \sqrt{l}$	$\left(\frac{p}{l}\right)_{4}$	$\left(\frac{q}{p}\right)$	$\left(\frac{l}{p}\right)_{4}$	$\left(\frac{q}{p}\right)\left(\frac{p}{l}\right)_{4}\left(\frac{l}{p}\right)_{4}$

The theorem follows, as before, from an analysis of the various cases.

Theorem 4. Let $m=p \equiv 1(\bmod 4)$ with $(p / l)=-1$. Then

$$
\begin{aligned}
h & \equiv 8(\bmod 16) \quad \text { if } \quad\left(\frac{2}{l}\right)_{4} \neq\left(\frac{2}{p}\right) ; \\
& \equiv 16(\bmod 32) \quad \text { if } \quad\left(\frac{2}{l}\right)_{4}=\left(\frac{2}{p}\right)=(-1)^{(l+7) / 8} ; \\
& \equiv 0(\bmod 32) \quad \text { if } \quad\left(\frac{2}{l}\right)_{4}=\left(\frac{2}{p}\right)=(-1)^{(l-1) / 8} .
\end{aligned}
$$

Proof. Here, the two prime divisors of 2 in k ramify in K. Put $2=2_{1} 2_{2}$ in k, with

$$
2_{1}^{h_{0}}=\alpha=\frac{a+b \sqrt{l}}{2}>0
$$

and

$$
2_{1}^{h_{0}}=\bar{\alpha}=\frac{a-b \sqrt{l}}{2}>0 .
$$

Then

$$
\begin{aligned}
\left(\frac{\alpha, d}{\sqrt{l}}\right) & =\left[\frac{\alpha}{\sqrt{l}}\right]=\left[\frac{a / 2}{\sqrt{l}}\right]=\left(\frac{2 a}{l}\right) \\
& =\left(\frac{4 a^{2}}{l}\right)_{4}=\left(\frac{2}{l}\right)_{4}, \\
\left(\frac{\alpha, d}{p}\right) & =\left[\frac{\alpha}{p}\right]=\left(\frac{2}{p}\right), \text { and } \\
\left(\frac{p, d}{2_{1}}\right) & =(-1)^{(p-1) / 2}=1 . \text { Now } \\
{\left[\frac{a+b \sqrt{l}}{2}\right]^{2} } & =\frac{1}{2}\left(a^{2}-2^{h_{0}+1}+a b \sqrt{l}\right), \text { so that } \\
a \bar{\alpha} & \equiv \frac{1}{2}\left(a^{2}-a b \sqrt{l}\right) \equiv a^{2}-2^{h_{0}}\left(\bmod 2_{1}^{2}\right) . \quad \text { Thus, } \\
\left(\frac{\bar{\alpha}, d}{2_{1}}\right) & =\left(\frac{a, d}{2_{1}}\right)\left(\frac{a^{2}-2^{h_{0}}, d}{2_{1}}\right) \\
& =(-1)^{(a-1) / 2}(-1)^{\left(a^{2}-2^{\left.h_{0}-1\right) / 2}\right.} \\
& =\left(\frac{-1}{a}\right)(-1)^{2_{0} h_{0}-1}
\end{aligned}
$$

To evaluate ($-1 / a$), note that

$$
\left(\frac{a}{l}\right)=\left(\frac{a^{2}}{l}\right)_{4}=\left(\frac{2}{l}\right)_{4}
$$

and

$$
\left(\frac{2}{a}\right)=\left(\frac{-l}{a}\right)=\left(\frac{-1}{a}\right)\left(\frac{l}{a}\right)=\left(\frac{-1}{a}\right)\left(\frac{a}{l}\right)
$$

Hence,

$$
\left(\frac{-1}{a}\right)=\left(\frac{2}{a}\right)\left(\frac{a}{l}\right)=\left(\frac{2}{a}\right)\left(\frac{2}{l}\right)_{4} .
$$

Since $(2 / b)=1$, we have $b^{2} \equiv 1(\bmod 16)$, so that

$$
a^{2}-l b^{2} \equiv a^{2}-l \equiv 2^{h_{0}+2}(\bmod 16)
$$

If $h_{0}=1$, then $a^{2} \equiv l+8(\bmod 16)$, so that

$$
\left(\frac{2}{a}\right)=1 \text { if and only if } l \equiv 9(\bmod 16) ;
$$

if $h_{0}>1$, then $a^{2} \equiv l(\bmod 16)$, so that

$$
\left(\frac{2}{a}\right)=1 \quad \text { if and only if } l \equiv 1(\bmod 16) .
$$

In either case,

$$
\left(\frac{\bar{\alpha}, d}{2_{1}}\right)=(-1)^{2^{h_{0}-1}}\left(\frac{-1}{a}\right)=(-1)^{(l-1) / 8}\left(\frac{2}{l}\right)_{4} .
$$

Finally, we note that

$$
\left(\frac{p, d}{\sqrt{l}}\right)=\left(\frac{p, d}{p}\right)=-1
$$

This yields the following table of generic characters:

Norm\|Characters	\sqrt{l}	p	2_{1}	2_{2}
p	-1	-1	+1	+1
α	$\left(\frac{2}{l}\right)_{4}$	$\left(\frac{2}{p}\right)$	$(-1)^{(l-1) / 8}\left(\frac{2}{p}\right)$	$(-1)^{(l-1) / 8}\left(\frac{2}{l}\right)_{4}$
$\bar{\alpha}$	$\left(\frac{2}{l}\right)_{4}$	$\left(\frac{2}{p}\right)$	$(-1)^{(l-1) / 8}\left(\frac{2}{l}\right)_{4}$	$(-1)^{(l-1) / 8}\left(\frac{2}{p}\right)$

If $(2 / l)_{4} \neq(2 / p)$, then all three lines of the table are distinct and only the principal ambiguous class lies in the principal genus; this implies that $h \equiv 8(\bmod 16)$.

If $(2 / l)_{4}=(2 / p) \neq(-1)^{[l-1 / / 8}$, then the last two lines are identical, but different from the first. Here, exactly two ambiguous classes lie in the principal genus, and so $h \equiv 16(\bmod 32)$.

In the case $(2 / l)_{4}=(2 / p)=(-1)^{(l-1) / 8}$, there are 4 ambiguous classes in the principal genus. Thus $h \equiv 0(\bmod 32)$.

Corollary. If $m=1$, then

$$
\begin{aligned}
h & \equiv 4(\bmod 8) \quad \text { if } \quad\left(\frac{2}{l}\right)_{4}=-1 ; \\
& \equiv 8(\bmod 16) \quad \text { if } \quad l \equiv 9(\bmod 16) \quad \text { and } \quad\left(\frac{2}{l}\right)_{4}=1 ; \\
& \equiv 0(\bmod 16) \quad \text { if } \quad l \equiv 1(\bmod 16) \quad \text { and } \quad\left(\frac{2}{l}\right)_{4}=1
\end{aligned}
$$

Proof. Here $t=3$ and so H has rank 2. The table of generic characters is obtained by setting $(2 / p)=1$ in the last two lines of
the table in Theorem 4. There are 1, 2 or 4 ambiguous classes in the principal genus according as the condition of the first, second or third line of the corollary holds.

Theorem 5. If $m=2$, then

$$
\begin{aligned}
h & \equiv 4(\bmod 8), \quad \text { if }\left(\frac{2}{l}\right)_{4}=-1 \\
& \equiv 0(\bmod 16), \quad \text { if } \quad\left(\frac{2}{l}\right)_{4}=1
\end{aligned}
$$

Proof. Using the notation of the preceding theorem, we have

$$
\begin{aligned}
\left(\frac{\bar{\alpha}, d}{2_{1}}\right) & =\left(\frac{\bar{\alpha},-2 \varepsilon \sqrt{l}}{2_{1}}\right)=\left(\frac{\bar{\alpha}, 2}{2_{1}}\right)\left(\frac{\bar{\alpha},-\varepsilon \sqrt{l}}{2_{1}}\right) \\
& =\left(\frac{\bar{\alpha}, 2}{2_{1}}\right)(-1)^{(l-1) / 8}\left(\frac{2}{l}\right)_{4},
\end{aligned}
$$

the last step following from the calculations of Theorem 4. Now

$$
\alpha^{3}=\left(\frac{a+b \sqrt{l}}{2}\right)^{3}=\left(\frac{1}{2}\right)\left(a\left(a^{2}-3 \cdot 2^{h_{0}}\right)+b\left(a^{2}-2^{h_{0}}\right) \sqrt{l}\right),
$$

so that

$$
\begin{aligned}
\left(\frac{\bar{\alpha}, 2}{2_{1}}\right) & =\left(\frac{a^{2}-2^{h_{0}}, 2}{2_{1}}\right)\left(\frac{a\left(a^{2}-2^{h_{0}+1}\right), 2}{2_{1}}\right) \\
& =\left(\frac{2}{a^{2}-2^{h_{0}}}\right)\left(\frac{2}{a}\right)\left(\frac{2}{a^{2}-2^{h_{0}+1}}\right) \\
& =(-1)^{2_{0}-1}\left(\frac{2}{a}\right)=(-1)^{(l-1) / 8}
\end{aligned}
$$

Hence,

$$
\left(\frac{\bar{\alpha}, d}{2_{1}}\right)=(-1)^{(l-1) / 8}(-1)^{(l-1) / 8}\left(\frac{2}{l}\right)_{4}=\left(\frac{2}{l}\right)_{4} .
$$

We obtain the following table of characters and the result follows by considerations similar to those previously mentioned:

Norm Character	\sqrt{l}	2_{1}	2_{2}
$\varepsilon \sqrt{l}$	1	$\left(\frac{2}{l}\right)_{4}$	$\left(\frac{2}{l}\right)_{4}$
α	$\left(\frac{2}{l}\right)_{4}$	1	$\left(\frac{2}{l}\right)_{4}$
$\bar{\alpha}$	$\left(\frac{2}{l}\right)_{4}$	$\left(\frac{2}{l}\right)_{4}$	1

Theorem 6. If $m=2 p$ with $(p / l)=-1$, then

$$
\begin{aligned}
h & \equiv 8(\bmod 16) \quad \text { if } \quad\left(\frac{2}{l}\right)_{4} \neq\left(\frac{2}{p}\right) ; \\
& \equiv 16(\bmod 32) \quad \text { if }\left(\frac{2}{l}\right)_{4}=\left(\frac{2}{p}\right) \neq(-1)^{(l-1) / 8}, \\
& \equiv 0(\bmod 32), \quad \text { otherwise } .
\end{aligned}
$$

Proof. First we note that

$$
\begin{aligned}
\left(\frac{\bar{\alpha}, d}{2_{1}}\right) & =\left(\frac{\bar{\alpha},-2 p \varepsilon \sqrt{l}}{2_{1}}\right)=\left(\frac{\bar{\alpha}, 2}{2_{1}}\right)\left(\frac{\bar{\alpha},-\varepsilon p \sqrt{l}}{2_{1}}\right) \\
& =(-1)^{(l-1) / 8}\left(\frac{\bar{\alpha},-\varepsilon p \sqrt{l}}{2_{1}}\right) .
\end{aligned}
$$

If $p \equiv 1(\bmod 4)$, then the last symbol was evaluated in the proof of Theorem 4 and reduces to $(-1)^{(l-1) / 8}(2 / l)_{4}$.

If $p \equiv 3(\bmod 4)$, then 2 is unramified in the extension $Q\left(\sqrt{d_{1}}\right)$, where $d_{1}=-\varepsilon p \sqrt{l}$. Thus, the last symbol is equal to 1 . Hence

$$
\left(\frac{\bar{\alpha}, d}{2_{1}}\right)=\left(\frac{\alpha, d}{2_{2}}\right)=\left(\frac{2}{l}\right)_{4} \quad \text { or } \quad(-1)^{(l-1) / 8}
$$

according as $p \equiv 1$ or $3(\bmod 4)$. Evaluation of the remaining symbols is routine, and we have the following table for $p \equiv 3(\bmod 4)$:

Norm \backslash Character	\sqrt{l}	p	2_{1}	2_{2}
$\varepsilon \sqrt{l}$	-1	-1	$\left(\frac{2}{l}\right)_{4}$	$\left(\frac{2}{l}\right)_{4}$
p	-1	-1	$\left(\frac{2}{p}\right)$	$\left(\frac{2}{p}\right)$
α	$\left(\frac{2}{l}\right)_{4}$	$\left(\frac{2}{p}\right)$	$(-1)^{(l-1) / 8}\left(\frac{2}{p}\right)\left(\frac{2}{l}\right)_{4}$	$(-1)^{(l-1) / 8}$
$\bar{\alpha}$	$\left(\frac{2}{l}\right)_{4}$	$\left(\frac{2}{p}\right)$	$(-1)^{(l-1) / 8}$	$(-1)^{(l-1) / 8}\left(\frac{2}{p}\right)\left(\frac{2}{l}\right)_{4}$

If $p \equiv 1(\bmod 4)$, the four entries in the lower right-hand corner are replaced by

$$
\begin{array}{ll}
\left(\frac{2}{p}\right) & \left(\frac{2}{l}\right)_{4} \\
\left(\frac{2}{l}\right)_{4} & \left(\frac{2}{p}\right)
\end{array}
$$

and the desired results follow as before.
4. Class numbers divisibility: The case $l=2$.

Theorem 7. If $m=p$, then

$$
\begin{aligned}
h & \equiv 2(\bmod 4), \quad \text { if } p \equiv \pm 3(\bmod 8) ; \\
& \equiv 4(\bmod 8), \quad \text { if } p \equiv \pm 7(\bmod 16) ; \\
& \equiv 8(\bmod 16), \quad \text { if } p \equiv 1(\bmod 16) \quad \text { and } \quad\left(\frac{2}{p}\right)_{4}=-1 ; \\
& \equiv 0(\bmod 16), \quad \text { if } p \equiv 1(\bmod 16) \quad \text { and } \quad\left(\frac{2}{p}\right)_{4}=1, \quad \text { or } \\
& \text { if } p \equiv 15(\bmod 16)
\end{aligned}
$$

Proof. If $p \equiv \pm 3(\bmod 8)$ then H is cyclic and

$$
\left(\frac{p, d}{\sqrt{2}}\right)=\left(\frac{2}{p}\right)=-1
$$

Hence, the only ambiguous class in the principal genus is the principal class, and so $H \simeq Z_{2}$.

If $p \equiv \pm 1(\bmod 8)$ then H has rank 2. Let $p=\pi_{1} \pi_{2}=(a+b \sqrt{2})$ $(a-b \sqrt{2})$ with $\pi_{1}=a+b \sqrt{2}>0$. If $p \equiv 7(\bmod 8)$, then

$$
\begin{aligned}
&\left(\frac{\pi_{1}, d}{\pi_{2}}\right)=\left[\frac{\pi_{1}}{\pi_{2}}\right]=\left[\frac{2 a}{\pi_{2}}\right]=\left(\frac{2 a}{p}\right)=\left(\frac{a}{p}\right) \\
&=\left(\frac{-1}{a}\right)\left(\frac{p}{a}\right)=\left(\frac{-1}{a}\right)\left(\frac{-2 b^{2}}{a}\right) \\
&=\left(\frac{2}{a}\right)=(-1)^{\left(a^{2}-1\right) / 8}=(-1)^{\left(p+2 b^{2}-1 / 8\right.} \\
&=(-1)^{(p+1) / 8}
\end{aligned}
$$

since b must be odd. Furthermore,

$$
b \varepsilon \sqrt{2}=2 b+b \sqrt{2} \equiv 2 b-a\left(\bmod \pi_{1}\right)
$$

so that

$$
b^{2} \varepsilon \sqrt{2} \equiv 2 b^{2}-a b \equiv a^{2}-a b \equiv a(a-b)\left(\bmod \pi_{1}\right)
$$

Thus,

$$
\left(\frac{\varepsilon \sqrt{2}, d}{\pi_{1}}\right)=\left[\frac{\varepsilon \sqrt{2}}{\pi_{1}}\right]=\left(\frac{a(a-b)}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{a-b}{p}\right)
$$

But $(a-b)(a+b)=a^{2}-b^{2}=p+b^{2}$, so if $a-b=2^{i} c$ with c odd, we have

$$
\left(\frac{a-b}{p}\right)=\left(\frac{2}{p}\right)^{i}\left(\frac{c}{p}\right)=\left(\frac{c}{p}\right)=\left(\frac{-p}{c}\right)=\left(\frac{b^{2}}{c}\right)=1
$$

Hence,

$$
\left(\frac{\varepsilon \sqrt{2}, d}{\pi_{1}}\right)=\left(\frac{a}{p}\right)=(-1)^{(p+1) / 8}
$$

Thus, for $p \equiv 7(\bmod 8)$, we have the following table of generic characters:

Norm \backslash Character	$\sqrt{2}$	π_{1}	π_{2}
$\varepsilon \sqrt{2}$	1	$(-1)^{(p+1) / 8}$	$(-1)^{(p+1) / 8}$
π_{1}	$(-1)^{(p+1) / 8}$	1	$(-1)^{(p+1) / 8}$
π_{2}	$(-1)^{(p+1) / 8}$	$(-1)^{(p+1) / 8}$	1

If $p \equiv 7(\bmod 16)$, then none of the above lines are the same, so that $h \equiv 4(\bmod 8)$; if $p \equiv 15(\bmod 16)$, then all of the above lines are the same, so that $h \equiv 0(\bmod 16)$.

Now let $p \equiv 1(\bmod 8)$. Then

$$
\begin{aligned}
\left(\frac{\pi_{1}, d}{\pi_{2}}\right) & =\left(\frac{a}{p}\right)^{2}=\left(\frac{a^{2}}{p}\right)_{4}=\left(\frac{2 b^{2}}{p}\right)_{4} \\
& =\left(\frac{2}{p}\right)_{4}\left(\frac{b}{p}\right) .
\end{aligned}
$$

Setting $b=2^{i} c$ with c odd, we have

$$
\left(\frac{b}{p}\right)=\left(\frac{2}{p}\right)^{i}\left(\frac{c}{p}\right)=\left(\frac{c}{p}\right)=\left(\frac{p}{c}\right)=\left(\frac{a^{2}}{c}\right)=1
$$

Hence,

$$
\left(\frac{\pi_{1}, d}{\pi_{2}}\right)=\left(\frac{\pi_{2}, d}{\pi_{1}}\right)=\left(\frac{2}{p}\right)_{4}
$$

Now

$$
\left(\frac{\varepsilon \sqrt{2,} d}{\pi_{2}}\right)=\left(\frac{a}{p}\right)\left(\frac{a-b}{p}\right)=\left(\frac{2}{p}\right)_{4}\left(\frac{a-b}{p}\right)
$$

Since $(a-b)(a+b)=p+b^{2}$, we have

$$
\left(\frac{a-b}{p}\right)=\left(\frac{p}{a-b}\right)=\left(\frac{-b^{2}}{a-b}\right)=\left(\frac{-1}{a-b}\right)
$$

A paper of G. Pall [2] contains a table, part of which we re-
produce here:

$$
p=a^{2}-2 b^{2}=u^{2}+v^{2}, \quad v \text { even }
$$

$p(\bmod 16)$	$v(\bmod 8)$	$a(\bmod 8)$	$b(\bmod 4)$
1	4	7	0
1	4	5	2
1	0	3	2
1	0	1	0
9	0	1	2
9	0	3	0
9	4	5	0
9	4	7	2

Thus, if $p \equiv 1(\bmod 16)$, then $(-1 /(a-b))=1$ if and only if $v \equiv 0(\bmod 8)$, and if $p \equiv 9(\bmod 16)$, then $(-1 /(a-b))=1$ if and only if $v \equiv 4(\bmod 8)$, so

$$
\left(\frac{-1}{a-b}\right)=(-1)^{v / 4}(-1)^{(p-1) / 8}
$$

Now, Dirichlet's necessary and sufficient condition that $(2 / p)_{4}=1$ is that $v \equiv 0(\bmod 8)$. Hence, $(2 / p)_{4}=(-1)^{v / 4}$;

$$
\begin{aligned}
\left(\frac{\varepsilon \sqrt{ } 2, d}{\pi_{1}}\right) & =\left(\frac{a}{p}\right)\left(\frac{a-b}{p}\right)=\left(\frac{2}{p}\right)_{4}\left(\frac{-1}{a-b}\right) \\
& =\left(\frac{2}{p}\right)_{4}(-1)^{v / 4}(-1)^{(p-1) / 8} \\
& =\left(\frac{2}{p}\right)_{4}\left(\frac{2}{p}\right)_{4}(-1)^{(p-1) / 8}=(-1)^{(p-1) / 8}
\end{aligned}
$$

We thus have the following table:

Norm \backslash Character	$\sqrt{2}$	π_{1}	π_{2}
$\varepsilon \sqrt{2}$	1	$(-1)^{(p-1) / 8}$	$(-1)^{(p-1) / 8}$
π_{1}	$(-1)^{(p-1) / 8}$	$(-1)^{(p-1) / 8}\left(\frac{2}{p}\right)_{4}$	$\left(\frac{2}{p}\right)_{4}$
π_{2}	$(-1)^{(p-1) / 8}$	$\left(\frac{2}{p}\right)_{4}$	$(-1)^{(p-1) / 8}\left(\frac{2}{p}\right)_{4}$

If $p \equiv 9(\bmod 16)$, then each line is different; thus, only the principal ambiguous class belongs to the principal genus, and so $H \simeq Z_{2} \times Z_{2}, h \equiv 4(\bmod 8)$.

If $p \equiv 1(\bmod 16)$, then there are either two or four ambiguous classes in the principal genus, according as $(2 / p)_{4}=-1$ or 1 . In these cases, $h \equiv 8$ or $0(\bmod 16)$, respectively.

Theorem 8. If $m=p_{1} \cdots p_{t}$ with $\left(2 / p_{i}\right)=-1$ for all i, then

$$
h \equiv 2^{t}\left(\bmod 2^{t+1}\right)
$$

Comment. The proof is quite similar to the proof of Theorem 2 , so we omit it.

Theorem 9. Let $m=p q$ with $(2 / p)=1$ and $(2 / q)=-1$.
If $p \equiv 1(\bmod 8)$, then

$$
\begin{aligned}
h & \equiv 8(\bmod 16), \quad \text { if }\left(\frac{p}{q}\right) \neq(-1)^{(p-1) / 8} ; \\
& \equiv 16(\bmod 32), \quad \text { if }\left(\frac{2}{p}\right)_{4} \neq(-1)^{(p-1) / 8}=\left(\frac{p}{q}\right) ; \\
& \equiv 0(\bmod 32), \quad \text { otherwise } .
\end{aligned}
$$

If $p \equiv 7(\bmod 8)$, then

$$
\begin{aligned}
h & \equiv 8(\bmod 16), \quad \text { if } \quad\left(\frac{p}{q}\right) \neq(-1)^{(p+1) / 8} ; \\
& \equiv 16(\bmod 32), \quad \text { if } \quad q \equiv 3(\bmod 4) \quad \text { and } \quad\left(\frac{p}{q}\right)=(-1)^{(p+1) / 8}=-1 \\
& \equiv 0(\bmod 32), \quad \text { otherwise } .
\end{aligned}
$$

Comment. The proof involves straightforward extensions of the tables, constructed in the proof of Theorem 7, so we will omit it.
5. Numerical results. A slight modification of the methods described in [3] allow us to compute the relative class number $h^{*}=h / h_{0}$ of K. As $h_{0}=1$ for most small values of l, we have $h^{*}=h$ for almost all values within the range of our computations. In the tables below we list all fields within the range of our calculations, where the maximum power of dividing h^{*} exceeds the power predicted in $\S 3$. We have only computed values of h^{*} for the fields discussed in Theorems 1, 4, 5, 6, and 7. The column of the table headed by f gives the prime factorization of h^{*}.

Table 1				Table 1 (con't)			
$(d=-\varepsilon \sqrt{l} p, p \equiv 3 \bmod 4)$		$(d=-\varepsilon \sqrt{l} p, p \equiv 3 \bmod 4)$					
l	p	h^{*}	f	l	p	h^{*}	f
17	67	160	$2^{5} \cdot 5$	73	71	640	$2^{7} \cdot 5$
	103	32	$2^{5} \cdot$	89	67	128	2^{7}
	251	1088	$2^{6} \cdot 17$	97	47	64	2^{6}
	463	160	$2^{5} \cdot 5$		103	544	$2^{5} \cdot 17$
	23	32	2^{5}	113	7	160	$2^{5} \cdot 5$
	59	288	$2^{5} \cdot 9$	193	3	160	$2^{5} \cdot 5$
	83	1184	$2^{5} \cdot 37$		47	576	$2^{6} \cdot 3^{2}$
	139	832	$2^{6} \cdot 13$	233	71	5696	$2^{6} \cdot 89$
	163	1312	$2^{5} \cdot 41$		107	800	$2^{5} \cdot 5^{2}$
	223	256	2^{8}	$257 *$	11	64	2^{6}
	271	160	$2^{5} \cdot 5$		23	640	$2^{6} \cdot 5$
	283	3328	$2^{8} \cdot 13$		67	416	$2^{5} \cdot 13$
	379	2080	$2^{5} \cdot 5 \cdot 13$	281	59	160	$2^{5} \cdot 5$
	491	2592	$2^{5} \cdot 3^{4}$				

(*) $h_{0}=3$ when $l=257$.

Table 2				Table 2 (con't)			
$(d=-\varepsilon \sqrt{l} p, p \equiv 1 \bmod 4)$		$(d=-\varepsilon \sqrt{l} p, p \equiv 1 \bmod 4)$					
l	p	h^{*}	f	l	p	h^{*}	f
17	149	320	$2^{6} \cdot 5$	41	173	1856	$2^{6} \cdot 29$
	157	512	2^{9}		181	1088	$2^{6} \cdot 17$
	229	640	$2^{7} \cdot 5$		197	2048	2^{11}
	293	640	$2^{7} \cdot 5$		229	1600	$2^{6} \cdot 5^{2}$
	353	1024	2^{10}		269	1600	$2^{6} \cdot 5^{2}$
	389	1600	$2^{6} \cdot 5^{2}$		293	3200	$2^{7} \cdot 5^{2}$
	409	832	$2^{6} \cdot 13$		373	4096	2^{12}
41	53	832	$2^{6} \cdot 13$		389	2176	$2^{7} \cdot 17$
	61	320	$2^{6} \cdot 5$		433	5248	$2^{7} \cdot 41$
	109	576	$2^{6} \cdot 3^{2}$	73	41	320	$2^{6} \cdot 5$

Table 2 (con't)				Table 2 (con't)			
$(d=-\varepsilon \sqrt{l} p, p \equiv 1 \bmod 4)$				$(d=-\varepsilon \sqrt{l} p, p \equiv 1 \bmod 4)$			
l	p	h^{*}	f	l	p	h^{*}	f
78	89	512	2^{9}	137	73	1280	$2^{8} \cdot 5$
	109	2368	$2^{6} \cdot 37$		109	3136	$2^{6} \cdot 7^{2}$
89	73	2560	$2^{9} \cdot 5$	193	101	10816	$2^{6} \cdot 13^{2}$
	97	2560	$2^{9} \cdot 5$	233	29	1280	$2^{8} \cdot 5$
97	53	512	2^{9}		37	2304	$2^{8} \cdot 3^{2}$
	101	832	$2^{6} \cdot 13$	241	5	128	2^{7}
	109	3904	$2^{6} \cdot 61$		61	4608	$2^{9} \cdot 3^{\prime}$
113	17	320	$2^{6} \cdot 5$		97	16000	$2^{7} \cdot 5^{3}$
	41	1088	$2^{6} \cdot 17$	257	17	832	$2^{6} \cdot 13$
	53	832	$2^{6} \cdot 13$		41	2560	$2^{9} \cdot 5$
	73	1600	$2^{6} \cdot 5^{2}$		73	3200	$2^{7} \cdot 5^{2}$
	89	3712	$2^{7} \cdot 29$		89	4672	$2^{6} \cdot 73$
	97	4352	$2^{8} \cdot 17$	281	29	1600	$2^{6} \cdot 5^{2}$
	109	1664	$2^{7} \cdot 13$		101	2176	$2^{7} \cdot 17$
137	5	128	2^{7}		109	6400	$2^{8} \cdot 5^{2}$
	53	1664	$2^{7} \cdot 13$				

Note: For tables 1 and $2, p<500$ when $l=17$ or 41 and $p<$ 110 otherwise.

Table 3

$$
(d=-m \varepsilon \sqrt{l}, m=1 \text { or } 2)
$$

l	m	h^{*}	f
257	1	32	2^{5}
337	1	256	2^{8}
89	2	64	2^{6}
113	2	32	2^{5}
233	2	128	2^{7}

Table 5 (con't)		Table 5 (con't)			
$(d=-\varepsilon \sqrt{2} p$)		$(d=-\varepsilon \sqrt{2} p)$			
p	h^{*}	f	p	h^{*}	f
367	160	$2^{5} \cdot 5$	1279	640	$2^{7} \cdot 5$
431	320	$2^{6} \cdot 5$	1423	1088	$2^{6} \cdot 17$
463	640	$2^{7} \cdot 5$	1439	1600	$2^{6} \cdot 5^{2}$
479	160	$2^{5} \cdot 5$	1553	800	$2^{5} \cdot 5^{2}$
577	416	$2^{5} \cdot 13$	1601	640	$2^{7} \cdot 5$
751	576	$2^{6} \cdot 3^{2}$	1663	1088	$2^{6} \cdot 17$
1039	800	$2^{5} \cdot 5^{2}$	1759	1664	$2^{7} \cdot 13$
1151	640	$2^{7} \cdot 5$	1823	1184	$2^{5} \cdot 5 \cdot 17$
1153	544	$2^{5} \cdot 17$	1889	1184	$2^{5} \cdot 37$
1201	1088	$2^{6} \cdot 17$	1951	1312	$2^{5} \cdot 41$
1217	512	2^{9}			

References

1. Ezra Brown and Charles J. Parry, The 2-class group of certain biquadratic number fields, J. reine und angew, Math., 295 (1977), 61-71.
2. Gordon Pall, Discriminantal divisors of binary quadratic forms, J. Number Theory, 1 (1969), 525-533.
3. Charles J. Parry, Real quadratic fields with class number divisible by 5, Math. of Comp., 31 (1977), 1019-1029.

Received February 23, 1977.
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

