PEIRCE IDEALS IN JORDAN ALGEBRAS

Kevin McCrimmon

Abstract

In attempting to investigate infinite-dimensional simple Jordan algebras J having rich supplies of idempotents, it would be helpful to know that the Peirce subalgebra $J_{1}(e)$ relative to an idempotent e in J remains simple. This clearly holds for associative and alternative algebras because any ideal in a Peirce space is the projection of a global ideal. The corresponding result is false for Jordan algebras: there are multiplications of the ambient algebra J which send J_{1} to itself (therefore leave invariant the projection of a global ideal), but are not expressible as multiplication by elements of J_{1} (therefore need not leave invariant an arbitrary ideal of J_{1}). We show that an ideal K_{1} is the projection of a global ideal iff it is invariant under the multiplications $V_{J_{1 / 2}, J_{1 / 2}}$ and $U_{J_{1 / 2}} U_{J_{1 / 2}}$. This yields an explicit expression for the global ideal generated by a Peirce ideal. We then show that if J is a simple Jordan algebra with idempotent, the Peirce subalgebras J_{1} and J_{0} inherit simplicity.

Throughout we consider a quadratic Jordan algebra J over an arbitrary ring of scalars Φ with product

$$
U_{x} y
$$

quadratic in x and linear in y. Linearization yields a trilinear product

$$
\{x y z\}=U_{x, z} y=V_{x, y} z
$$

(See [1] for basic results on quadratic Jordan algebras.) If e is an idempotent element of $J, e^{2}=e$, then we have a Peirce decomposition $J=J_{1} \oplus J_{1 / 2} \oplus J_{0}$ where J_{1}, J_{0} are subalgebras. We wish to relate the ideals in these Peirce subalgebras J_{i} to ideals in the ambient algebra J.

Analogous results hold for Jordan triple systems. However, in this case U_{e} is merely an involution on J_{1} rather than the identity map, and this causes such technical complications in the Peirce identities that the basic argument is lost sight of. We prefer to do the simpler Jordan algebra case first, and treat the triple system case separately [3].

We recall a few basic identities satisfied by Jordan algebras:
(0.1) $U_{U(x) y}=U_{x} U_{y} U_{x}$
(0.2) $U_{V(x, y)_{z}}=U_{z} U_{y} U_{z}+U_{z} U_{y} U_{x}+V_{x, y} U_{z} V_{y, x}-U_{U(x) U(y) z, z}$
(0.3) $U_{V(x, y) z, z}=V_{x, y} U_{z}+U_{z} V_{y, x}$
(0.4) $U_{x} U_{y, z}=V_{z, y} V_{x, z}-V_{U(x) Y, z}$
(0.5) $\quad U_{y, z} U_{x}=V_{y, x} V_{z, x}-V_{y, U(x) z}$
(0.6) $\{x x y\}=x^{2} \circ y, V_{x, x}=V_{x^{2},} V_{x, y}+V_{y, x}=V_{x \circ y}$.

In a Peirce decomposition we have the following identities for $i=$ 1,0 and $j=1-i$:
(P1) $U_{x_{i}{ }^{\circ} y_{1 / 2}}=U_{x_{i}} U_{y_{1 / 2}}$ on $J_{j}\left(x_{i} \in J_{i}, y_{1 / 2} \in J_{1 / 2}\right)$
(P2) $U_{x_{i}{ }^{\circ} y_{1 / 2}}=U_{y_{1 / 2}} U_{x_{i}}$ on J_{i}
(P3) $U_{x_{1 / 2}} y_{1 / 2}=x_{1 / 2} \circ E_{i}\left(x_{1 / 2} \circ y_{1 / 2}\right)-y_{1 / 2} \circ E_{j}\left(x_{1 / 2}^{2}\right)$
(P4) $\left\{x_{1 / 2} a_{i} y_{1 / 2}\right\}=E_{j}\left(x_{1 / 2} \circ\left(a_{i} \circ y_{1 / 2}\right)\right)$
(P5) $\left\{x_{1 / 2} y_{1 / 2} a_{i}\right\}=E_{i}\left(x_{1 / 2} \circ\left(x_{1 / 2} \circ a_{i}\right)\right)$
(P6) $a_{i} \circ\left(x_{1 / 2} \circ b_{j}\right)=\left\{a_{i} x_{1 / 2} b_{j}\right\}=\left(a_{i} \circ x_{1 / 2}\right) \circ b_{j}$
(P7) $a_{i}^{2} \circ x_{1 / 2}=a_{i} \circ\left(a_{i} \circ x_{1 / 2}\right) \quad\left(V_{a_{i}^{2}}=V_{a_{i}}^{2}\right.$ on $\left.J_{1 / 2}\right)$
(P8) $U_{a i} b_{i} \circ x_{1 / 2}=a_{i} \circ\left(b_{i} \circ\left(a_{i} \circ x_{1 / 2}\right)\right) \quad\left(V_{U\left(a_{i}\right) b_{i}}=V_{a_{i}} V_{b_{i}} V_{a_{i}}\right.$ on $\left.\left.J_{1 / 2}\right)\right)$
(P9) $\left\{a_{i} b_{i} x_{1 / 2}\right\}=a_{i} \circ\left(b_{i} \circ x_{1 / 2}\right)$
where E_{i} denotes the Peirce projection on the Peirce space J_{i}.

1. Ideal-building. A subspace K of a Jordan algebra is an ideal if it is both an outer ideal

$$
\begin{equation*}
U_{\hat{J}} K \subset K \quad\left(U_{J} K \subset K, V_{J} K \subset K\right) \tag{1.1}
\end{equation*}
$$

and an inner ideal

$$
\begin{equation*}
U_{K} \hat{J} \subset K \quad\left(U_{K} J \subset K, K^{2} \subset K\right) \tag{1.2}
\end{equation*}
$$

Here $\hat{J}=\Phi 1+J$ denotes the unital hull of the Jordan algebra J; if J is itself unital then $\hat{J}=J$, and the conditions $V_{J} K \subset K$ and $K^{2} \subset K$ are superfluous ($V_{x}=U_{x, 1}, x^{2}=U_{x} 1$). A useful observation is that once K is known to be an outer ideal it is an inner ideal as soon as

$$
\begin{equation*}
U_{k_{i}} J \subset K \text { for some spanning set }\left\{k_{i}\right\} \text { of } K \tag{1.3}
\end{equation*}
$$

From now on we fix an idempotent e in J and consider the corresponding Peirce decomposition

$$
J=J_{1} \oplus J_{1 / 2} \oplus J_{0}
$$

Then the unital hull $\hat{J}=\Phi 1+J=\Phi(1-e)+J$ can be identified with $J_{1} \oplus J_{1 / 2} \oplus \widehat{J}_{0}$. Note that any ideal $K \triangleleft J$ is invariant under the Peirce projections E_{i} since these are multiplication operators, therefore K is the direct sum of its Peirce components

$$
K=K_{1} \oplus K_{1 / 2} \oplus K_{0} \quad\left(K_{i}=K \cap J_{i}\right)
$$

Triple products of Peirce elements largely reduce to simpler bilinear products:

$$
\begin{aligned}
& U_{x_{1}+x_{1 / 2}+x_{0}}\left(y_{1}+y_{1 / 2}+y_{0}\right)=U_{x_{1}} y_{1}+U_{x_{1 / 2}}\left(y_{1}+y_{1 / 2}+y_{0}\right)+U_{x_{0}} y_{0} \\
& \quad+\left\{x_{1} y_{1 / 2} x_{0}\right\}+\left\{x_{1} y_{1} x_{1 / 2}\right\}+\left\{x_{0} y_{0} x_{1 / 2}\right\}+\left\{x_{1} y_{1 / 2} x_{1 / 2}\right\}+\left\{x_{0} y_{1 / 2} x_{1 / 2}\right\}
\end{aligned}
$$

$$
\begin{align*}
= & U_{x_{1}} y_{1}+U_{x_{1 / 2}}\left(y_{1}+y_{0}\right)+\left\{x_{1 / 2} \circ E_{1}\left(x_{1 / 2} \circ y_{1 / 2}\right)-y_{1 / 2} \circ E_{0}\left(x_{1 / 2}^{2}\right)\right\} \tag{1.4}\\
& +U_{x_{0}} y_{0}+x_{1} \circ\left(x_{0} \circ y_{1 / 2}\right)+x_{1} \circ\left(y_{1} \circ x_{1 / 2}\right)+x_{0} \circ\left(y_{0} \circ x_{1 / 2}\right) \\
& +E_{1}\left(\left(x_{1} \circ y_{1 / 2}\right) \circ x_{1 / 2}\right)+E_{0}\left(\left(x_{0} \circ y_{1 / 2}\right) \circ x_{1 / 2}\right) .
\end{align*}
$$

Correspondingly, the ideal conditions (1.1), (1.2) for K reduce to simpler conditions on the Peirce components K_{i}.

Ideal criterion 1.5. A subspace $K=K_{1} \oplus K_{1 / 2} \oplus K_{0}$ is an ideal of a Jordan algebra $J=J_{1} \oplus J_{1 / 2} \oplus J_{0}$ iff for $i=1,0, j=1-i$
(C1) K_{i} is an ideal in J_{i}
(C2) $E_{i}\left(J_{1 / 2} \circ K_{1 / 2}\right) \subset K_{i}$
(C3) $J_{i} \circ K_{1 / 2} \subset K_{1 / 2}$
(C4) $K_{i} \circ J_{1 / 2} \subset K_{1 / 2}$
(C5) $U_{J_{1 / 2}} K_{i} \subset K_{j}$
(C6) $U_{k_{1} / 2} \hat{J}_{i} \subset K_{j}$ for some spanning set $\left\{k_{1 / 2}\right\}$ of $K_{1 / 2}$. If $1 / 2 \in \Phi$ the conditions (C5), (C6) are superfluous.

Proof. Clearly these inclusions are all necessary by the Peirce relations and the fact that any product involving a factor from an ideal falls back in that ideal.

A routine calculation shows (C1)-(C5) suffice to establish outerness: $U_{\hat{j}} K \subset K$ follows from (1.4) since $U_{\hat{J}_{i}} K_{i} \subset K_{i}$ by (C1); $U_{J_{1 / 2}} K_{i} \subset K_{j}$ by (C5); $J_{1 / 2} \circ E_{i}\left(J_{1 / 2} \circ K_{1 / 2}\right) \subset K_{1 / 2}$ by (C2), (C4); $K_{1 / 2} \circ E_{0}\left(J_{1 / 2}^{2}\right) \subset K_{1 / 2}$ by (C3); $J_{1} \circ\left(\hat{J}_{0} \circ K_{1 / 2}\right) \subset K_{1 / 2}$ by (C 3) (noting $\hat{J}_{0} \circ K_{1 / 2}=\Phi e_{0} \circ K_{1 / 2}+J_{0} \circ K_{1 / 2}=$ $\Phi K_{1 / 2}+J_{0} \circ K_{1 / 2}$ since $\left.e_{0} \circ x_{1 / 2}=x_{1 / 2}\right) ; \hat{J}_{i} \circ\left(K_{i} \circ J_{1 / 2}\right) \subset K_{1 / 2}$ by (C4), (C3); $E_{i}\left(J_{1 / 2} \circ\left(\hat{J}_{i} \circ K_{1 / 2}\right)\right) \subset K_{i}$ by (C3), (C2).

Once we have outerness, innerness (1.3) follows for the spanning set of elements $k_{i} \in K_{i}(i=1,0)$ and the given $k_{1 / 2} \in K_{1 / 2}$ since $U_{K_{i}} \hat{J}=$ $U_{k_{i}} \hat{J}_{i} \subset K_{i}$ by (C1), $U_{k_{1}^{\prime} 2} \hat{J}_{i} \subset K_{j}$ by (C6), and $U_{k_{1 / 2} / 2} J_{1 / 2}=k_{1 / 2} \circ E_{1}\left(k_{1 / 2} \circ J_{1 / 2}\right)-$ $J_{1 / 2} \circ E_{0}\left(k_{1 / 2}^{2}\right) \subset K_{1 / 2}$ by (C3), (C4), and $E_{0}\left(k_{1 / 2}^{2}\right)=U_{k_{1 / 2}} e_{1} \in K_{0}$ by (C6).

Since $2 U_{x}=U_{x, x}$ and always $U_{J_{1 / 2}, J_{1 / 2}} K_{i}=E_{j}\left(J_{1 / 2} \circ\left(K_{i} \circ J_{1 / 2}\right)\right) \subset K_{j}$ by (C4), (C2), $U_{J_{1 / 2}, K_{1 / 2}} \hat{J}_{i}=E_{j}\left(J_{1 / 2} \circ\left(J_{i} \circ K_{1 / 2}\right)\right) \subset K_{j}$ by (C3), (C2), we see that (C5), (C6) are consequences of (C2)-(C4) when $1 / 2 \in \Phi$.

REMARK 1.6. In characteristic 2 situations we cannot dispense with (C5) and (C6)-they really are necessary in addition to the other conditions. For example, if J is the special Jordan algebra $\Phi e_{11}+$ $\Phi\left(e_{12}+e_{21}\right)+\Phi e_{22}$ of symmetric 2×2 matrices over Φ of characteristic 2 , then relative to $e=e_{11}$ we have $J_{1}=\Phi e_{11}, J_{1 / 2}=\Phi\left(e_{12}+e_{21}\right), J_{0}=\Phi e_{22}$ so $J_{1 / 2} \circ J_{1 / 2}=2 \Phi\left(e_{12}+e_{21}\right)^{2}=0$, and thus (C2) is automatic for any K. If we take $K_{1}=K_{0}=0, K_{1 / 2}=J_{1 / 2}$ then (C1)-(C5) hold trivially, but not (C6) since $U_{J_{1 / 2}} J_{i}=\Phi U_{e_{12}+e_{21}} e_{i i}=\Phi e_{j j}=J_{j} \neq 0$. Thus (C6) is not a consequence of the other conditions. If we take $K=\lambda \Phi e_{11}, K_{1 / 2}=$ $\lambda \Phi\left(e_{12}+e_{21}\right), K_{0}=\lambda^{2} \Phi_{22}$ for noninvertible λ in a domain Φ of charac-
teristic 2, then (C1), (C2)-(C4) hold trivially, as does (C6) by

$$
U_{\lambda\left(e_{12}+e_{21}\right)}\left(\Phi e_{i i}\right)=\lambda^{2} \Phi e_{j j}
$$

but (C5) is not a consequence since $U_{e_{12}+e_{21}}\left(\lambda \Phi e_{11}\right)=\lambda \Phi e_{22} \not \subset \lambda^{2} \Phi e_{22}=K_{0}$.
Next we introduce the key notions of invariance. An ideal K_{i} in a Peirce space $J_{i}(i=1,0)$ is invariant if it is both U-invariant

$$
\begin{equation*}
U_{J_{1 / 2}} U_{J_{1 / 2}} K_{i} \subset K_{i} \tag{1.7}
\end{equation*}
$$

and V-invariant

$$
\begin{equation*}
V_{J_{1 / 2}, J_{1 / 2}} K_{i}=E_{i}\left(J_{1 / 2} \circ\left(J_{1 / 2} \circ K_{1 / 2}\right)\right) \subset K_{i} . \tag{1.8}
\end{equation*}
$$

By the Peirce relations and (P5) the maps $U_{x_{1 / 2}} U_{y_{1 / 2}}$ and $V_{x_{1 / 2}, y_{1 / 2}}$ map J_{i} into itself, though in general they cannot be compressed into a multiplication from J_{i}.
V-invariance is the more fundamental notion, and goes a long way towards ensuring U-invariance. For example, the special case $z=y$ in (0.4) shows

$$
\begin{equation*}
2 U_{x} U_{y}=V_{x, y} V_{x, y}-V_{U(x) y, y}, \tag{1.9}
\end{equation*}
$$

so whenever we can divide by $2 V$-invariance implies U-invariance.
We can flip an invariant ideal from one diagonal Peirce space to the other.

Flipping Lemma 1.10. If K_{i} is an ideal in a Peirce space $J_{i}(i=1,0)$ then $K_{j}=U_{J_{1 / 2}} K_{i}$ is an ideal in J_{j}. If K_{i} is V-invariant or U-invariant, so is the fipped ideal K_{j}.

Proof. K_{j} is outer since $U_{\hat{J}_{j}} K_{j}=U_{\hat{J}_{j}} U_{J_{1 / 2}} K_{i}=U_{\hat{J}_{j}{ }^{\circ} J_{1 / 2}} K_{i}($ by $(\mathrm{P} 1)) \subset$ $U_{J_{1 / 2}} K_{i}=K_{j}$ as in (1.1), and for the spanning set of elements $k_{j}=$ $U_{y_{1 / 2}} k_{i}$ we have by (0.1) $U_{k_{j}} J_{j}=U_{y_{1 / 2}} U_{k_{i}} U_{y_{1 / 2}} J_{j}($ by $(0.1)) \subset U_{J_{1 / 2}} U_{K_{i}} J_{i} \subset$ $U_{J_{1 / 2}} K_{i}=K_{j}$, so by (1.3) K_{j} is an ideal. If K_{i} is V-invariant so is K_{j}, since by (0.3) $V_{J_{1 / 2}, J_{1 / 2}} K_{j}=V_{J_{1 / 2}, J_{1 / 2}} U_{J_{1 / 2}} K_{i} \subset\left\{U_{V\left(J_{1 / 2}, J_{1 / 2}\right) J_{1 / 2}, J_{1 / 2}}\right.$ $\left.U_{J_{1 / 2}} V_{J_{1 / 2}, J_{1 / 2}}\right) K_{i} \subset U_{J_{1 / 2}} K_{i}+U_{J_{1 / 2}}\left(V_{J_{1 / 2}, J_{1 / 2}} K_{i}\right) \subset U_{J_{1 / 2}} K_{i} \quad$ (by $\quad V$-invariance of K_{i}) $=K_{j}$, and K_{j} trivially inherits U-invariance

$$
U_{J_{1 / 2} / 2} U_{J_{1 / 2}} K_{j}=U_{J_{1 / 2}} U_{J_{1 / 2}} U_{J_{1 / 2}} K_{i} \subset U_{J_{1 / 2}} K_{i}
$$

(by U-invariance) $=K_{j}$.
Now we are ready to establish the main result of this section, describing the global ideal generated by an invariant Peirce ideal.

Projection Theorem 1.11. An ideal K_{i} in a Peirce space
$J_{i}(i=1,0)$ is the Peirce projection of a global ideal K in J iff K_{i} is invariant. In this case the ideal generated by K_{i} takes the form

$$
K=K_{i} \oplus K_{i} \circ J_{1 / 2} \oplus U_{J_{1 / 2}} K_{i}
$$

If $1 / 2 \in \Phi$ we have $U_{J_{1 / 2}} K_{i}=E_{j}\left(J_{1 / 2}{ }^{\circ}\left(K_{i} \circ J_{1 / 2}\right)\right)$.
Proof. We have already noted that if K_{i} is the projection of an ideal K then by the Peirce relations and invariance of K under all multiplications from J, K_{i} must be invariant. We must establish the converse. Since the ideal generated by K_{i} must certainly certain the above products, if we can show the above K actually is an ideal then we will have exhibited K_{i} as the projection of an ideal K which is thus precisely the ideal generated by K_{i}.

We verify the conditions of the Ideal Criterion (1.5). K_{i} is an invariant ideal in J_{i} by hypothesis, and $K_{j}=U_{J_{1 / 2}} K_{i}$ is an invariant ideal in J_{j} by the Flipping Lemma 1.10. Thus (C1) holds. For (C2), note $E_{i}\left(J_{1 / 2} \circ K_{1 / 2}\right)=E_{i}\left(J_{1 / 2} \circ\left(J_{1 / 2} \circ K_{i}\right)\right)=\left\{J_{1 / 2} J_{1 / 2} K_{i}\right\}=V_{J_{1 / 2}, J_{1 / 2}} K_{i} \subset K_{i}$ by (P5) and V-invariance, also $E_{j}\left(J_{1 / 2} \circ K_{1 / 2}\right)=\left\{J_{1 / 2} K_{i} J_{1 / 2}\right\} \subset U_{J_{1 / 2}} K_{i}=K_{j}$ by (P4). For (C3), $J_{j} \circ K_{1 / 2}=J_{j} \circ\left(K_{i} \circ J_{1 / 2}\right)=K_{i} \circ\left(J_{j} \circ J_{1 / 2}\right) \subset K_{i} \circ J_{1 / 2}=K_{1 / 2}$ by (P6), while $J_{i} \circ K_{1 / 2}=J_{i} \circ\left(K_{i} \circ J_{1 / 2}\right)=\left(J_{i} \circ K_{i}\right) \circ J_{1 / 2}-K_{i} \circ\left(J_{i} \circ J_{1 / 2}\right) \subset$ $K_{i} \circ J_{1 / 2}=K_{1 / 2}$ by (P7) and the fact that $K_{i} \triangleleft J_{i}$. For (C4) we have $K_{i} \circ J_{1 / 2}=K_{1 / 2}$ by definition, and $K_{j} \circ J_{1 / 2}=U_{J_{1 / 2}} K_{i} \circ J_{1 / 2} \subset-U_{J_{1 / 2}} J_{1 / 2} \circ K_{i}+$ $J_{1 / 2} \circ\left\{K_{i} J_{1 / 2} J_{1 / 2}\right\}$ (linearized (0.6)) $\subset J_{1 / 2} \circ K_{i}+J_{1 / 2} \circ V_{J_{1 / 2}, J_{1 / 2}} K_{i}=J_{1 / 2} \circ K_{i}=$ $K_{1 / 2}$ by V-invariance of K_{i}. For (C5), $U_{J_{1 / 2}} K_{i}=K_{j}$ by definition, while $U_{J_{1 / 2}} K_{i}=U_{J_{1 / 2}} U_{J_{1 / 2}} K_{i} \subset K_{i}$ by U-invariance of K_{i}. For (C6), the spanning elements $k_{1 / 2}=k_{i} \circ y_{1 / 2}$ satisfy $U_{k_{i} \circ y_{1 / 2} / 2} \hat{J}_{i}=U_{y_{1 / 2}} U_{k_{i}} \hat{J}_{i} \subset U_{J_{1 / 2}} K_{j}=K_{j}$ by (P2) and $K_{i} \triangleleft J_{i}$, similarly $U_{k_{i}{ }^{\circ} y_{1 / 2}} \hat{J}_{j}=U_{k_{i}} U_{y_{1 / 2}} \widehat{J}_{j} \subset U_{k_{i}} J_{i} \subset K_{i}$ by (P1) and $K_{i} \triangleleft J_{i}$. Thus (C1-C6) hold, and K is an ideal.

Example 1.12. The connector ideal generated by an off-diagonal Peirce space $J_{1 / 2}$ is

$$
I\left(J_{1 / 2}\right)=U_{J_{1 / 2}} J_{0} \oplus J_{1 / 2} \oplus U_{J_{1 / 2}} J_{1}
$$

Proof. It suffices to verify conditions (C1-C6) of (1.5): (C3-C6) are automatic since $K_{1 / 2}=J_{1 / 2}, K_{j}=U_{J_{1 / 2}} \hat{J}_{i}$; (C1) follows from the Flipping Lemma 1.10 applied to \widehat{J}_{i} in J; (C2) follows from $E_{i}\left(J_{1 / 2} \circ J_{1 / 2}\right)=$ $\left\{J_{1 / 2} \hat{e}_{j} J_{1 / 2}\right\} \subset U_{J_{1 / 2}} \hat{e}_{j} \subset K_{i}$ by (P4).

Example 1.13. If Z_{i} denotes the kernel of the Peirce specialization of J_{i} on $J_{1 / 2}$,

$$
Z_{i}=\left\{z_{i} \in J_{i} \mid z_{i} \circ J_{1 / 2}=0\right\}
$$

then $Z=Z_{1} \oplus Z_{0}$ is an ideal in J which annihilates the connector ideal, $U_{Z} I\left(J_{1 / 2}\right)=0$.

Proof. Any time K has $K_{1 / 2}=0$ the conditions (C2), (C3), (C6) become vacuous and (C4) becomes the condition $K_{i} \subset Z_{i}$. If we take $K_{i}=Z_{i}(\mathrm{C} 4)$ is thus satisfied, as is (C1) since the Peirce specialization is a homomorphism of J_{i} into End ($J_{1 / 2}$) by (P7), (P8) and therefore its kernel is an ideal. Moreover, these are interchanged by $U_{J_{12}}$ as in (C5) since $U_{x_{1 / 2}} z_{i} \circ y_{1 / 2}=V_{y_{1 / 2}} U_{x_{1 / 2}} z_{i}=\left\{U_{x_{1 / 2}, y_{1 / 2} x_{1 / 2}}-U_{x_{1 / 2}} V_{y_{1 / 2}}\right\} z_{i}$ (by (0.3) with $x=1)=\left\{x_{1 / 2} z_{i} E_{i}\left(y_{1 / 2} \circ x_{1 / 2}\right)\right\}-U_{x_{12}} V_{y_{1 / 2}} z_{i}=\left(x_{1 / 2} \circ z_{i}\right) \circ E_{i}\left(y_{1 / 2} \circ x_{1 / 2}\right)-$ $U_{x_{1 / 2}}\left(y_{1 / 2} \circ z_{i}\right)=0$ by (P9) if $z_{i} \circ x_{1 / 2}=z_{i} \circ y_{1 / 2}=0$.

Thus Z is an ideal in $J \cdot U_{Z} I\left(J_{1 / 2}\right)=0$ since by (1.4) we have $U_{z_{1}+z_{0}}\left(k_{1}+k_{1 / 2}+k_{0}\right)=U_{z_{1}} k_{1}+U_{z_{0}} k_{0}+z_{1} \circ\left(y_{1 / 2} \circ z_{0}\right)=0$ where $U_{z_{i}} K_{i}=$ $U_{z_{i}} U_{J_{1 / 2}} J_{j}=U_{z_{i} \circ J_{1 / 2}} J_{j}$ by (P1) and $Z_{i} \circ J_{1 / 2}=0$.

Proposition 1.14. If J is a prime Jordan algebra and $e \neq 1,0$ a proper idempotent, then $J_{1 / 2} \neq 0$ and the Peirce specializations of J_{1} and J_{0} on $J_{1 / 2}$ are faithful (hence J_{1}, J_{0} are special Jordan algebras).

Proof. If $J_{1 / 2}=0$ then $J=J_{1} \boxplus J_{0}$ would be a direct sum of ideals, whereupon primeness would force $J=J_{1}$ (hence $e=1$) or $J=$ J_{0} (hence $e=0$). Thus $J_{1 / 2}$ cannot vanish if e is proper. Then $U_{Z} I\left(J_{1 / 2}\right)=0$ for $I\left(J_{1 / 2}\right) \neq 0$ forces $Z=0$ by primeness.

Thus in any prime exceptional Jordan algebra J, as soon as we examine a proper piece $J_{1}(e)$ or $J_{0}(e)$ it is special (in some sense J has no smaller exceptional pieces), and exceptionality results only from the way J_{1} and J_{0} are tied together via $J_{1 / 2}$

In $\S 4$ we will see that when J is simple the same is true of J_{1} and J_{0}, so J is built up of pieces which are simple and special.

Note that if J is simple and e proper we have $J_{1 / 2} \neq 0$ by 1.14, so by simplicity $I\left(J_{1 / 2}\right)=J$ and by (1.12) we have

$$
\begin{equation*}
U_{J_{1 / 2} / 2} \hat{J}_{0}=J_{1}, \quad U_{J_{1 / 2}} J_{1}=J_{0} \tag{1.15}
\end{equation*}
$$

We can improve on this by removing the hat from J_{0}. To do this we need to look at the ideal generated by J_{0}. Trivially J_{i} is an invariant ideal in J_{i}, and $J_{1} \circ J_{1 / 2}=e \circ J_{1 / 2}=J_{1 / 2}$, so by 1.11 we have

Example 1.16. The ideal in J generated by a diagonal Peirce space $J_{i}(e)$ is

$$
\begin{array}{ll}
(i=1) & I\left(J_{1}\right)=J_{1} \oplus J_{1 / 2} \oplus U_{J_{1 / 2}} J_{1} \\
(i=0) & I\left(J_{0}\right)=J_{0} \oplus J_{0} \circ J_{1 / 2} \oplus U_{J_{1 / 2}} J_{0}
\end{array}
$$

If J is simple then $e \neq 0$ implies $J_{1} \neq 0$ and hence $I\left(J_{1}\right)=J_{1}$, once more leading to $U_{J_{1 / 2}} J_{1}=J_{0}$. If we knew $e \neq 1$ implied $J_{0} \neq 0$ we could similarly deduce $I\left(J_{0}\right)=J$ by simplicity and hence $U_{J_{1 / 2}} J_{0}=J_{1}$ (without the hat).

Surprisingly, it takes a bit of arguing to establish $J_{0} \neq 0$. Suppose in fact $J_{0}=0$. Then for $z_{1 / 2} \in J_{1 / 2}$ we would have $z_{1 / 2}^{2} \in J_{1}+J_{0}=J_{1}$, and $z_{1}=z_{1 / 2}^{2}$ would be trivial since $U_{z_{1}} J=U_{z_{1}} J_{1}=U_{z_{1 / 2}} U_{z_{1 / 2}} J_{1} \subset U_{z_{1 / 2}} J_{0}=$ 0 . But a simple J with idempotent is not nil and therefore has no trivial elements, so $z_{1 / 2}^{2}=0$ and $z_{1 / 2} \circ w_{1 / 2}=0$ for all $z_{1 / 2}, w_{1 / 2} \in J_{1 / 2}$. But then by (1.4) $U_{z_{1 / 2}} w_{1 / 2}=z_{1 / 2} \circ E_{1}\left(z_{1 / 2} \circ w_{1 / 2}\right)-w_{1 / 2} \circ E_{0}\left(z_{1 / 2}^{2}\right)=0$, so $U_{z_{1 / 2}} J_{1 / 2}=$ 0 , and since already $U_{z_{1 / 2}} J_{1} \subset J_{0}=0$ we have $U_{z_{1 / 2}} J=0$ and $z_{1 / 2}$ would be trivial. Again J has no trivial elements, so $z_{1 / 2}=0, J_{1 / 2}=0$, contradicting 1.14.

Proposition 1.17. If J is a simple Jordan algebra and $e \neq 1,0$ a proper idempotent, then

$$
U_{J_{1 / 2}} J_{0}=J_{1}, \quad U_{J_{1 / 2}} J_{1}=J_{0}
$$

2. Invariance. To construct global ideals we must begin with invariant Peirce ideals. We now turn to the question of conditions under which an ideal is automatically invariant. Throughout this section we will be concerned with ideals K_{i} in a diagonal Peirce space $J_{i}(i=1,0)$.

While $V_{J_{1 / 2}, J_{1 / 2}} K_{i}$ and $U_{J_{1 / 2}} U_{J_{1 / 2}} K_{i}$ are not in general contained in K_{i}, they are in some sense contained in the "square root" and "fourth root" of $K_{i}: V_{J_{1 / 2}, J_{1 / 2}} \operatorname{maps} K_{i}^{2}$ into K_{i}, and $U_{J_{1 / 2}} U_{J_{1 / 2}}$ maps K_{i}^{4} into K_{i}. More precisely, we have the following useful technical result.

Lemma 2.1. For any ideal $K_{i} \triangleleft J_{i}$ we have

$$
\begin{equation*}
V_{J_{1 / 2}, J_{1 / 2}}\left(U_{K_{i}} \hat{J_{i}}\right) \subset K_{i} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{J_{1 / 2} / 2} U_{J_{1 / 2}}\left(U_{U\left(K_{i}\right) \hat{J}_{2}} \hat{J}_{i}\right) \subset K_{i} \tag{2.3}
\end{equation*}
$$

In general, for $x, y \in J_{1 / 2}, k \in K_{i}, a \in \widehat{J}_{i}$ we have

$$
\begin{gather*}
V_{x, y} U_{k} a=U_{V(x, y) k, k} a-U_{k} V_{y, x} a \in K_{i} \tag{2.4}\\
U_{x} U_{y} U_{k} a= \tag{2.5}\\
=U_{\{x y k k} a-U_{k} U_{y} U_{x} a-V_{x, y} U_{k} V_{y, x} a \\
\\
+U_{k, U(x) U(y) k} a \subset U_{\{x y k\}} a+K_{i}
\end{gather*}
$$

so that whenever $k \in K_{i}$ is V-invariant, $\{x y k\}=V_{x, y} k \in K_{i}$, then $U_{k} \hat{J}_{i}$ is U-invariant, $U_{x} U_{y}\left(U_{k} a\right) \in K_{i}$.

Proof. For (2.4) we have by (0.3) $V_{x, y} U_{k} a U_{\{x y k\rangle, k} a-U_{k} V_{y, x} a \in$ $U_{J_{i}, K i} a-U_{K_{i}} V_{y, x} a \subset K_{i}$ whenever $K_{i} \triangleleft J_{i}$. For (2.5) we use (0.2): $U_{|x y k|} a=\left[U_{x} U_{y} U_{k}+U_{k} U_{y} U_{x}+V_{x, y} U_{k} V_{y, x}-U_{k, U(x) U(y) k}\right] a \equiv U_{x} U_{y} U_{k} a$ modulo K_{i} since $U_{k} U_{y} U_{x} a \in U_{K_{i}} J_{i} \subset K_{i}, V_{x, y} U_{k} V_{y, x} a \in V_{x, y} U_{K_{i}} J_{i} \subset K_{i}$ by (2.4), and $U_{k, U(x) U(y) k} a \in U_{K_{i}, J_{i}} a \subset K_{i}$. Applying (2.4) to $k \in K_{i}, a \in \widehat{J}_{i}$ yields (2.2), and applying (2.5) to $k \in U_{K_{i}} \hat{J}_{i}$ (so $\{x y k\} \equiv 0$ by (2.2)) yields (2.3).

Example 2.6. If B_{i}, C_{i} are invariant ideals in J_{i} so is their product $U_{B_{i}} C_{i}$.

Proof. For V-invariance apply (2.4), for U-invariance apply (2.5).
Example 2.7. If K_{i} is an idempotent ideal in $J_{i}, U_{K_{i}} \hat{J}_{i}=K_{i}$, then K_{i} is invariant.

Example 2.8. If B_{α} are invariant ideals in J_{i} so is their sum $\sum B_{\alpha}$ and their intersection $\cap B_{\alpha}$.

Example 2.9. For any ideal $K_{i} \triangleleft J_{i}$ the infinite Penico derived ideal $P^{\infty}\left(K_{i}\right)=\bigcap P^{n}\left(K_{i}\right)$ is an invariant ideal $\left(P^{n+1}\left(K_{i}\right)=P\left(P^{n}\left(K_{i}\right)\right)\right.$ where $\left.P\left(L_{i}\right)=U_{L_{i}} \hat{J}_{i}\right)$. Similarly for the infinite derived ideal $D^{\infty}\left(K_{i}\right)$ (where $\left.D\left(L_{i}\right)=U_{L_{i}} L_{i}\right)$. Thus either K_{i} contains a nonzero invariant ideal, or else it is ∞-nilpotent: $P^{\infty}\left(K_{i}\right)=0$.

Proof. $\quad V$-invariance of $P^{\infty}\left(K_{i}\right)$ follows from (2.2),

$$
V_{J_{1 / 2}, J_{1 / 2}}\left(P^{n+1}\left(K_{i}\right)\right) \subset P^{n}\left(K_{i}\right),
$$

and U-invariance from (2.3), $U_{J_{1 / 2}} U_{J_{1 / 2}}\left(P^{n+2}\left(K_{i}\right)\right) \subset P^{n}\left(K_{i}\right)$. For $D^{\infty}\left(K_{i}\right)$ we use (2.4) to get V-invariance, $V_{J_{1 / 2}, J_{1 / 2}} D^{n+1}\left(K_{i}\right) \subset D^{n}\left(K_{i}\right)$ and (2.5) to get U-invariance, $U_{J_{1 / 2}} U_{J_{1 / 2}} D^{n+2}\left(K_{i}\right) \subset D^{n}\left(K_{i}\right)$ (note $V_{x, y} U_{d_{n+1}} V_{y, x} d_{n+1}^{\prime} \in$ $V_{x, y} U_{d_{n+1}} D^{n} \subset V_{x, y} D^{n+1} \subset D^{n}$ by the relation for the $\left.V^{\prime} \mathrm{s}\right)$.

We have seen in the Flipping Lemma 1.10 that one way of obtaining an invariant Peirce ideal to is flip an invariant ideal by $U_{J_{1 / 2}}$. Another way of obtaining an invariant Peirce ideal is to take the kernel of $U_{J_{1 / 2}}$ instead of the image.

Kernel Lemma 2.10. Ker $U_{J_{1 / 2}}=\left\{z \in J_{i}\left|U_{J_{1 / 2}} z=\right| U_{J_{1 / 2}} U_{z} \hat{J}_{i}=0\right\}$ is an invariant ideal in J_{i}.

Proof. $\quad K_{i}=\operatorname{Ker} U_{J_{1 / 2}}$ is trivially U-invariant ($U_{J_{1 / 2}} U_{J_{1 / 2}} K_{i}=0$), and is V-invariant because by $0.3 U_{J_{1 / 2}}\left(V_{x_{1 / 2}, y_{1 / 2}} z\right) \subset\left\{U_{\left\{y_{1 / 2} x_{1 / 2} J_{1 / 2} \mid, J_{1 / 2}\right.}-\right.$ $\left.V_{y_{1 / 2}, x_{1 / 2}} U_{J_{1 / 2}}\right\} z=0$, and by (0.2) and (0.3)

$$
\begin{aligned}
U_{J_{1 / 2}} & U_{V\left(x_{1 / 2}, y_{1 / 2}\right) z} \hat{J}_{i} \\
= & U_{J_{1 / 2}}\left\{U_{x_{1 / 2}} U_{y_{1 / 2}} U_{z}+U_{z} U_{y_{1 / 2}} U_{x_{1 / 2}}+V_{x_{1 / 2}, y_{1 / 2}} U_{z} V_{y_{1 / 2}, x_{1 / 2}}\right. \\
& \left.-U_{U\left(x_{1 / 2}\right) U\left(y_{1 / 2}\right) z, z}\right\} \hat{J}_{i} \subset U_{J_{1 / 2}}^{2}\left(U_{J_{1 / 2}} U_{z} \hat{J}_{i}\right)+U_{J_{1 / 2}}\left(U_{z} J_{i}\right) \\
& +\left\{U_{\left\{y_{1 / 2} x_{1 / 2} J_{1 / 2}\right\}, J_{1 / 2}}-V_{y_{1 / 2}, x_{1 / 2} / 2} U_{\left.J_{1 / 2}\right\}}\right\} U_{z} J_{i}-0=0 .
\end{aligned}
$$

K_{i} is a linear subspace since for $z, w \in K_{i}$ we have $U_{J_{12}} U_{z+w} \hat{J}_{i}=$ $U_{J_{1 / 2}}\left(U_{z}+U_{w}+U_{z, w}\right) \hat{J}_{i}$ where by (0.3) $U_{J_{1 / 2}} U_{z, w} \hat{J}_{i}=U_{J_{1 / 2}} V_{w, \hat{J}_{i}} z=$ $\left\{U_{\left\langle\hat{J}_{i, u} J_{1 / 2}\right| J_{1 / 2}}-V_{\hat{J}_{i}, w} U_{J_{1 / 2}}\right\}=0$. It is an outer ideal since $U_{J_{1 / 2}}\left(U_{\hat{J_{i}}} z\right)=$ $U_{J_{1 / 2}{ }^{\circ} \hat{J}_{i}} z \subset U_{J_{1 / 2}} z=0$ by (P2), $U_{J_{1 / 2}} U_{U\left(\hat{J}_{i}\right) z} \hat{J}_{i}=U_{J_{1 / 2}} U_{\hat{J}_{i}} U_{z} U_{\hat{J}_{i}} \hat{J}_{i} \subset U_{J_{1 / 2} / 2} U_{z} \hat{J}_{i}=0$ by (0.1), (P2), and is an inner ideal since $U_{J_{1} / 2}\left(U_{z} J_{i}\right)=0$, $U_{J_{1 / 2}}\left(U_{U(z) \hat{J}}\right) \hat{J}_{i}=$ $U_{J_{1 / 2}} U_{z} U_{\hat{J}_{i}} U_{z} \hat{J}_{i} \subset U_{J_{1 / 2}} U_{z} \hat{J}_{i}=0$ by (0.1).

We can easily show that a strongly semiprime ideal is invariant. Recall that K_{i} is strongly semiprime in J_{i} if $\bar{J}_{i}=J_{i} / K_{i}$ is strongly semiprime in the sense of having no trivial elements $U_{z_{i}} \bar{J}_{i}=\overline{0}$; this is equivalent to $U_{z_{i}} J_{i} \subset K_{i} \Leftrightarrow z_{i} \in K_{i}$.

Theorem 2.11. Any strongly semiprime ideal $K_{i} \triangleleft J_{i}$ is invariant.

Proof. For $x, y \in J_{1 / 2}, k \in K_{i}$ we have $\{x y k\} \in K_{i} \Leftrightarrow U_{\{x y k\}} J_{i} \subset K_{i}$ (strong semiprimeness) $\Leftrightarrow U_{x} U_{y} U_{k} J_{i} \subset K_{i}$ (using (2.5)) $\Rightarrow U_{U(x) U(y) k} J_{i}=$ $U_{x} U_{y} U_{k}\left(U_{y} U_{x} J_{i}\right) \subset U_{x} U_{y} U_{k} J_{i} \subset K_{i}\left(\right.$ by (0.1)) $\Leftrightarrow U_{x} U_{y} k \in K_{i}$. This shows V-invariance implies U-invariance. Further, since $\left\{x y\left(U_{k} a\right)\right\} \in K_{i}$ by (2.2) it shows $U_{x} U_{y}\left(U_{k} a\right) \in K_{i}$, i.e., $U_{k} U_{y} U_{k} J_{i} \subset K_{i}$, hence by the above $\{x y k\} \in K_{i}$, establishing V-invariance.

Since any maximal ideal in a unital algebra is strongly semiprime (the quotient is simple with unit, therefore contains no nil ideals, therefore contains no trivial elements), we have the important

Corollary 2.12. Any maximal ideal M_{1} in J_{1} is invariant.
This immediately shows that J_{1} is simple if J is. We return to this in $\S 4$, where we use a flipping argument to deduce that J_{0} is simple as well. In the remainder of this section we undertake a more delicate analysis to show K_{i} is invariant if it merely semiprime in J_{i} (in the sense that \bar{J}_{i} is semiprime), or even if it has no trivial ideals $U_{\bar{B}_{i}} J_{i}=\overline{0}$ (this is equivalent to $U_{B_{i}} \hat{J}_{i} \subset K_{i} \Rightarrow B_{i} \subset K_{i}$ for $\left.B_{i} \triangleleft J_{i}\right)$.

Lemma 2.13. If K_{i} is an ideal in J_{i} then $H\left(K_{i}\right)=K_{i}+$ $V_{J_{1 / 2}, J_{1 / 2}} K_{i}+U_{J_{1 / 2}} U_{J_{1 / 2}} K_{i}$ is again an ideal in J_{i}. In fact, for any particular $x, y \in J_{1 / 2}$ the subspaces

$$
\begin{aligned}
& K_{i}^{(1)}=K_{i}+U_{x} U_{y} U_{K_{i}} \hat{J}_{i} \\
& K_{i}^{(2)}=K_{i}+V_{x, y} K_{i}+U_{x} U_{y} U_{K_{i}} \hat{J}_{i} \\
& K_{i}^{(3)}=K_{i}+V_{x, y} K_{i}+U_{x} U_{y} K_{i}
\end{aligned}
$$

are ideals in J_{i} with

$$
K_{i} \subset K_{i}^{(1)} \subset K_{i}^{(2)} \subset K_{i}^{(3)}
$$

and with each trivial modulo the preceding:

$$
U_{K_{i}^{(3)}} \hat{J}_{i} \subset K_{i}^{(2)}, \quad U_{K_{i}^{(2)}} \hat{J}_{i} \subset K_{i}^{(1)}, \quad U_{K_{i}^{(1)}} \hat{J}_{i} \subset K_{i}
$$

Proof. Since $H\left(K_{i}\right)$ is just the sum of all $K_{i}^{(3)}$ for all possible $x, y \in J_{1 / 2}$, it suffices to prove the $K_{i}^{(\rho)}$ are ideals.

We first show each $K_{i}^{(j)}$ is an outer ideal: $U_{\hat{J}_{i}} K_{i}^{(j)} \subset K_{i}^{(j)}$. For $a \in$ \hat{J}_{i} and $k \in L_{i} \triangleleft J_{i}$ we have

$$
\begin{align*}
U_{a} V_{x, y} k= & \left\{U_{\{y x a\}, n}-V_{y, x} U_{a}\right\} k \tag{0.3}\\
= & U_{\{y x a), a} k-V_{y \circ x} U_{a} k-V_{x, y} U_{a} k \tag{0.6}\\
\in & U_{\hat{J}_{i}} L_{i}-V_{J_{i}} U_{\hat{J_{i}}} L_{i}-V_{x, y} L_{i} \subset L_{i}+V_{x, y} L_{i} \\
U_{a} U_{x} U_{y} k= & \left\{U_{\{a x y\}}-U_{y} U_{x} U_{a}-V_{y, x} U_{a} V_{x, y}+U_{a, U(y) U(x) a}\right\} k \quad(\text { by (by (0.3)) } \tag{0.2}\\
= & \left\{U_{\{a x y\}}+\left(U_{x} U_{y}-U_{x \circ y}+V_{x, y} V_{y, x}-V_{\left.U(x) y^{2}\right)} U_{a}\right.\right. \\
& \left.-\left(V_{x \circ y}-V_{x, y}\right) U_{a} V_{x, y}+U_{a, U(y) U(x)\}}\right\} k \quad \text { (by (0.2), (0.6)) } \\
= & \left\{U_{\{a x y\}}+U_{x} U_{y} U_{a}-\left(U_{x o y}+V_{\left.U(y) x^{2}\right)}\right) U_{a}+V_{x, y} U_{a,\{y x a\}}\right. \\
& \left.-V_{x \circ y} U_{a} V_{x, y}+U_{a, U(y) U(x) a}\right\} k \tag{by0.3}\\
\in & U_{J_{i}} L_{i}+U_{x} U_{y} L_{i}-\left(U_{J_{i}}+V_{J_{i}}\right) U_{\hat{J}_{i}} L_{i}+V_{x, y} U_{\hat{J}_{i}} L_{i} \\
& -V_{J_{i}} U_{\hat{J}_{i}} V_{x, y} L_{i}+U_{\hat{J}_{i}, J_{i}} L_{i} \\
\subset & L_{i}+U_{x} U_{y} L_{i}-L_{i}+V_{x, y} L_{i}-V_{J_{i}} U_{\hat{J}_{i}} V_{x, y} L_{i}+L_{i} \\
\subset & L_{i}+V_{x, y} L_{i}+U_{x} U_{y} L_{i}
\end{align*}
$$

(using our previous calculation to move $V_{J_{i}}, U_{\hat{J}_{i}}$ past $V_{x, y}$). Taking $L_{i}=K_{i}$ shows $K_{i}^{(3)}$ is outer, while $L_{i}=U_{K_{i}} \hat{J}_{i} \subset K_{i}$ shows $K_{i}^{(2)}, K_{i}^{(1)}$ are outer (using (2.2) for $K_{i}^{(1)}$).

Now we show the $K_{i}^{(j)}$ are inner, in fact the stronger assertion that each is trivial modulo its predecessor: $U_{K_{i}}^{(j)} \widehat{J}_{i} \subset K_{i}^{(j-1)} \subset K_{i}^{(j)}$. For $j=1$ we have $K_{i}^{(1)} \equiv U_{x} U_{y} U_{K_{i}} J_{i}$ modulo the ideal $K_{i}^{(0)}=K_{i}$, so

$$
\begin{align*}
U_{K_{i}}(1) \hat{J}_{i} \equiv & U_{U(x) U(y) U\left(K_{i}\right) \hat{J}_{i}} \hat{J}_{i}=U_{y} U_{y} U_{U\left(K_{i}\right) \hat{J}_{i}} U_{x} U_{x} \hat{J}_{i} \\
& \subset U_{x} U_{y} U_{U\left(K_{i}\right) \hat{\jmath}_{i}} J_{i} \subset K_{i} \equiv 0 \tag{2.3}
\end{align*}
$$

so $U_{K_{i}^{(1)}} \hat{J}_{i} \subset K_{i}$. In particular, $K_{i}^{(1)}$ is inner and thus an ideal. Once $K_{i}^{(1)}$ is an ideal we have for $j=2$ that $K_{i}^{(2)} \equiv V_{x, y} K_{i}$ modulo $K_{i}^{(1)}$, so

$$
\begin{equation*}
U_{K_{i}^{(2)}} \hat{J}_{i} \equiv U_{\left\{x y K_{i}\right.} \mid \widehat{J}_{i} \equiv U_{x} U_{y} U_{K_{i}} \widehat{J}_{i} \subset K_{i}^{(1)} \equiv 0 \tag{2.5}
\end{equation*}
$$

so $U_{K_{2}^{(2)}} \hat{J}_{i} \subset K_{i}^{(1)}$ and $K_{i}^{(2)}$ too is an ideal. Then we have $K_{i}^{(3)} \equiv U_{x} U_{y} K_{i}$ modulo the ideal $K_{i}^{(2)}$, so
$U_{K_{i}^{(3)}}^{(3)} \hat{J}_{i} \equiv U_{U(x) U(y) K_{i}} \hat{J}_{i}=U_{x} U_{y} U_{K_{i}} U_{y} U_{x} \hat{J}_{i} \subset U_{y} U_{y} U_{k_{i}} J_{j} \subset K_{i}^{(2)} \equiv 0 \quad$ so $U_{K_{i}^{(3)}} \widehat{J}_{i} \subset K_{i}^{(2)}$ and $K_{i}^{(3)}$ is also an ideal trivial modulo its predecessor.

Our calculations show each $U_{x} U_{y} K_{i}$ is an ideal and each $K_{i}+$ $V_{x, y} K_{i}$ is an outer ideal; if $1 / 2 \in \Phi$ outer ideals are ideals, so $U_{J_{1 / 2}} U_{J_{1 / 2}} K_{i}$ and $K_{\imath}+V_{J_{1 / 2}, J_{1 / 2}} K_{i}$ are both ideals in this case.

Remark 2.14. If invertible elements are dense one can show

$$
B\left(J_{1 / 2}, J_{1 / 2}\right) K_{1} \triangleleft J_{1} \quad\left(B(x, y)=I+V_{x, y}+U_{x} U_{y}\right)
$$

Indeed, $U_{a} B\left(x, U_{a} y\right) z=B\left(U_{a} x, y\right) U_{\alpha} z$ shows for invertible $x_{1} \in J_{1}$ that

$$
\begin{aligned}
U_{x_{1}} B\left(J_{1 / 2}, J_{1 / 2}\right) K_{1} & =U_{e_{0+}+x_{1}} B\left(J_{1 / 2}, x_{1} \circ J_{1 / 2}\right) K_{1} \\
& =U_{a} B\left(J_{1 / 2}, U_{a} J_{1 / 2}\right) K_{1}\left(a=e_{0}+x_{1}\right)=B\left(U_{a} J_{1 / 2}, J_{1 / 2}\right) U_{a} K_{1} \\
& =B\left(J_{1 / 2}, J_{1 / 2}\right) U_{x_{1}} K_{1} \subset B\left(J_{1 / 2}, J_{1 / 2}\right) K_{1}
\end{aligned}
$$

hence if such x_{1} are dense $B K_{1}$ is outer, and it is inner since for the spanning set of $B\left(x_{1 / 2}, y_{1 / 2}\right) k_{1}$ we have $U_{B(x, y) k} J_{1}=B(x, y) U_{k} B(y, x) J_{1} \subset$ $B(x, y) U_{k_{1}} J_{1} \subset B(x, y) K_{1}$. It is not known if this holds in general. If Φ is a field with more than two elements then $B\left(J_{1 / 2}, J_{1 / 2}\right) K_{i}$ is just $K_{2}+V\left(J_{1 / 2}, J_{1 / 2}\right) K_{i}+U\left(J_{1 / 2}\right) U\left(J_{1 / 2}\right) K_{i}$ and thus is certainly an ideal.

Now we can establish invariance of semiprime ideals.
THEOREM 2.15. Any semiprime ideal $K_{i} \triangleleft J_{i}$ is invariant.
Proof. Semiprimeness means J_{i} / K_{i} contains no trivial ideals. But then $K_{i}=K_{i}^{(0)} \subset K_{i}^{(1)} \subset K_{i}^{(2)} \subset K_{i}^{(3)}$ with $K_{i}^{(j+1)} / K_{i}^{(j)}$ trivial forces in turn $K_{i}=K_{i}^{(1)}=K_{i}^{(2)}=K_{i}^{(3)}$. This shows $V_{x, y} K_{i} \subset K_{i}$ and $U_{x} U_{y} K_{i} \subset K_{i}$ for any particular $x, y \in J_{1 / 2}$, and thus K_{i} is V-and U-invariant.

REMARK 2.16. We have established invariance of K_{i} as long as $\bar{J}_{i}=J_{i} / K_{i}$ contains no ideals \bar{L}_{i} consisting entirely of trivial elements (i.e., $U_{L_{i}} \hat{J}_{i} \subset K_{i} \Rightarrow L_{i} \subset K_{i}$). It is not known whether an algebra without such ideals is necessarily semiprime; this holds whenever $1 / 2 \in \Phi$ since $\bar{L}_{i}^{2}=\overline{0}$ implies $2 U_{\bar{J}_{i}} \hat{\bar{J}_{i}}=\bar{L}_{i} \circ\left(\bar{L}_{i} \circ \hat{\bar{J}_{i}}\right)-\bar{L}_{i}^{2} \circ \hat{\bar{J}_{i}}=\overline{0}$.
3. The invariant hull. If we have no specific information about a given ideal $K_{i} \triangleleft J_{i}$ which allows us to conclude it is invariant, we must enlarge it by applying all possible V^{\prime} s and U 's until the result is invariant. The invariant hull $\operatorname{Inv}\left(K_{i}\right)$ of the ideal K_{i} is the smallest invariant ideal containing K_{i}.

In (1.9) we saw that V-invariance implies U-invariance when $1 / 2 \in \Phi$. More generally,

Proposition 3.1. The subalgbra $E(\mathscr{U}, \mathscr{Y})$ of End $\left(J_{i}\right)$ generated by the restrictions to J_{i} of $V_{J_{1 / 2}, J_{1 / 2}}$ and $U_{J_{1 / 2}} U_{J_{1 / 2}}$ reduce to $\mathscr{U}+\mathscr{Y}$ where \mathscr{U} is the linear span of all operators

$$
U_{x_{1}} U_{y_{1}} \cdots U_{x_{n}} U_{y_{n}}
$$

and \mathscr{V} the linear span of all

$$
V_{x_{1}, y_{1}} \cdots V_{x_{n}, y_{n}}
$$

where x_{i}, y_{i} belong to some spanning set for $J_{1 / 2}$. Further, $2 \mathscr{U} \subset \mathscr{V}$.
Proof. The Jordan identities (0.4), (0.5) show that the partially linearized U-operators $U_{x} U_{y, z}$ and $U_{y, z} U_{x}$ can be replaced by products of V-operators: $U_{x} U_{y, z} \in \mathscr{Y}, U_{y, z} U_{x} \in \mathscr{V}$. In particular, for $y=z$ we see as in (1.9)

$$
2 U_{x} U_{y} \in \mathscr{Y} .
$$

These together with the further Jordan identities

$$
\begin{align*}
& U_{x} U_{y} V_{z, w}=U_{\{x y z), x} U_{w, y}-V_{z, y} U_{x} U_{w, y}-U_{x} U_{U(y) z, w} \in \mathscr{V} \tag{0.8}\\
& V_{w, z} U_{y} U_{x}=U_{w, y} U_{\langle x y z\rangle, x}-U_{w, y} U_{x} V_{y, z}-U_{U(y) z, w} U_{x} \in \mathscr{V} \tag{0.9}
\end{align*}
$$

show that any mixed term involving a product of U 's with at least one V factors, or 2 times any product of U 's can be expressed solely in terms of V 's,

$$
\mathscr{U} \mathscr{V}+\mathscr{V} \mathscr{U} \subset \mathscr{V}, \quad 2 \mathscr{U} \subset \mathscr{V} .
$$

Thus the subalgabra generated by \mathscr{U} and \mathscr{V} reduces to $\mathscr{U}+\mathscr{Y}$ with $2 U \subset \mathscr{V}$.

Since $V_{x, y}$ is bilinear in x, y, if $\left\{u_{i}\right\}$ spans $J_{1 / 2}$ then the $V_{u_{i}, u_{j}}$ span $V_{J_{1 / 2}, J_{1 / 2}}$, and $U_{J_{1 / 2}} U_{J_{1 / 2}}$ is spanned by the $U_{u_{i}} U_{u_{j}}$ modulo terms $U_{u_{i}} U_{u_{i}, u_{k}}$, $U_{u_{j}, u_{k}} U_{u_{i}}, U_{u_{i}, u_{j}} U_{u_{k}, u} \in \mathscr{V}$.

Remark 3.2. For $x, y \in J_{1 / 2}$ we have an operator identity on J_{i}

$$
U_{x} U_{x}=U_{x^{2}}=U_{E_{i}\left(x^{2}\right)}, U_{x} U_{y}+U_{y} U_{x}+U_{x, y}^{2}=U_{E_{i}(x o y)}+U_{E_{i}\left(x^{2}\right), E_{i}\left(y^{2}\right)}
$$

showing $U_{x_{1}} U_{x_{2}} \cdots U_{x_{2 n}}$ is an alternating function of the variables $x_{i} \in J_{1 / 2}$ modulo products with fewer U 's and either more V 's or more multiplications from J_{i} (which automatically leave any ideal $K_{i} \triangleleft J_{i}$ invariant). Thus \mathscr{U} is spanned modulo \mathscr{V} and $\mathscr{M}\left(J_{i}\right)$ by
all $U_{u_{1}} U_{u_{2}} \cdots U_{u_{2 n}}$ for $u_{1}<\cdots<u_{2 n}$ in some ordered spanning set for $J_{1 / 2}$.

Theorem 3.3. The invariant hull of a given ideal $K_{i} \triangleleft J_{i}$ is

$$
\operatorname{Inv}\left(K_{i}\right)=\mathscr{U} K_{i}+\mathscr{V} K_{i}=\sum_{k=0}^{\infty} V_{J_{12}, J_{1 / 2}}^{k} K_{i}+\sum_{m=0}^{\infty} U_{J_{1 / 2}}^{2 m} K_{i} .
$$

If $1 / 2 \in \Phi$ this reduces to $\sum V_{J_{1 / 2}, J_{1 / 2}}^{k} K_{i}$.
Proof. A subspace is U - and V-invariant iff it is invariant under the subalgebra generated by all U 's and V 's, which by 3.1 is just $\mathscr{U}+\mathscr{Y}$, so $\mathscr{U} K_{i}+\mathscr{V} K_{i}$ is the invariant closure of K_{i}. To see this remains an ideal in J_{i} if K_{i} is to begin with, note that this invariant closure can also be represented as $\operatorname{Inv}\left(K_{i}\right)=\sum_{n=0}^{\infty} H^{n}\left(K_{i}\right)$ where $H\left(L_{i}\right)=L_{i}+V_{J_{1 / 2}, J_{1 / 2}} L_{i}+U_{J_{1 / 2}} U_{J_{1 / 2}} L_{i}$, where by Lemma 2.13 each $H^{n}\left(K_{i}\right)$ is an ideal and therefore their sum is too.

If $1 / 2 \in \Phi$ we can dispense with the U 's by 3.1.
REMARK 3.4. By our comments 3.2, if $J_{1 / 2}$ is finitely spanned we need only take a finite number of powers $U_{J_{1 / 2}}^{2 m}$.

Remark 3.5. Inv $\left(K_{i}\right)$ is Baer-radical modulo K_{i} since it is a union of $H^{n}\left(K_{i}\right)$, where $H^{n}\left(K_{i}\right)$ is Baer-radical modulo $H^{n-1}\left(K_{i}\right)$ (being the sum over all $x, y \in J_{1 / 2}$ of ideals $K_{i}^{(3)}=K_{i}+V_{x, y} K_{i}+U_{x} U_{y} K_{i}$ nilpotent modulo K_{i} by (2.13)). Once more this shows that if K_{i} is semiprime in J_{i} then $\operatorname{Inv}\left(K_{i}\right)=K_{i}$ and K_{i} is invariant.

We can, if compelled, write down explicitly the ideal generated by a diagonal Peirce ideal.

Theorem 3.6. If K_{i} is an ideal in a Peirce space $J_{i}(i=1,0)$ of a Jordan algebra J, then the ideal it generates in J is

$$
\begin{aligned}
I\left(K_{i}\right) & =I_{i} \oplus I_{1 / 2} \oplus I_{j} \\
I_{i} & =\operatorname{Inv}\left(I_{i}\right)=(\mathscr{V}+\mathscr{U}) K_{i}=\sum_{j, k=0}^{\infty}\left(V_{J_{1 / 2}, J_{1 / 2}}^{j}+U_{J_{1 / 2}}^{2 k}\right\} K_{i} \\
I_{1 / 2} & =V_{J_{1 / 2}} \operatorname{Inv}\left(K_{i}\right)=V_{J_{1 / 2}} \mathscr{V} K_{i}=V_{J_{1 / 2}}\left\{\sum_{j=0}^{\infty} V_{J_{1 / 2}, J_{1 / 2}}^{j}\right\} K_{i} \\
I_{j} & =U_{J_{J_{1 / 2}}} \operatorname{Inv}\left(K_{i}\right)=(\mathscr{V}+\mathscr{U}) U_{J_{1 / 2}} K_{i}=\operatorname{Inv}\left(U_{J_{1 / 2}} K_{i}\right) \\
& =\sum_{j, k=0}^{\infty}\left\{V_{J_{1 / 2}, J_{1 / 2}}^{j}+U_{J_{1 / 2}}^{2 k}\right\} U_{J_{1 / 2}} K_{i} .
\end{aligned}
$$

Proof. The ideal generated by K_{i} coincides with the ideal generated by its invariant hull $\operatorname{Inv}\left(K_{i}\right)=(\mathscr{V}+\mathscr{C}) K_{i}$ by (3.3), so by
(1.11) $I_{i}=\operatorname{Inv}\left(K_{i}\right), I_{1 / 2}=V_{J_{1 / 2}} \operatorname{Inv}\left(K_{i}\right), I_{j}=U_{J_{1 / 2}} \operatorname{Inv}\left(K_{i}\right)$. Note that $U_{J_{1 / 2}} \operatorname{Inv}\left(K_{i}\right)=U_{J_{1 / 2}}(\mathscr{Y}+\mathscr{U}) K_{i}=(\mathscr{V}+\mathscr{U}) U_{J_{1 / 2}} K_{i}$ since $U_{J_{1 / 2}} U_{J_{1 / 2}}^{2 k}=$ $U_{J_{1 / 2}}^{2 k} U_{J_{1 / 2}}$ shows $U_{J_{1 / 2}} \mathscr{C}=\mathscr{C} U_{J_{1 / 2}}$, and $U_{J_{1 / 2}} V_{J_{1 / 2}, J_{1 / 2}}+V_{J_{1 / 2}, J_{1 / 2}} U_{J_{1 / 2}} \subset$ $U_{\left\{J_{1 / 2} J_{1 / 2} J_{1 / 2}, J_{1 / 2}\right.} \subset U_{J_{1 / 2}}$ by (0.3) shows $U_{J_{1 / 2}} \mathscr{Y}=\mathscr{V} U_{J_{1 / 2}}$. Note further that

$$
V_{J_{1 / 2} / 2} \mathscr{U} \subset V_{J_{1 / 2}} \mathscr{Y}, V_{J_{1 / 2}} \operatorname{Inv}\left(K_{i}\right)=V_{J_{1 / 2}} \mathscr{Y} K_{i}
$$

because

$$
V_{J_{1 / 2}} U_{J_{1 / 2}}^{2} \subset V_{J_{1 / 2}} \sum_{j=0}^{2} V_{J_{1 / 2}, J_{1 / 2}}^{j}
$$

follows from the following obscure Jordan identity:

$$
\begin{align*}
V_{x} U_{y} U_{z}= & V_{U(z \mid U(y) x}-V_{z} V_{U(y) x, z}+V_{U(z z)} V_{y, x}-V_{z} V_{y, z} V_{y, x} \tag{0.10}\\
& -V_{U \backslash(z y z), z) y}+V_{z} V_{y,\{x y z\}}+V_{\langle z y z\}} V_{y, z}
\end{align*}
$$

(or else substitute $1 \mathrm{in}(0.5), V_{y} V_{x, y}=V_{x} U_{y}+V_{U(y)}$ to see $V_{J_{1 / 2}} U_{J_{1 / 2}} \subset$ $V_{J_{1 / 2}} V_{J_{1 / 2}, J_{1 / 2}}+V_{J_{1 / 2}} \subset V_{J_{1 / 2}} \mathscr{Y}$, so

$$
\begin{aligned}
V_{J_{1 / 2}} U_{J_{1 / 2}} U_{J_{1 / 2}} & \subset V_{J_{1 / 2}} \mathscr{Y} U_{J_{1 / 2}} \subset V_{J_{1 / 2}}\left(U_{J_{1 / 2} / 2} \mathscr{Y}+U_{J_{1 / 2}}\right) \\
& \left.\subset\left(V_{J_{1 / 2}} \mathscr{Y}\right) \mathscr{Y}+V_{J_{1 / 2}} \mathscr{Y}=V_{J_{1 / 2}} \mathscr{Y}\right) .
\end{aligned}
$$

Example 3.7. The largest invariant ideal contained in $K_{i} \triangleleft J_{i}$ is the invariant kernel

$$
\begin{aligned}
\text { Inv } \operatorname{ker}\left(K_{i}\right) & =\left\{z \in K_{i} \mid E(\mathscr{U}, \mathscr{V}) z \subset K_{i}\right\} \\
& =\left\{z \in K_{i} \mid V_{J_{1 / 2}, J_{1 / 2}}^{n} z, U_{J_{1 / 2}}^{2 m} z \in K_{i} \text { for all } n, m\right\} .
\end{aligned}
$$

Proof. Certainly if z belongs to an invariant ideal $I_{i} \triangleleft K_{i}$ so do all $V^{n} z$ and $U^{2 m} z$, so z belongs to $\operatorname{Inv} \operatorname{ker}\left(K_{i}\right)=Z_{i}$. Conversely, Z_{i} is clearly a linear subspace which is invariant, $E(\mathscr{U}, \mathscr{Y}) Z_{i} \subset Z_{i}$. It remains to show Z_{i} is an ideal.
Z_{i} is outer: the identities (0.3), (0.2) show

$$
\begin{aligned}
& V U_{\hat{J}_{i}} \subset U_{\hat{J}_{i}}+U_{\hat{J}_{i}} V \subset U_{\hat{J}_{i}} E(\mathscr{U}, \mathscr{\mathscr { }}), U^{2} U_{\hat{J}_{i}} \subset U_{\hat{J}_{i}} U^{2}+U_{\hat{J}_{i}} \\
& \quad+V U_{\hat{J}_{i}} V \subset U_{\hat{J}_{i}} U^{2}+U_{J_{i}}+U_{\hat{J}_{i}} E(\mathscr{U}, \mathscr{C}) V \subset U_{\hat{J}_{i}} E(\mathscr{U}, \mathscr{C}),
\end{aligned}
$$

and hence by induction $E(\mathscr{U}, \mathscr{V})\left(U_{\hat{J}_{i}} Z_{i}\right) \subset U_{\hat{J}_{i}}\left(E(\mathscr{U}, \mathscr{V}) Z_{i}\right) \subset U_{\hat{J}_{i}} K_{i} \subset K_{i}$. Therefore $U_{\hat{J}_{i}} Z_{i} \subset Z_{i}$.
Z_{i} is inner: the identities (0.3), (0.2) show $V U_{z_{i}} \hat{J}_{i} \subset U_{z_{i}} V \hat{J}_{i}+$ $U_{V\left(Z_{i}\right), z_{i}} \hat{J}_{i} \subset U_{z_{i}} \hat{J}_{i}$ (since Z_{i} is V-invariant), $U^{2}\left(U_{z_{i}} \hat{J}_{I}\right) \subset\left\{U_{z_{i}} U^{2}+U_{z_{i}}+\right.$ $\left.V U_{z_{i}} V\right\} \hat{J}_{i}$ (since Z_{i} is U, V-invariant) $\subset U_{z_{i}} \hat{J}_{i}$, hence by induction $E(\mathscr{U}, \mathscr{V})\left(U_{z_{i}} \hat{J}_{i}\right) \subset U_{Z_{i}} \widehat{J}_{i} \subset U_{K_{i}} \hat{J}_{i} \subset K_{i}$ and $U_{Z_{i}} \widehat{J}_{i} \subset Z_{i}$.

Example 3.8. We give a straightforward example of Jordan algebra having noninvariant Peirce ideals. Let D be an associative
algebra with involution ${ }^{*}$, and let D^{\prime} be an ample subspace ($D^{\prime} \subset$ $H\left(D,{ }^{*}\right)$ is symmetric, contains 1 , and has $x D^{\prime} x^{*} \subset D^{\prime}$ for all $x \in D$: if $1 / 2 \in \Phi$ then $\left.D^{\prime}=H\left(D,{ }^{*}\right)\right)$. Then the algebra $J=H\left(D_{n}, D^{\prime}\right)$ of hermitian $n x n$ matrices over D with diagonal entries in D^{\prime} forms a Jordan algebra with idempotent $e=e_{11}$. Here a subspace $K_{1}=K^{\prime}[11]$ of the Peirce space $J_{1}=D^{\prime}[11]$ is an ideal iff K^{\prime} is a Jordan ideal in D^{\prime},
(i) (outer ideal) $x^{\prime} k^{\prime} x^{\prime} \in K^{\prime}$ for all $x^{\prime} \in D^{\prime}, k^{\prime} \in K^{\prime}$
(ii) (inner ideal) $k^{\prime} x^{\prime} k^{\prime} \in K^{\prime}$.

On the other hand, such a K_{1} is V-invariant iff K is closed under traces,
(iii) (V-invariant) $t\left(D K^{\prime}\right) \subset K^{\prime}: x k^{\prime}+k^{\prime} x^{*} \in K^{\prime}$ for $x \in D, k^{\prime} \in K^{\prime}$ and U-invariant iff it is closed under norms,
(iv) (U-invariant) $x k^{\prime} x^{*} \in K^{\prime}$ for all $x \in D, k^{\prime} \in K^{\prime}$.

These follow from the general rules $V\left(a[1 j], b^{*}[1 j]\right) c[11]=t(a b c)[11]$ and

$$
U(a[1 j]) U\left(b^{*}[1 j]\right) c[11]=a b c b^{*} a^{*}[11]
$$

and $U(1[a j], d[1 k]) U\left(b^{*}[1 j], f^{*}[1 k]\right) c[11]=\left(a b c f^{*} d^{*}+d f c b^{*} a^{*}\right)[11]$. In this case U-invariance implies V-invariance (and conversely if $1 / 2 \in \Phi$), and the invariant hull of K_{1} is

$$
\operatorname{Inv}\left(K_{1}\right)=K_{1}+U_{J_{1 / 2}} U_{J_{1 / 2}} K_{1}=\left\{\sum x K^{\prime} x^{*}\right\}[11]
$$

For example, if we take $D=M_{2}(\Phi)$ a split quaternion algebra over a ring Φ and $D^{\prime}=\Phi 1$, then K^{\prime} is an ideal of D^{\prime} iff $(\mathrm{i}) \Phi^{2} K^{\prime} \subset K^{\prime}$, (ii) $\Phi K^{\prime 2} \subset K^{\prime}$, and K^{\prime} is V-invariant iff (iii) $t(D) K^{\prime}=\Phi K^{\prime} \subset K^{\prime}$, and K^{\prime} is U-invariant iff (iv) $n(D) K^{\prime}=\Phi K^{\prime} \subset K^{\prime}$. If $1 / 2 \in \Phi$ or Φ is a field all ideals K^{\prime} of D^{\prime} are invariant, but if $\Phi=Z[x], K^{\prime}=Z x^{2}+$ $x^{4} Z[x]+2 Z[x]$ then one easily verifies that K^{\prime} is a Jordan ideal in $Z[x]$ which is not an associative ideal (and hence not invariant).

In this example we obtained the invariant hull from a single application of $U_{J_{1 / 2}} U_{J_{1 / 2}}$ because the coordinates of $J_{1 / 2}=\sum D[1 j]$ are closed under multiplication. To construct examples where the invariant hull requires all $V_{J_{1 / 2}, J_{1 / 2}}^{n}$ and $U_{J_{1 / 2}}^{2 m}$ we take subalgebras where the coordinates of $J_{1 / 2}$ are not closed. From now on our examples will sit inside $H\left(D_{2}, D^{\prime}\right)$.

Example 3.9. (All V 's are necessary.) Let $D=\Lambda(V) \otimes \Phi[\varepsilon]$ be the ring of dual numbers ($\varepsilon^{2}=0$) over the exterior algebra $\Lambda(V)$ on an infinite-dimensional vector space V over a field Φ of characteristic $\neq 2$, with canonical reversal involution fixing V. (Thus the symmetric elements are spanned by the elements of $\Lambda^{n}(V)$ for $n \equiv 0$ or $1 \bmod 4$.)

Then the set $H\left(D_{2}\right)$ of all 2×2 matrices with entries in the associative coordinate ring D forms a Jordan algebra. We take \widetilde{J} to be the subalgebra

$$
\begin{aligned}
\widetilde{J} & =\varepsilon H\left(D_{2}\right)+(V \wedge V)[12] \\
& =\varepsilon H(D)[11]+\{V \wedge V+\varepsilon D\}[12]+\varepsilon H(D)[22]
\end{aligned}
$$

and $J=\widetilde{J}+\Phi 1[11]$ the subalgebra obtained by tacking on $e=1[11]$. Thus $H\left(D_{2}\right) \supset J \supset \widetilde{J} \supset \varepsilon H\left(D_{2}\right)$.

Since $\widetilde{J}_{1}=\varepsilon J_{1}$ is trivial ($U_{\widetilde{J}_{1}} \widetilde{J}_{1}=\widetilde{J}_{1}^{2}=0$ since $\varepsilon^{2}=0$), any subspace $K_{1} \subset \widetilde{J}_{1}$ is an ideal in J_{1}. However, only certain subspaces will be invariant:

$$
\begin{aligned}
& V_{u_{1} \wedge u_{2}[12], u_{3} \wedge u_{4}[12]} k[11]=2 u_{1} \wedge u_{2} \wedge u_{3} \wedge u_{4} \wedge k[11] \\
& U_{u_{1} \wedge u_{2}[12], u_{3} \wedge u_{4}[12]} k[11]=-2 u_{1} \wedge u_{2} \wedge u_{3} \wedge u_{4} \wedge k[11] \\
& U_{u_{1} \wedge v_{1}[12]} k[11]=0 \text {. }
\end{aligned}
$$

Thus a subspace $K_{1}=\varepsilon K[11]$ will be invariant only if the subspace K of $H(D)$ is closed under multiplication by the degree 4 part of the exterior algebra (generated by all $u_{1} \wedge u_{2} \wedge u_{3} \wedge u_{4}$ for $u_{i} \in V$). If $K=\Phi v_{\mathrm{c}}$ then $V_{u_{1} \wedge v_{1}[12], w_{1} \wedge t_{1}[12]} \cdots V_{u_{n} \wedge \wedge_{n}[12], w_{n} \wedge \wedge_{n}[12]} K_{1}=\varepsilon \Phi u_{1} \wedge v_{1} \wedge w_{1} \wedge$ $t_{1} \wedge \cdots \wedge u_{n} \wedge v_{n} \wedge w_{n} \wedge t_{n} \wedge v_{0}[11] \subset \varepsilon \Lambda^{n+1}(V)[11]$, from which it is clear that arbitrarily high powers of $V_{J_{1 / 2}, J_{1 / 2}}$ are needed to generate the arbitrarily long elements $\varepsilon u_{1} \wedge u_{2} \wedge \cdots \wedge u_{\mathrm{tn}} \wedge v_{0}[11]$ in $\operatorname{Inv}\left(K_{1}\right)$.

Example 3.10. (All U's are necessary.) Again we take $H\left(D_{2}\right)$ for D an associative algebra with involution, but this time D is a "square root" of an exterior algebra $\Lambda(V)$ on an infinite-dimensional vector space V over a field Φ of characteristic 2. If V has basis $\left\{v_{1}, v_{2}, \cdots\right\}$ we let $D=\Phi\left[x_{1}, x_{2}, \cdots\right]$ be a commutative polynomial ring (with identity involution) where $x_{i}^{2}=v_{i}, v_{i}^{2}=0$. Note

$$
D^{2} \subset \Phi\left[x_{1}^{2}, x_{2}^{2}, \cdots\right]=\Phi\left[v_{1}, v_{2}, \cdots\right] \cong \Lambda(V),\left(D^{2}\right)^{2}=0 .
$$

Let

$$
\widetilde{J}=H\left(D_{2}^{2}\right)+\left\{\Sigma \Phi x_{i}\right)[12]=D^{2}[11]+\left\{\sum \Phi x_{i}+D^{2} x_{i}\right\}[12]+D^{2}[22]
$$

and $J=\widetilde{J}+\Phi e[11] . \quad$ Again $\widetilde{J}_{1}=D^{2}[11]$ is trivial since the characteristic is 2 and $\left(D^{2}\right)^{2}=0$, so any subspace $K_{1} \subset \widetilde{J}_{1}$ is an ideal in J_{1}. Here V-invariance is automatic,

$$
V_{a[12], b[2]} c[11]=2 a b c[11]=0 .
$$

U-invariance of $K_{1}=K[11]$ means closure of K under even products of v_{i} 's, since

$$
U_{a[12]} U_{b[127} c[11]=a^{2} b^{2} c[11],
$$

and if $a=\sum \alpha_{i} x_{i}+\sum d_{i}^{2} x_{i}$ then $a^{2}=\sum \alpha_{i}^{2} v_{i}$. From this it is clear that arbitrarily ${ }^{[1 a r g e}$ powers $U_{x_{1}[122]} U_{x_{2}[12]} \cdots U_{x_{22}[12]} v_{0}[11]=v_{1} v_{2} \cdots v_{n} v_{0}[11]$ are needed to obtain the invariant hull of $K_{1}=\Phi v_{0}[11]$.
4. Simplicity of J_{1} and J_{0}. We use our constructions to show that Peirce subalgebras J_{1} and J_{0} inherit simplicity from J. The basic idea of the proof is easily stated. Since a simple algebra J contains no proper ideals K, there are no proper projections in the Peirce subalgebras J_{1} and J_{0}, consequently by 1.11 there are no proper invariant ideals in J_{1} or J_{0}. Since J_{1} has unit element e there exist (by the usual Zornification) maximal ideals K_{1}, necessarily strongly semiprime in J_{1} by (2.12), so any maximal K_{1} is invariant and therefore zero; but $K_{1}=0$ maximal means J_{1} is simple.

For the nonunital algebra J_{0} we cannot use this argument, but we can make use of the simplicity of J_{1} : any ideal K_{0} in J_{0} is flipped into an ideal $K_{1}=U_{J_{1 / 2}} K_{0}$ in J_{1}. If this image is zero the same holds for the invariant hull of K_{0}, forcing this hull to be zero and $K_{0}=0$. If on the other hand the image is all of J_{1} then the same holds for K_{0}^{3}; but the double flip of K_{0}^{3} is contained in K_{0}, which forces $K_{0}=$ J_{0}. This means J_{0} is simple.

Now to fill in the details.
Main Theorem 4.1. If e is an idempotent in a simple Jordan algebra J then the Peirce subalgebras $J_{1}(e)$ and $J_{0}(e)$ are also simple.

Proof. The result is vacuous if $e=0\left(J_{1}=0, J_{0}=J\right)$, so we may assume $e \neq 0$. Then J is not nil, $\operatorname{Nil}(J) \neq J$, so by simplicity $\operatorname{Nil}(J)=$ 0 and in particular J contains no trivial elements. Each J_{i} inherits this strong semiprimeness since an element trivial in J_{i} is trivial in all of $J\left(U_{z_{i}} J=U_{z_{i}} J_{i}\right)$, therefore J_{i} is not trivial and will be simple if it has no proper ideals. We know J_{i} contains no proper invariant ideals, and we must deduce it has no proper ideals whatsoever.

We have already seen this is true for J_{1} thanks to its unit e, so consider J_{0}. Suppose we have an ideal $K_{0} \triangleleft J_{0}$. By the Flipping Lemma 1.10 the image $K_{1}=U_{J_{1 / 2}} K_{0}$ is an ideal in J_{1}, so by what we have just shown it must either be J_{1} or 0 .

First consider the case $K_{1}=U_{J_{1 / 2}} K_{0}=0$. Then $K_{0} \subset \operatorname{Ker} U_{J_{1 / 2}}$, which by the Kernel Lemma 2.10 is an invariant ideal of J_{0}. Such an invariant ideal can only be J_{0} or 0 , and it is not all of J_{0} since $U_{J_{1 / 2}} J_{0} \neq 0$ by (1.17), so $\operatorname{Ker} U_{J_{1 / 2} / 2}$ must be 0 and K_{0} was 0 to begin with. So far we have shown that $K_{1}=0$ implies $K_{0}=0$.

Now consider the case $K_{1}=U_{J_{1 / 2}} K_{0}=J_{1}$. Since J_{0} is strongly semiprime it has no nilpotent ideals, so $K_{0} \neq 0 \Rightarrow K_{0}^{\prime}=U_{K_{0}} \hat{J}_{0} \neq 0 \Rightarrow$ $K_{0}^{\prime \prime}=U_{K_{0}^{\prime}} \hat{J}_{0} \neq 0$. But by the previous case $K_{0}^{\prime \prime} \neq 0$ implies $K_{1}^{\prime \prime}=$
$U_{J_{1 / 2}} K_{0}^{\prime \prime}$ is nonzero and therefore all of J_{1}. Thus by (1.17) $J_{0}=U_{J_{1 / 2}} J_{1}=$ $U_{J_{1 / 2}}\left(U_{J_{1} / 2} K_{0}^{\prime \prime}\right)$. On the other hand, $U_{J_{1 / 2}} U_{J_{1 / 2}} K_{0}^{\prime \prime}=U_{J_{1 / 2}} U_{J_{1 / 2}}\left(U_{U\left(K_{0}\right) \hat{J}_{0}} \hat{J}_{0}\right) \subset$ K_{0} by (2.3), so we have $K_{0}=J_{0}$. This shows $K_{1}=J_{1}$ implies $K_{0}=J_{0}$. Thus $K_{0} \triangleleft J_{0}$ implies $K_{0}=0$ or $K_{0}=J_{0}$, and J_{0} too is simple.

References

1. N. Jacobson, Lectures on Quadratic Jordan Algebras, Tata Institute Lecture Notes, Bombay, 1969.
2. O. Loos, Jordan Pairs, Springer Lecture Notes in Mathematics No. 460, Springer, New York, 1975.
3. K. McCrimmon, Peirce ideals in Jordan triple systems, to appear.

Received October 20, 1977. Research partially supported by grants from the National Science Foundation and the National Research Council.

University of Virginia
Charlottesville, VA 22903

