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PEIRCE IDEALS IN JORDAN ALGEBRAS

KEVIN MCCRIMMON

In attempting to investigate infinite-dimensional simple
Jordan algebras / having rich supplies of idempotents, it
would be helpful to know that the Peirce subalgebra Ji(e)
relative to an idempotent e in J remains simple. This clearly
holds for associative and alternative algebras because any
ideal in a Peirce space is the projection of a global ideal.
The corresponding result is false for Jordan algebras: there
are multiplications of the ambient algebra J which send JΊ
to itself (therefore leave invariant the projection of a global
ideal), but are not expressible as multiplication by elements
of JΊ (therefore need not leave invariant an arbitrary ideal
of JΊ). We show that an ideal Kx is the projection of a
global ideal iff it is invariant under the multiplications
Vj1/2tj1/2 and UJ1/2UJ1/2. This yields an explicit expression for
the global ideal generated by a Peirce ideal. We then show
that if J is a simple Jordan algebra with idempotent, the
Peirce subalgebras JΊ and Jo inherit simplicity.

Throughout we consider a quadratic Jordan algebra J over an
arbitrary ring of scalars Φ with product

Umy

quadratic in x and linear in y. Linearization yields a trilinear product

{xyz} = Ux>zy = Vx,yz .

(See [1] for basic results on quadratic Jordan algebras.) If e is an
idempotent element of J, e2 = e, then we have a Peirce decomposition
j = jχ 0 j1/2 0 j0 where Jί9 Jo are subalgebras. We wish to relate
the ideals in these Peirce subalgebras J* to ideals in the ambient
algebra J.

Analogous results hold for Jordan triple systems. However, in
this case Ue is merely an involution on Jλ rather than the identity
map, and this causes such technical complications in the Peirce
identities that the basic argument is lost sight of. We prefer to
do the simpler Jordan algebra case first, and treat the triple system
case separately [3].

We recall a few basic identities satisfied by Jordan algebras:
(0.1) Umx)y=UxUyUx

(0.2) Uv{x>y)z =UxUyUz +UzUyUx +Vx,yUzVy,x ~Uu(xmy)ZtZ

(0.3) Uv{x>y)z,z==Vx,yUz+UzVy,x

(0.4) UxUy,,=Vx,yVX)Z-Vmx)y,z

397
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(0.5) U9tJJm=V,.mVMtm-V,.mmU

(0.6) {xxy} = x*oy, Vx>x = Vxh Vx,y + 7,.. - Vχoy.
In a Peirce decomposition we have the following identities for i —
1, 0 and j = 1 — i:

(PI) ί/,.0^ = Ux.Uyi/2 on J>(a?< e /„ y1/2 e J1/2)
(P2) Uei.9l/M=UVl/,Umt on J,
(P3)
(P4)
(P5)
(P6) ato(Xi/2°bi) = {αΛ/Λ } = (α^α^ofe,-
(P7) α?o^1/2 = α,o(α,o^1/2) (Fα2 = Fα

2. on J1/2)
(P8) Uafoox^ = ̂ 0(6,0(^0^/,)) (^ ( β < ) 6 < - F α i F 6 ί F α ί on J1/a))
(P9) {α^^1/2} = ^0(6.0^^)

where 2^ denotes the Peirce projection on the Peirce space J4.

l Ideal-building* A subspace i ί of a Jordan algebra is an
ideal if it is both an outer ideal

(1.1) UsK(zK (UjKdKyVjK(zK)

and an inner ideal

(1.2) UκJciK {UκJaK, K2aK) .

Here J = Φl + J denotes the unital hull of the Jordan algebra J; if
J is itself unital then / = J, and the conditions VjKcK and K2 a K
are superfluous (F β = ?/«.,!, x2 = J7βl). A useful observation is that
once K is known to be an outer ideal it is an inner ideal as soon as

(1.3) Uk.J(Z K for some spanning set {&J of K.

From now on we fix an idempotent e in J and consider the
corresponding Peirce decomposition

Then the unital hull J = Φl + J = Φ(l — β) + J can be identified with
^1Θ J1/2 Θ «/o Note that any ideal K <\ J is invariant under the
Peirce projections Et since these are multiplication operators, therefore
K is the direct sum of its Peirce components

K = Kx 0 K1/2 ®K0 (K^Kn J,) .

Triple products of Peirce elements largely reduce to simpler bilinear
products:

^1+z1/2+*0(2/i + V1/2 + Vo) = UXly, + VXι/2{y1 + τ/1/2 + y0) + E ĵ/o
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(1.4) = UXly, + Uaι/Z(yx + yQ) + {x^E^x^oy^) - yι/2oE0(xΐ/2)}

+ UXQy0 + xAx9oy1/2) + xAv^Xm) + xQo(yQoχί/2)

EQ((xQoyι/2)oXί/2) .

Correspondingly, the ideal conditions (1.1), (1.2) for K reduce to simpler
conditions on the Peirce components Kt.

IDEAL CRITERION 1.5. A subspace K = Kx®KUl@K* is an ideal
of a Jordan algebra J = Jx 0 J1/2 0 Jo iff f or i = 1, 0, i = 1 — i

(Cl) Ki is an ideal in Jt

(C2) Et(Jι/toKι/t)c:Kt

(C3) J,oif1 / 2cir i / 2

(G4) ί o ^ c J f , ,
(C5) UJ^CIKJ

(C6) Ukj/2fiC:Kj for some spanning set {&1/2} of iΓ1/2.
If 1/2 € Φ the conditions (C5), (C6) are superfluous.

Proof. Clearly these inclusions are all necessary by the Peirce
relations and the fact that any product involving a factor from an
ideal falls back in that ideal.

A routine calculation shows (C1)-(C5) suffice to establish outerness:
UsKczK follows from (1.4) since U^K.aK, by (Cl); Uj^K.aK^ by
(C5);/1/2o^(/1/2oif1/2)cίΓ1/2 by (C2), (C4); K1/2oEϋ(J?!2) cK1/2 by (C3);
J^&oK^aK^ by (C3) (noting ί^Kί/2 = ΦeQoKι/2 + J0oK1/2 =
ΦKιί2 + Jo oK1/2 since β0 o x1/2 == a?1/2); /, o (#. o J1/2) c ϋΓ1/2 by (C4), (C3);
E^AJ^K^CLK, by (C3), (C2).

Once we have outerness, innerness (1.3) follows for the spanning
set of elements kt e Kt(i = 1, 0) and the given kί/2 e K1/2 since 17^^ =
U^czK, by (Cl), U^/tCLKj by (C6), and *7/Cl//1/2 = k^oE^oJ1/%) -
J1/2oE0(kt/2)dK1/2 by (C3), (C4), and E0(kt!2) ^U^eK, by (C6).

Since 2C7, - Ϊ7βi, and always UJ^J^K, = E^AK.oJ^)) c #,• by
(C4), (C2), Uj^^fi = E^AJtoK^aKj by (C3), (C2), we see that
(C5), (C6) are consequences of (C2)-(C4) when 1/2 e Φ.

REMARK 1.6. In characteristic 2 situations we cannot dispense
with (C5) and (C6)—they really are necessary in addition to the other
conditions. For example, if J is the special Jordan algebra ΦeL1 +
Φ(fiii + O + Φe22 of symmetric 2 x 2 matrices over Φ of characteristic
2, then relative to e = en we have Jx = Φeu, /1/2 — Φ(e12 + β21), J"o = $#22
so J1/2

oJi/2 = 2Φ(β12 + e21)
2 = 0, and thus (C2) is automatic for any K.

If we take Kx = Jί0 = 0, if1/2 - J1/2 then (C1)-(C5) hold trivially, but
not (C6) since UJl/2Jt = ΦUβJ2+β21eit = Φβiy = J, 7̂  0. Thus (C6) is not a
consequence of the other conditions. If we take K = XΦen, K1/2 =
λΦ(e12 + e21), -K̂o — λ2Φ22 for noninvertible λ in a domain Φ of charac-



400 KEVIN McCRIMMON

teristic 2, then (Cl), (C2)-(C4) hold trivially, as does (C6) by

Uλ{ei2+en)(Φeu) = X2Φe33 ,

but (C5) is not a consequence since Uei2+e21(XΦen) = XΦe22 qL X2Φe22 = KQ.

Next we introduce the key notions of invariance. An ideal Kt

in a Peirce space Jt (ί — 1, 0) is invariant if it is both U-invariant

(1.7) UJ^UJ^K^K,

and V-invariant

(1.8) Vj^j^Kt - ^(J1/2o(J1/2oiΓ1/2)) c JΓ, .

By the Peirce relations and (P5) the maps UXl/2Uyi/2 and VXl/2,yi/2 map
Ji into itself, though in general they cannot be compressed into a
multiplication from Jt.

F-invariance is the more fundamental notion, and goes a long
way towards ensuring Z7-invariance. For example, the special case
z — y in (0.4) shows

(1.9) 2UxUy = Vx,yVx,y~VuU(x)y,y t

so whenever we can divide by 2 F-invariance implies ί7-invariance.
We can flip an invariant ideal from one diagonal Peirce space to

the other.

FLIPPING LEMMA 1.10. If Kt is an ideal in a Peirce space
j. (i = l, 0) then K3 = UJl/2Ki is an ideal in Jά. If Kt is V-invariant
or U-invariant, so is the flipped ideal K3 .

Proof. K5 is outer since U$άKs = U^Uj^K, = Ui..Jί/tKt (by (PI)) c
UJl/2Ki = K3- as in (1.1), and for the spanning set of elements k3- —
Uy]/2k{ we have by (0.1) UkjJ3 - Uyi/2UkiUVl/2J3 (by (0.1)) c U^JJ^d
UJl/2Kt = K3, so by (1.3) K3 is an ideal. If JSΓ, is F-invariant so is
K39 since by (0.3) VJl/2>Jl/2K3 = Vj^j^Uj^Kt c ( ί / F w ^ ^ ] ^ , ^ -

^ 1 / 2 V ^ , ^ , } ^ c C7,1/2^ + [7Jl/2( F ^ / ^ ^ ) c ϋ , ^ (by F-invariance
of JK )̂ = K3, and iΓj trivially inherits £7-invariance

(by Z7-invariance) = K3.

Now we are ready to establish the main result of this section,
describing the global ideal generated by an invariant Peirce ideal.

PROJECTION THEOREM 1.11. An ideal Kt in a Peirce space
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Ji (i = 1, 0) is the Peirce projection of a global ideal K in J iff Ki
is invariant. In this case the ideal generated by Kύ takes the
form

If 1/2 6 Φ we have UJl/2K< -

Proof. We have already noted that if Ki is the projection of
an ideal K then by the Peirce relations and invariance of K under
all multiplications from J, Kt must be invariant. We must establish
the converse. Since the ideal generated by Ki must certainly certain
the above products, if we can show the above K actually is an ideal
then we will have exhibited Kt as the projection of an ideal K which
is thus precisely the ideal generated by Kt.

We verify the conditions of the Ideal Criterion (1.5). Ki is an
invariant ideal in Jt by hypothesis, and Kό — UJl/2Ki is an invariant
ideal in J3 by the Flipping Lemma 1.10. Thus (Cl) holds. For (C2),
note JSΛJ^OJC^) = ̂ ^ ^ by
(P5) and V-invariance, also Eό(JU2oKί/2) = {J1/2KiJ1/2} c UJl/2Ki = Kό

by (P4). For (C3), J,oK1/2 = JAKtoJι/2) - K^J^j^ςzK^J^ = K1/2

by (P6), while J, o K1/2 = Jto {K, o J1/2) - (J, o K^Jιl2 - K< o (J, o jΛ/%) c
K^J1/2 = K1/2 by (P7) and the fact that Kt <\ Jt. For (C4) we have
KtoJ1/2 = K1/2 by definition, and KόoJι/2 = UJίJZKioJιnc:--Ujλl2J1/2°Kt +
J1/2o{j^J1/2J1/2} (linearized (0.6)) c J^Ki + JI^VJ^J^ = J ^ o ^ =
-K̂i/2 by V-i%variance of ̂ . For (G5), UJl/2Ki = iίy by definition,
while t/j^JS; = Ujι/2UJι/2KiC:Ki by U-invariance of iί,.^ For (C6), the
spanning elements k1/2 = kiθy1/2 satisfy Uk.oyi/2Ji= Uyi/2UkiJiCi UJι/zK5 = K5

by (P2) and ^ < Jίy similarly Uki.Vl//s = UkiUyi/2Jdc: U^czK, by (PI)
and Ki < J^. Thus (C1-C6) hold, and K is an ideal.

EXAMPLE 1.12. The connector ideal generated by an off-diagonal
Peirce space J1/2 is

A*'1/2/ " UJι/2^0 M7 «l/2 VX7 Ujχ/2t'l '

Proof. It suffices to verify conditions (C1-C6) of (1.5): (C3-C6)
are automatic since K1/2 — J1/2, Kj = UJl/2Ji) (Cl) follows from the
Flipping Lemma 1.10 applied to /* in J; (C2) follows from Ei(J1/2oJ1/2) =
{^Vi/Jc^cif, by (P4).

EXAMPLE 1.13. If ̂  denotes the kernel of the Peirce specialization
of Ji on Jι/i9

Zi = {ZiGJi\ZiθJl/2 = 0}
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then Z = J?! 0 ZQ is an ideal in J which annihilates the connector
ideal, UzI(J1/2) == 0.

Proof. Any time ίΓ has K1/2 = 0 the conditions (C2), (C3), (C6)
become vacuous and (C4) becomes the condition Kid Zt. If we take
Kt = Zi (C4) is thus satisfied, as is (Cl) since the Peirce specialization
is a homomorphism of J* into End (J1/2) by (P7), (P8) and therefore
its kernel is an ideal. Moreover, these are interchanged by UJl2 as
in (C5) since U^z^y^ = V^JJ^z, = {UXl/2,yi/20Xί/2 - U^VyJz, (by (0.3)
with x = 1) = {x^ZiEiiy^ox^)} - UXl2VVl/2zt = (x^z^oE^y^x^) -
UXl/2(yι/2oZi) = 0 by (P9) if ^o^1 / 2 = ztoyl/2 = 0.

Thus iJ is an ideal in J UzI(J1/2) — 0 since by (1.4) we have
UZl+H(kγ + k1/2 + k0) = C/,^ + ί/zo&o + «i°(#i/2°«o) = 0 where [ 7 , ^ =
UuUJi/tJj = ^ i 0 , l 7 / i by (PI) and ^ o J 1 / 2 = 0.

PROPOSITION 1.14. If J is a prime Jordan algebra and e Φ 1, 0
α proper idempotent, then Jί/2 Φ 0 and the Peirce specializations of
Ji and Jo on J1/2 are faithful (hence J19 Jo are special Jordan algebras).

Proof. If J1/2 — 0 then J — Jγ ffl Jo would be a direct sum of
ideals, whereupon primeness would force J = J^hence e = 1) or J =
Jo (hence e = 0). Thus J1 / 2 cannot vanish if e is proper. Then
UzI(Ji/i) = 0 for J(J1/2) ^ 0 forces ^ = 0 by primeness.

Thus in any prime exceptional Jordan algebra J, as soon as we
examine a proper piece Jx(e) or J0(e) it is special (in some sense J
has no smaller exceptional pieces), and exceptionality results only
from the way Jx and JQ are tied together via J1 / 2

In §4 we will see that when J is simple the same is true of Jx

and JQ, so J is built up of pieces which are simple and special.
Note that if J is simple and e proper we have J1/2 Φ 0 by 1.14,

so by simplicity I(J1/2) = J and by (1.12) we have

(1.15) UJί/2J0 = Jx , UJl/zJx = Jo .

We can improve on this by removing the hat from Jo. To do this
we need to look at the ideal generated by JQ. Trivially Jt is an
invariant ideal in Jif and JxoJ1/2 = e°J1/2 = Jί/2, so by 1.11 we have

EXAMPLE 1.16. The ideal in J generated by a diagonal Peirce
space Ji(e) is

a - o) κj0) = J0 e j0oj1/2 e uJl/2j0
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If J is simple then e Φ 0 implies Jγ Φ 0 and hence /(JJ = J x, once
more leading to Uj^J^ = J o If we knew e ̂  1 implied J o ̂  0 we
could similarly deduce I(J0) = J by simplicity and hence UJl/2J0 — Jt

(without the hat).
Surprisingly, it takes a bit of arguing to establish Jo Φ 0. Suppose

in fact JQ = 0. Then for z1/2 e J1/2 we would have z\l2 eJ1

J

rJύ = J19

and z, = zlu would be trivial since UHJ = C ^ = TJZll2TJZll2J1 c £7*1/2Jo =
0. But a simple J with idempotent is not nil and therefore has no
trivial elements, so z\ί2 — 0 and z1/2ow1/2 = 0 for all zιί2, w1/2 e J1/2. But
then by (1.4) UZl/2w1/2 = zϊ/2oEλ{zλ/2owin) - w1/2oE0(z2

ll2) = 0, so UZl/2J1/2 =

0, and since already TJZll<ιJγCLj^ = 0 we have Utl/2J= 0 and z1/2 would
be trivial. Again J has no trivial elements, so z1/2 = 0, J 1 / 2 = 0,
contradicting 1.14.

PROPOSITION 1.17. If J is a simple Jordan algebra and e Φ 1, 0
a proper idempotent, then

2 Invariance* To construct global ideals we must begin with
invariant Peirce ideals. We now turn to the question of conditions
under which an ideal is automatically invariant. Throughout this
section we will be concerned with ideals Kt in a diagonal Peirce space

Jid = l, 0).
While Vj1/2>j1/2Ki and Uj1/2Uj1/2Ki are not in general contained in

Kif they are in some sense contained in the "square root" and "fourth
root" of Ki:Vj1/2>Jl/2 maps K? into Ki9 and UJl/2UJl/2 maps Kt into Kt.
More precisely, we have the following useful technical result.

LEMMA 2.1. For any ideal Kt <| J* we have

(2.2) Vj^j^Uz/jaKi

and

(2.3) Uj^Uj^Uv^/jaKt.

In general, for x, ye J1/2, keKit aeJt we have

(2.4) Vx,vUka = Uv{x,y)k,ka - UkVy,xa e K{

(2.5) U.UyUka = Uixyk)a - UkUyUxa - Vx,yUkVy,xa

so that whenever keKt is V-invariant, {xyk} = Vx,yk e Ki9 then UkJt

is U-invariant, UxUy(Uka) e K^
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Proof. For (2.4) we have by (0.3) Vx,yUkaU{xyk},ka- UkVy,xae
Uj.,Kia-U^Vy^aczKi whenever Kt 0 J*. For (2.5) we use (0.2):
U{

l

χyk}a = [UxUy Uk + Uk Uy Ux + Vx>y Uk Vy,x - Uk.ϋim)UWk]a = Ux UyUka
modulo Kt since UkUyUxae UK.JiCiKi9 Vx>yUkVy,xae V\,yV

r

κ.J^CJSL, by
(2.4), and Uk>mx)my)kae U^j.aciKi. Applying (2.4) to keK^aeJi
yields (2.2), and applying (2.5) to ί e UKiJt (so {xyk} Ξ O by (2.2))
yields (2.3).

EXAMPLE 2.6. If Bif Ci are invariant ideals in Jt so is their
product UB.Ci.

Proof. For F-invariance apply (2.4), for CT-invariance apply (2.5).

EXAMPLE 2.7. If Ki is an idempotent ideal in Ji9 Uκ.Ji — Kίf

then Ki is invariant.

EXAMPLE 2.8. If Ba are invariant ideals in Jt so is their sum
Σ Ba

 a n d their intersection Π Ba.

EXAMPLE 2.9. For any ideal Kt <\ Jt the infinite Penico derived
ideal P°°(K%) - f[ Pn{Ki) is an invariant ideal (Pn+\Kt) = P{Pn{Kτ))
where P(Lt) = ULiJt). Similarly for the infinite derived ideal D°°(K{)
(where D(L%) = ULiLt). Thus either Ki contains a nonzero invariant
ideal, or else it is oo-nilpotent: P°°(Ki) = 0.

Proof. F-invariance of P 0 0 ^ ) follows from (2.2),

and ϊ7-invariance from (2.3), Uj^Uj^P^XK^aP^Ki). For j
we use (2.4) to get F-invariance, ^ . ^ ^ ( Z J c f l T O and (2.5)
to get CMnvariance, UJl/2UJl/2D

n+\Ki)c:D\Ki) (note Vx,yUdn+1Vy>xd:+ίe
Vx,yUdn+ιD

ndVx,yD
n+1 aDn by the relation for the F's).

We have seen in the Flipping Lemma 1.10 that one way of ob-
taining an invariant Peirce ideal to is flip an invariant ideal by UJl/2.
Another way of obtaining an invariant Peirce ideal is to take the
kernel of UJl/2 instead of the image.

KERNEL LEMMA 2.10. Ker UJl/2 = {zeJi\UJl/2z = |UJl/2UJi = 0} is
an invariant ideal in Ji.

Proof. Ki = Ker£7^ is trivially ^-invariant (UJl/2UJl/2Ki = 0),
and is F-invariant because by 0.3 UJl/2(VXl/2,yi/2z)(z{U{yi/2Xl/2Jl/2),Jl/2-
Vy1/2,Xl/2UJl/2}z = 0, and by (0.2) and (0.3)
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/ + uJl/2(Uj()

i — 0 = 0 .

JQ is a linear subspace since for z,weKi we have UJίtUz+aJi =
UJί/2(Uz + Uw + ϋt,n)St where by (0.3) UJl/tϋ.,J( = UJt/tVw.ίtz =

{Uΰt.«Wi/t - VU*U-rJz = ° X t i s a n o u t e r i d e a I s i n c e UJl/t(UίtZ) =
Uj^zcz UJl/2z = 0 by (P2), UJl/tUmit)Jt= U^U^Ui/^ UJlHUJiΓ 0
by (0.1), (P2), and is an inner ideal since UJl/2(UzJi) = 0, Uj^Uu^Ji =
UJι/tU.UίtUj<czUJl/tUj{ = 0 by (0.1).

We can easily show that a strongly semiprime ideal is invariant.
Recall that Ki is strongly semiprime in J{ if J^ = JJKi is strongly
semiprime in the sense of having no trivial elements UzJi = 0; this
is equivalent to UHJi aKi<=> zte Kt.

THEOREM 2.11. Any strongly semiprime ideal Kt <| J^ is in-
variant.

Proof. For x, y e J1/2, k e Kt we have {xyk} eKt<=> U{Xyk}Ji c Kt

(strong semiprimeness) <=> Ux Uy UkJi c Ki (using (2.5)) ==> Uu{x)u[y)kJi =
UxUyUk(UyUxJi)c:UxUyUkJic:Ki (by ( O . l ) ) - ^ ^ ^ ^ . This shows
F-invariance implies ί7-invariance. Further, since {##( ET̂ α)} e !£< by
(2.2) it shows UxUy(Uka) eKiy i.e., UkUyUkJiC:Ki9 hence by the above

e J^, establishing F-invariance.

Since any maximal ideal in a unital algebra is strongly semiprime
(the quotient is simple with unit, therefore contains no nil ideals,
therefore contains no trivial elements), we have the important

COROLLARY 2.12. Any maximal ideal M1 in JΊ is invariant.

This immediately shows that Jx is simple if J is. We return to
this in §4, where we use a flipping argument to deduce that Jo is
simple as well. In the remainder of this section we undertake a
more delicate analysis to show Ki is invariant if it is merely semiprime
in Ji (in the sense that Ji is semiprime), or even if it has no trivial
ideals U^Ji — 0 (this is equivalent to UBiJi c Ki => Bt c if, for Bt <[ J,).

LEMMA 2.13. If Kt is an ideal in Jt then H(Kt) = Kt +
^1/2^1/2^ + ^1/2^1/2^ ί s again an ideal in J*. In fact, for any
particular x, y e J1/2 the subspaces
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iff =Ki+UxUyUκJί

iff = Kt + V^K, + UxUyUKiJf

iff =Ki+Vx,yKi+UxUyKi

are ideals in Jt with

if* c iff c iff c iff

and with each trivial modulo the preceding:

Uxmf< C iff , UεVJtCiff , UzyJt C K< .

Proof. Since H(Kt) is just the sum of all iff for all possible
x,yeJm, it suffices to prove the Kl}} are ideals.

We first show each K^ is an outer ideal: U^Kl'1 (zKl'K For αe
$i and keLi<\Ji we have

tfα r.,,fc = {Ut>m)t. - Vy,x Ua}k (by (0.3))

= U{w),Je - Vy.xUak - Vx,yUak (by (0.6))

6 UίtLt - VJtUsjjt - Vm,,Lt c L ( + V..,Lt

UaUxUyk = {U{axy) - UyUxUa - Vv,xUaVx,y + Ua,my)U{x)a}k (by (0.2))

= {Uiaxy} + (UxUy- Ux.y + Vx,yVy,x - VΠM,,)U.

-(V.., - Vx,y)UaVXιy + Ua,my)mx)a}k (by (0.2), (0.6))

= {Ulaxy) + UxUyUa -(Ux.y + Vπw.i)UΛ + Vx,yUaΛyxa)

- Vx.yUaVx,y + Ua,my)ulx)a}k (by 0.3))

e UJtLt + UxUyLt -(UJ{+ VJt)US(Lt + V^U^L,

-V,tUίtV.,tLi+Uίi.JtLt

<zLt+ U.U,Lt -Lt+ Vx,yLt - VjVsJ^Lt +L,

c L , +Vx,yLt +UxUyLi

(using our previous calculation to move VJt, U}( past Vx,y). Taking
Li = Kt shows iff1 is outer, while Lt = UKi3tCKi shows Kf, JSΓί1' are
outer (using (2.2) for Kf).

Now we show the Kij) are inner, in fact the stronger assertion
that each is trivial modulo its predecessor: Uκ\

ί)Ji(zKli~l)ciΏ3'1. For
j = 1 we have K? = ϋ.U^U^Jt modulo the ideal iff = Ku so

UKi(T)Ji = UuMuwiHjcjj^i = UyUyUΠ{Ki)}iUxUxJi

<= U. Uy UulKi)iiJt c ζ = 0 (by (2.3))

so Ujc^Ji c Kf. In particular, iff is inner and thus an ideal. Once
iff is' an ideal we have for j = 2 that iff == Vx,yK{ modulo iff, so

ϋ r<«>ft = UlnXi)ft = Ux Uy Ux/t c iff = 0 (by (2.5))
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so UzwJt c K™ and Kf] too is an ideal. Then we have K{? = XJJJyK%

modulo the ideal Kf\ so
Uκ?fi Ξ U^v^/t - UβUyUKtUyUjt c UMUtJjCKl* = 0 so

Uκ™Ji c iΏ2) and jBΓί3) is also an ideal trivial modulo its predecessor.

Our calculations show each 17* UyKi is an ideal and each Kt +
Vx>yKi is an outer ideal; if 1/2 e Φ outer ideals are ideals, so UJl/2UJι/2Ki
and if, + VJχ/2tJl/2Ki are both ideals in this case.

REMARK 2.14. If invertibίe elements are dense one can show

B(J1/2, Jll2)K, <\ J, (B(x, y) = I + Vx,y + UxUy) .

Indeed, UaB(x, Uay)z = B(Uax, y)Uaz shows for invertible x1eJ1 that

UXιB(JJ/2, J 1 / 2 ) ^ i = Ueo+XlB(J1/2, x.oJ^K,

= UaB(Jι/if UaJ1/2)Kι(a^e0 + x1) = B(UaJ1/2, J^UaK,

λ/29 J1/2) UXιKι c J5(JΊ/2, J1/2)K1 ,

hence if such xγ are dense BKt is outer, and it is inner since for the
spanning set of B(x1/2, yu^h we have UB^,y)kJι = B(x, y)UkB(y, x)Jta
B(x, y)U1CιJί(Z.B{x, y)Kx. It is not known if this holds in general. If
Φ is a field with more than two elements then B(Jί/2J Jy^Ki is just
Kt + V(Jί/29 J1/2)Ki + U(Ji/2)U(J1/2)Ki and thus is certainly an ideal.

Now we can establish invariance of semiprime ideals.

THEOREM 2.15. Any semiprime ideal Kt <\ Jt is invariant.

Proof. Semiprimeness means JJKt contains no trivial ideals.
But then K, - Kf> c K? c K? cJSΓί8) with K{/+ι)/Klj) trivial forces in
turn K< - Kll) - Kf - K?\ This shows VβtyKt cK, and UeUyKt cK,
for any particular x, y e /1/2, and thus Kt is F-and 17-invariant.

REMARK 2.16. We have established invariance of JBΓ, as long as
Jt — Ji/Kt contains no ideals Lέ consisting entirely of trivial elements
(i.e., ULiJiczKi^>Lic:Ki). It is not known whether an algebra without
such ideals is necessarily semiprime; this holds whenever 1/2 6 Φ since
Lf = 6 implies 2 £ 7 ^ - LAL^Jd - UoJ. = δ.

3. The invariant hull* If we have no specific information
about a given ideal Kt <| Ji which allows us to conclude it is invariant,
we must enlarge it by applying all possible V'$ and i7Js until the
result is invariant. The invariant hull Inv (Kt) of the ideal K{ is
the smallest invariant ideal containing Kt.
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In (1.9) we saw that F-invariance implies [7-invariance when
1/2 e Φ. More generally,

PROPOSITION 3.1. The subalgbra E&, T) of End (J,) generated
by the restrictions to Jt ofV Jl/2tJί/t and UJl/2UJί/2 reduce toiZS + T* where
^ is the linear span of all operators

UXίUyι' UXnUyn

and Y* the linear span of all

V*vn '' VβntVn

where xif yt belong to some spanning set for J1/2. Further, 2 ^ c Ψ\

Proof. The Jordan identities (0.4), (0.5) show that the partially
linearized {/-operators UxUy>z and UyyZUx can be replaced by products
of F-operators: UxUy>ze Ύ] UyfZUxe ψ: In particular, for y = z we
see as in (1.9)

2UxUye T.

These together with the further Jordan identities

(0.8) Ux Uy Vz,w = U{xyzhx Uw,y - Vz,y Ux Uw,y - Ux Umy)z,w e T

(0.9) Vw,zUyUx =Uw,yU{xyz],x -Uw,yUxVy,z -UU{y)z,wUxeT

show that any mixed term involving a product of £7's with at least
one V factors, or 2 times any product of £7's can be expressed solely
in terms of F's,

+ T^ c f ,

Thus the subalgabra generated by ̂  and T reduces to ̂ / + Y*
with 2ί7c: T.

Since Vx>y is bilinear in x, y, if {wj spans J1/2 then the Vu.iUj span
VjυvJiw a n d ^1/2^1/2is spanned by the Uu.Uuj modulo terms Uu.Uu.,Uk,

REMARK 3.2. For x9 y e J1/2 we have an operator identity on J.

UXUX = UX2 = UE.{x2)f UxUy +UyUx + £72,„ - UE.{χoy) + UEi^%Ei^

showing UXl UX2 UX2n is an alternating function of the variables
Xi e J1/2 modulo products with fewer £Ps and either more V's or
more multiplications from J* (which automatically leave any ideal
Kt <] Ji invariant). Thus ^ is spanned modulo T and ̂ {J^ by
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all UUι UU2' - UU2n for uγ < < u2n in some ordered spanning set

for Jι/2.

THEOREM 3.3. The invariant hull of a given ideal Kt <| Jt is

Inv (1Q - &Kt Λ-TK^± V^ itJutKt + Σttf , Kt .

If 1/2 eΦ this reduces to

Proof. A subspace is U- and F-invariant iff it is invariant under
the subalgebra generated by all tΓs and V's, which by 3.1 is just
^ + T, so ^SKi + TKi is the invariant closure of K^ To see this
remains an ideal in J. if K{ is to begin with, note that this invariant
closure can also be represented as Inv(iQ = Σ"=oiϊ"(i^) where
H{Li) = Lt + VJl/2tJl/iLt + Uj1/2UJl/2Lif where by Lemma 2.13 each
Hn(Kt) is an ideal and therefore their sum is too.

If 1/2 6 Φ we can dispense with the 17's by 3.1.

REMARK 3.4. By our comments 3.2, if J1/2 is finitely spanned we
need only take a finite number of powers ί/ĵ 2.

REMARK 3.5. Inv (Kt) is Baer-radical modulo Kt since it is a
union of ΈL\KΪ), where ίP( iQ is Baer-radical modulo Hn~\Kt) (being
the sum over all x,yeJ1/2 of ideals Kf - K, + V^K, + UxUvKt

nilpotent modulo Kt by (2.13)). Once more this shows that if Kt is
semiprime in Jt then Inv (JQ = Kt and Kt is invariant.

We can, if compelled, write down explicitly the ideal generated
by a diagonal Peirce ideal.

THEOREM 3.6. If Kt is an ideal in a Peirce space J^ {% — 1, 0) of
a Jordan algebra J, then the ideal it generates in J is

I, = Inv (I,) = {T + 3?)Kt = Σ (ή/2.^/2 + U?JKt
j,k—Q

= ΣΣ
j,k—Q

Proof. The ideal generated by JSΓ* coincides with the ideal
generated by its invariant hull Inv (2Q = {T + ̂ ) ^ by (3.3), so by
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(1.11) h = Inv (iQ, I1/2 = VJί/2 Inv (2Q, I, = ί7Jl/2 Inv (JSΓ,). Note that
UJl/2 Inv (if,) - tfJl/f(y + f/)K, = (3T + ^ ) ^ 1 / 2 ^ since ϋ ^ ϋ f t , =
^ί/2^/2 shows UJl/2^ = ̂ Uj^ and ^ 1 / 2 F J l / 2 , J l / 2 + F J l / 2 , J l / 2 ^ 1 / 2 c

^1/2^1/2^1/21^1/2 C ^1/2 b ^ ( 0 ' 3 ) S h θ W S ^ l / 2 ^ = ^ U ^ ' N θ t θ

that

F J l / 2 ^ c F J l / 2 37 F,1/2 Inv

because

^1/2^1/2 C ^1/2 Σ ^1/2^1/2

follows from the following obscure Jordan identity:

V x U y U z = V U ( z ) U { y ) x y % * U { y ) x , z + V u i z ) y * y , x V%Vy,z* y , x

~ Vϋ{{xyz),z)y + Vz Vy,{xyz} + V{xyz\ Vy>z

(or else substitute 1 in (0.5), VyVx,y = VaUy + VUiy) to see VJl/2UJl/zcz

^1/2^1/2^1/2 + ^1/2 C ^1/2 ^ S 0

v = vJl/2τ).
EXAMPLE 3.7. The largest invariant ideal contained in Kt <\ Jt

is the invariant kernel

Inv ker (Kt) = {zeKt\E{&r, T)z c Kt)

^{zeKil Vΐ1/2,Jί/2z, U%2zeKt for all n, m} .

Proof. Certainly if z belongs to an invariant ideal It <J Ki so
do all Vnz and U2mz, so z belongs to Inv ker (iQ = Zt. Conversely,
Zi is clearly a linear subspace which is invariant, E(1%S, y)Zt c Zt.
It remains to show Zt is an ideal.

Zi is outer: the identities (0.3), (0.2) show

VUSi c Us, + UϊYaUϊΈ^, T\ U2U^ c Z7̂ ?72 + Uίt

+ FC7^Fc ?7 î72 + UJi + I Γ ί ^ ^ , ^ ) F c U}β{^9 T) ,

and hence by induction E(&, T){U^Z%) c U$.{E(^, T)Z,) c EfyZ, c ; ^ .
Therefore UsiZiczZi.

Zt is inner: the identities (0.3), (0.2) show VUZiJt(Z Uz.VJi +
Uv{Zi)tZ/ici UzJt (since ^ is F-invariant), U\Uz.Jj) c {CT̂  ?72 + t7"z< +
VUz.V}Ji (since Z< is C7, V-invariant) c ί/^/o hence by induction

/<) c Uz/t c ^ / , c Kt and ^ / , c ^ .

EXAMPLE 3.8. We give a straightforward example of Jordan
algebra having noninvariant Peirce ideals. Let D be an associative
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algebra with involution *, and let Df be an ample subspace (Df c
H(D, *) is symmetric, contains 1, and has xD'x* c D' for all xeD:
if 1/2 eΦ then D' = jff(A *)). Then the algebra J = H(Dn, D') of
hermitian nxn matrices over D with diagonal entries in D' forms a
Jordan algebra with idempotent e — en. Here a subspace Kx =UL'[11]

of the Peirce space J1 — D'[ll] is an ideal iff K' is a Jordan ideal in
D',

( i ) (outer ideal) x'Wx' e K' for all xr e Df, k' e K'
(ii) (inner ideal) k'xΎ e K'.

On the other hand, such a Kx is F-in variant iff K is closed under
traces,

(iii) (F-invariant) t(DK')czK': xk' + k'x* eK' for xeD,k'eK'
and ZJ-invariant iff it is closed under norms,

(iv) (U-mvariant) xk'x* e Kf for all xeD,k'e K'.
These follow from the general rules V(a[lj], 6*[li])c[ll] = t(abc)[lϊ\
and

U(a[lj])U(b*[lj])c[lί\ =

and U(l[ajl d[υc])U(b*[lj], /*[lfc])β[ll] = (α6c/*(Z* + dfcb*a*)[ll]. In
this case Z7-invariance implies F-invariance (and conversely if 1/2 e Φ),
and the invariant hull of Kγ is

Inv (Kx) = JSΓ, + UJ^UJ^K, = {Σ »JSΓ'aj*}[ll] .

For example, if we take D — M2(Φ) a split quaternion algebra
over a ring Φ and Dr = Φl, then IT is an ideal of Df iff (i)Φ2UL' c if',
(ii) ΦKnaKf, and iΓ is F-invariant iff (iii) t(D)K' = ΦK'aK', and
iί ' is C7-invariant iff (iv) tt(D)iΓ' = ΦίT' c K\ If 1/2 6 Φ or Φ is a
field all ideals K' of Όf are invariant, but if Φ = Z|>], iΓ' = Zx2 +
x*Z[x] + 2Z[ίc] then one easily verifies that Kf is a Jordan ideal in
Z[x] which is not an associative ideal (and hence not invariant).

In this example we obtained the invariant hull from a single
application of UJl/2 UJl/2 because the coordinates of J1/2 = Σ D[lj] are
closed under multiplication. To construct examples where the invariant
hull requires all Vj1/2>Jl/2 and U}™2 we take subalgebras where the
coordinates of J1/2 are not closed. From now on our examples will
sit inside H(D2, D').

EXAMPLE 3.9. (All F's are necessary.) Let D = Λί(F)(g)Φ[ε] be
the ring of dual numbers (ε2 = 0) over the exterior algebra A(V) on
an infinite-dimensional vector space F over a field Φ of characteristic
Φ2, with canonical reversal involution fixing F. (Thus the symmetric
elements are spanned by the elements of Λn(V) for n = 0oτ Imod4.)
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Then the set H{D2) of all 2 x 2 matrices with entries in the associative
coordinate ring D forms a Jordan algebra. We take J to be the
subalgebra

J = eH(D2) + (V A V)[12]

- εH(D)[ll] + {V AV+ εD}[12] + eH(D)[22]

and J = J + Φl[ll] the subalgebra obtained by tacking on e = 1[11].
Thus H{D2) z> J 3 J => eίf(A).

Since JΊ = εJx is trivial {Uj1J1 = J\ = 0 since s2 = 0), omτ/ subspace
KιaJ1 is an ideal in J l β However, only certain subspaces will be
invariant:

= 2ui Λu2 Λu5 Au± Λ
= -2U, A u2 A u3 A u4 A k[ll]

Thus a subspace KL = eK[11] will be invariant only if the subspace
K of H(D) is closed under multiplication by the degree 4 part of the
exterior algebra (generated by all uι A u2 A uz A u± for u^e V). If
K - Φv0 then 7β l Λ f ι [ l l L, ι Λ ί l [ l l] V^^^t^K, = εΦu, Av.Aw.A
ίi Λ -" A un A vn A wn A tn A ^[H] c ε/l4TO+1(F)[ll], from which it is
clear that arbitrarily high powers of VJl/z,Jl/2 are needed to generate
the arbitrarily long elements ^ Λ ^ Λ Λ ^ Λ %[H] in Inv

EXAMPLE 3.10. (All U'& are necessary.) Again we take H(D2)
for D an associative algebra with involution, but this time D is a
"square root" of an exterior algebra Λ(V) on an infinite-dimensional
vector space V over a field Φ of characteristic 2. If V has basis
{̂ i> 2̂> } we let J9 = Φ[xlt x2, ] be a commutative polynomial ring
(with identity involution) where x\ = v<f v\ = 0. Note

D2 c Φ[^2, x2, •] = Φ[vlf v2, •] = A(V), (DJ = 0 .

Let

J = H(Dΐ) + {Σ Φa?*}[12] - £>2[11] + {Σ Φx* + D%}[12] + D2[22]

and J = J + Φe[ll]. Again J^ = D2[ll] is trivial since the charac-
teristic is 2 and (D2)2 = 0, so any subspace Kx c Jx is an ideal in Jlm

Here F-invariance is automatic,

Fα[l2],6[l2]c[ll] = 2αδc[ll] = 0 .

Ef-invariance of Ky = K[ll] means closure of K under even products
of vt's, since
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and if a = Σ<%i%i + Σ < f e then α2 = Σ α ̂ . From this it is clear
that arbitrarily-large powers Uxili}UHluy C7e2w[12]V0[ll] = v1va- v»vo[H]
are needed to obtain the invariant hull of K1 = Φvo[U].

4* Simplicity of Jx and Jo. We use our constructions to show
that Peirce subalgebras Jx and Jo inherit simplicity from J. The
basic idea of the proof is easily stated. Since a simple algebra J
contains no proper ideals K, there are no proper projections in the
Peirce subalgebras Jλ and Jo, consequently by 1.11 there are no proper
invariant ideals in Jγ or Jo. Since J1 has unit element e there exist
(by the usual Zorniίication) maximal ideals Klf necessarily strongly
semiprime in Jλ by (2.12), so any maximal Kx is invariant and there-
fore zero; but Kx = 0 maximal means Jx is simple.

For the nonunital algebra Jo we cannot use this argument, but
we can make use of the simplicity of Jx: any ideal KQ in Jo is flipped
into an ideal Kγ = UJl/2K0 in Jx. If this image is zero the same holds
for the invariant hull of Ko, forcing this hull to be zero and Ko = 0.
If on the other hand the image is all of Jx then the same holds for
iΓ0

3; but the double flip of K* is contained in iΓ0, which forces Ko =
Jo. This means Jo is simple.

Now to fill in the details.

MAIN THEOREM 4.1. If e is an idempotent in a simple Jordan
algebra J then the Peirce subalgebras Jx(e) and J0(e) are also simple.

Proof. The result is vacuous if e — 0 (Jγ — 0, JQ = J), so we may
assume e Φ 0. Then J is not nil, Nil (J) Φ J, so by simplicity Nil (J) =
0 and in particular J contains no trivial elements. Each Jt inherits
this strong semiprimeness since an element trivial in Jt is trivial
in all of J{UZ.J = UHJi), therefore Jt is not trivial and will be simple
if it has no proper ideals. We know Jt contains no proper invariant
ideals, and we must deduce it has no proper ideals whatsoever.

We have already seen this is true for J1 thanks to its unit e,
so consider Jo Suppose we have an ideal Ko <\ Jo. By the Flipping
Lemma 1.10 the image Kγ = UJl/2K0 is an ideal in Jlf so by what we
have just shown it must either be J, or 0.

First consider the case JSΓj = UJl/?K0 = 0. Then KQ a Ker UJl/2,
which by the Kernel Lemma 2.10 is an invariant ideal of Jo. Such
an invariant ideal can only be Jo or 0, and it is not all of Jo since
Ujι/2J0 Φ 0 by (1.17), so KeτUJl/2 must be 0 and Ko was 0 to begin
with. So far we have shown that K\ = 0 implies Ko = 0.

Now consider the case Kx = UJl/2KQ — Jx. Since Jo is strongly
semiprime it has no nilpotent ideals, so KQ Φ 0 => K£ = UKQJ0 Φ 0=>
K" = UK'JO Φ 0. But by the previous case K" Φ 0 implies K" =
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Uj1/2K" is nonzero and therefore all of Jx. Thus by (1.17) Jo — UJl/2Jγ =
UJl/2( UJl/2K'o'). On t h e other hand, UJί/2 UJι/2K'Q' = UJl/2 UJl/2( UU{KQ)I0J0) C

KQ by (2.3), so we have Ko — Jo. This shows Kγ = Jt implies Ko = Jo.
Thus KQ <] Jo implies Ko = 0 or Ko = Jo, and Jo too is simple.
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