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PEIRCE IDEALS IN JORDAN ALGEBRAS

KEVIN McCRIMMON

In attempting to investigate infinite-dimensional simple
Jordan algebras J having rich supplies of idempotents, it
would be helpful to know that the Peirce subalgebra .J,(e)
relative to an idempotent ¢ in J remains simple. This clearly
holds for associative and alternative algebras because any
ideal in a Peirce space is the projection of a global ideal.
The corresponding result is false for Jordan algebras: there
are multiplications of the ambient algebra J which send J;
to itself (therefore leave invariant the projection of a global
ideal), but are not expressible as multiplication by elements
of J, (therefore need not leave invariant an arbitrary ideal
of J;). We show that an ideal K, is the projection of a
global ideal iff it is invariant under the multiplications
Vs, and Uy, U; .. This yields an explicit expression for
the global ideal generated by a Peirce ideal. We then show
that if J is a simple Jordan algebra with idempotent, the
Peirce subalgebras J, and J, inherit simplicity.

Throughout we consider a quadratic Jordan algebra J over an
arbitrary ring of scalars @ with product

U.y
quadratic in « and linear in y. Linearization yields a trilinear product
{wyz) =U, .y =V, 2.

(See [1] for basic results on quadratic Jordan algebras.) If e is an
idempotent element of .J, ¢® = ¢, then we have a Peirce decomposition
J=J,DJ,,DJ, where J, J, are subalgebras. We wish to relate
the ideals in these Peirce subalgebras J; to ideals in the ambient
algebra J.

Analogous results hold for Jordan triple systems. However, in
this case U, is merely an involution on J, rather than the identity
map, and this causes such technical complications in the Peirce
identities that the basic argument is lost sight of. We prefer to
do the simpler Jordan algebra case first, and treat the triple system
case separately [3].

We recall a few basic identities satisfied by Jordan algebras:

0.1) UU(x)u =U, UyUx

(0'2) UV(a:,zl)z = UzUyUz + Uz UﬂUav + V:ml Uz Vy,z - UU(x)U(y)z,z

(0'3) UV(a:,mz,z = Vx,uUz + Uz Vv.:c

(0'4) Ua: Uy,z = Vz,y V:c,z - VU(a:)y,z
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(0‘5) Uv:zUa: = Vﬂ:x Vz,x - Vzl,U(x)z
(0°6) {xxy} = xzoy’ Vx,:c = Va2 V:c,y + Vy,:c = Vxey'
In a Peirce decomposition we have the following identities for ¢ =
l,0and j =1 —4:
(Pl) Uzinyl/z = Uxi Uyl/z on Jj(xi € Ji9 Y2 € Jl/z)
(P2) Uzrh/z = Uyl,zUzi on J;
(P3) Um,/szz = 0,0 Bi(%,/20Y1/2) — Yoo B (@)
P4)  {@,,0:9./2} = Hj(®,50(a:°9,/5))
(P5)  {@,9,/00:} = Hy(®,/20(x,500))
(P6) a;o(x,/,0h;) = {a,@,/,b;} = (a;0,,,)0b;
(PT)  atow,;, = a;0(a;0%, ) (Vaf =Vi on J;)
(P8)  U,ibiox, ), = a;o(bso(aow,,)) (VU(ai)bi = VaiVbiVai on J,.))
P9 {adw, .} = a;o(bsow,)
where FE,; denotes the Peirce projection on the Peirce space J,.

1. Ideal-building. A subspace K of a Jordan algebra is an
ideal if it is both an outer ideal

(1.1) U;KcK (U,KcCK,V,KcK)
and an inner ideal
(1.2) UJcK (UJCK,K'CK).

Here J = @1 + J denotes the unital hull of the Jordan algebra J; if
J is itself unital then J = J, and the conditions V,K < K and K*c K
are superfluous (V, =U,,, 2* =U,1). A useful observation is that
once K is known to be an outer ideal it is an inner ideal as soon as

1.3) U, Jc K for some spanning set {k;} of K.

From now on we fix an idempotent e in J and consider the
corresponding Peirce decomposition

J=J DD .

Then the unital hull J = &1 + J = &(1 — ¢) + J can be identified with
J.DJ,.DJ,. Note that any ideal K <]J is invariant under the
Peirce projections K, since these are multiplication operators, therefore
K is the direct sum of its Peirce components

K:K1@K1/2@Ko (KiszJi)‘

Triple products of Peirce elements largely reduce to simpler bilinear
products:
Uz1+z1/2+x0(y1 + Yi/z + yo) = Uzlyl =+ le/z(yl + Yis2 =+ yo) + Ua:oyo
{2520} + (XY@} + {0 Y62} + XY 0% )+ {BYe )



PEIRCE IDEALS IN JORDAN ALGEBRAS 399

(1.4) = Uzlyl + z,/z(?ll + Yo) + {0 B, 50Y1/0) — Yreo By(@:)}
+ Uzo?/o + @,0(x,0Y,/5) + o (Y, o, 2) + Zoo (Y0 %y /)
+ E1(<x1°y1/2)°x1/2) + Eo((xo°y1/2)°w1/2) .

Correspondingly, the ideal conditions (1.1), (1.2) for K reduce to simpler
conditions on the Peirce components K,.

IDEAL CRITERION 1.5. A subspace K=K D K,,,P K, is an ideal
of a Jordan algebra J=J, P J,,PJ, iff for 1 =1,0,7 =1 —1¢

(C1) K, is an ideal in J,

(C2) E(J,.0K,) C K,

(C3) JioK,); C K,y

(C4) Kiod, ), C K,

G5 U, K CK;

(C6) U,,L,zficKj for some spanning set {k,,} of K,,.
If 1/2€ @ the conditions (C5), (C6) are superfluous.

Proof. Clearly these inclusions are all necessary by the Peirce
relations and the fact that any product involving a factor from an
ideal falls back in that ideal.

A routine calculation shows (C1)-(C5) suffice to establish outerness:
U; K c K follows from (1.4) since U3, K, CK; by (Cl); U, K,CK; by
(C5); J, 5o B, (JieoKy1s) C Ky by (G2), (C4) 1/2° o(Jffz)CKﬂz by (C3);
Jyo (J °K,;) CK,;, by (C3) (noting J oK,y = @0 K,y + JyoK,)y =
OK,. + JyoK,, Since 6,02, = 2,0); J.o (Ko Jy) CKos by (O4), (09)
E(J,.o(J 0K, 1)) C K; by (C3), (C2).

Once we have outerness, innerness (1.3) follows for the spanning
set of elements k, ¢ K, (z =1, 0) and the given k,,, € K,,, since Uy, J =
UkJ CK; by (C1), Ukl 2J CK; by (C6), and Ukl/nglz = ko Bi(kyso 1/2)"

o By(l:) C K,y by (C3), (C4), and Eykt,) = U, e, € K, by (C6).

Since 2U, Ux . and always U, , ;. K; = Ei(J,,o(K;od,))) C K; by
(C4), (C2), U,,,, KWJ E;(J,:0(JoK, ;)T K; by (C38), (C2), we see that
(C5), (C6) are consequences of (C2)-(C4) when 1/2€ @.

REMARK 1.6. In characteristic 2 situations we cannot dispense
with (C5) and (C6)—they really are necessary in addition to the other
conditions. For example, if J is the special Jordan algebra @e, +
D(e, + e,) + De,, of symmetric 2 X 2 matrices over @ of characteristic
2, then relative to ¢ = ¢, we have J, = @¢,,, J,,, = O(e,, + e€y), J, = De,,
80 J,p0d = 20(e, + 6,)" = 0, and thus (C2) is automatic for any K.
If we take K, = K, =0, K,,, = J,,, then (C1)-(C5) hold trivially, but
not (C6) since U, ,J; = OU.,,., 6 = Pe;; = J; 0. Thus (C6) is not a
consequence of the other condltlons. If we take K = \0e¢,, K,,, =
AD(e,, + e), K, = \N@,, for noninvertible » in a domain @ of charac-
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teristic 2, then (C1), (C2)-(C4) hold trivially, as does (C6) by
Ul(e12+e21;(¢6ii) = NDe;; ,

but (C5) is not a consequence since U, ., (\De,) = \MDe,, & NPe,, = K,.

1ete2y

Next we introduce the key notions of invariance. An ideal K,
in a Peirce space J; (1 = 1, 0) is wnvariant if it is both U-itnvariant

(1.7 U,,U;,.K.CK,

and V-invariant

(1.8) ViverKs = Ei(Ji0(J, 50 K, ) C K,

By the Peirce relations and (P5) the maps U,, U, , and V, ,, , map

J, into itself, though in general they cannot be compressed into a
multiplication from J,.

V-invariance is the more fundamental notion, and goes a long
way towards ensuring U-invariance. For example, the special case
2z =y in (0.4) shows

(1'9) 2Ux Uy = Vx,ny,y - VU(a;)y,y ’

so whenever we can divide by 2 V-invariance implies U-invariance.
We can flip an invariant ideal from one diagonal Peirce space to
the other.

FrippiNnG LEMMA 1.10. If K, is an ideal im a Peirce space
J, (1=1,0) then K; =U, K; is an deal in J;. If K, is V-invariant
or U-invariant, so is the flipped ideal K;.

Proof. Kj; is outer since U;,K; =U;,U,, K, =Us; .., K, (by (P1)) C
U, K. = K; as in (1.1), and for the spanning set of elements k; =
U,, k. we have by (0.1) U, J; =U,,,U,,U,,J; (by (0.1))c U, UgJ; C
U, K. = K;, so by (1.8) K; is an ideal. If K, is V-invariant so is
KJ" since by <O' 3) V-’1/2»J1/2Kj = VJ1/2'-71/2UJ1/2K‘5C {UV(J1/2’-71/2]J1/2’J1/2 -
Us o Viywryd K U K + Uy (Vi K) €Uy Ky (by  V-invariance
of K,) = K;, and K; trivially inherits U-invariance

UJ1/2 UJl/zKJ' = UJl/z UJ1/2 UJ1/2K2' - UJ1/2K73

(by U-invariance) = K;.

Now we are ready to establish the main result of this section,
describing the global ideal generated by an invariant Peirce ideal.

ProOJECTION THEOREM 1.11. An ideal K, im a Peirce space
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J; (1 =1, 0) 18 the Peirce projection of a global ideal K in J off K,
18 imvariant. In this case the ideal genmerated by K, takes the
Sform

K =K, @D Ko, EBUJl/sz .
If 1/12€ @ we have U, K, = E;(J,,o(K;oJ,)).

Proof. We have already noted that if K, is the projection of
an ideal K then by the Peirce relations and invariance of K under
all multiplications from J, K, must be invariant. We must establish
the converse. Since the ideal generated by K, must certainly certain
the above produets, if we can show the above K actually is an ideal
then we will have exhibited K, as the projection of an ideal K which
is thus precisely the ideal generated by K,.

We verify the conditions of the Ideal Criterion (1.5). K, is an
invariant ideal in J; by hypothesis, and K; =U, K, is an invariant
ideal in J; by the Flipping Lemma 1.10. Thus (C1) holds. For (C2),
note Ei(J, 0 K,s) = Ei(J,e0(J120 KY)) = {J110d 1. Ki} = Ve Ki CK; by
(P5) and V-invariance, also Ey(J,,0K,,) = {J,,K.J,,} U, K, = K;
by (P4). For (C3), JioK,; = Jjo(Kiod, ) = Kio(Jjod,),) C Kiod,y), = Ky,
by (P6), while J;o K, ), = Jio(K;od,n) = (Jio K)oy, — Ko(J;od, ) C
Kod,,, = K,;, by (P7) and the fact that K, <{J;,. For (C4) we have
KioJ,), = K,,, by definition, and KjoJ,,, = UJl/zKiOJI/ZC_ UJ1/2J1/2°K1' —+
J1/2°{KiJ1/2J1/2} (linearized (0.6)) C J, 0 K; + o0 VJ1/2,J1/2KI: = JypoK; =
K., by V-invariance of K, For (C5), U, K, = K; by definition,
while U, K, = U, U, ,K,CK; by U—invarignce of Ki; For (C6), the
spanning elements k,,,=k;oy,,, satisty U,.., .= U, U, J;C U, ,K;=K;
by (P2) and K, <] J;, similarly U,,io,,l,zf i=Uy, U,l,zf iCUJ,CK; by (P1)
and K; <|J;. Thus (C1-C6) hold, and K is an ideal.

ExamPLE 1.12. The connector ideal generated by an off-diagonal
Peirce space J,,, is

I(Jl/z) = UJUZJO @ J1/2 EB UJ1/2J1 °

Proof. It suffices to verify conditions (C1-C6) of (1.5): (C3-C6)
are automatic since K,, = J,, K; =UJ1,2fi; (C1) follows from the
Flipping Lemma 1.10 applied to J; in J; (C2) follows from E(J,.0d.) =
(Jusids) C U, 5 C K, by (PA).

ExampLE 1.13. If Z, denotes the kernel of the Peirce specialization
of J, on J,,,,

Z, = {z, € J;|z;°d,,, = 0}
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then Z = Z, Z, is an ideal in J which annihilates the connector
ideal, U,I(J,,;) = 0.

Proof. Any time K has K,, = 0 the conditions (C2), (C3), (C6)
become vacuous and (C4) becomes the condition K,c Z,. If we take
K, = Z, (C4) is thus satisfied, as is (Cl) since the Peirce specialization
is a homomorphism of J; into End (J,,) by (P7), (P8) and therefore
its kernel is an ideal. Moreover, these are interchanged by U,,, as
in (C5) since U, ,2:°Y12 = Vi, Usy®i = {Usppuysesiss — Usyy Vol (BY (0.3)
with @ = 1) = {22 E (Y2 ° ®.2)} — le Zle/gzi = (20/2°%3) © By(Y1/20%1/0) —
Uzl/z(y1/2°zi) =0 by (P9) if 2oy = 2:°Yy, = 0.

Thus Z is an ideal in J-U,I(J,,) = 0 since by (1.4) we have
Uzl+zo by + kype + ko) = Uzlkl + Uzoko + 20 (%:2°%2) = 0 where UziKi =

Uzi UJl/zJj = UzieJl/zJj by (Pl) and Zi° /2 = 0.

PROPOSI.TION 1.14. If J is a prime Jordan algebra and e = 1,0
a proper idempotent, then J,,, = 0 and the Peirce specializations of
J, and J, on J,,, are faithful (hence J,, J, are special Jordan algebras).

Proof. If J,, =0 then J=J, BJ, would be a direct sum of
ideals, whereupon primeness would force J = J,(hence ¢ = 1) or J =
J, (hence ¢ = 0). Thus J,, cannot vanish if e is proper. Then
U,I(J,,) =0 for I(J,,) + 0 forces Z = 0 by primeness.

Thus in any prime exceptional Jordan algebra .J, as soon as we
examine a proper piece J(e) or Jy(e) it is special (in some sense J
has no smaller exceptional pieces), and exceptionality results only
from the way J, and J, are tied together via J,,

In §4 we will see that when J is simple the same is true of J,
and J,, so J is built up of pieces which are simple and special.

Note that if J is simple and ¢ proper we have J,,, = 0 by 1.14,
so by simplicity I(J,,,) = J and by (1.12) we have

(1.15) UJL/ZJA-O =J,, UJ,/2J1 =dJ.

We can improve on this by removing the hat from J,. To do this
we need to look at the ideal generated by J,. Trivially J, is an
invariant ideal in J;, and J,oJ,,; = eoJ,;, = J,;;, so by 1.11 we have

ExAMPLE 1.16. The ideal in J generated by a diagonal Peirce
space J(e) is

(t=1) IJ)=J.DJ.DU,,,J,
(1=0) I(J,)) =J, D Jood, @UJl/zJo .
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If J is simple then e # 0 implies J, # 0 and hence I(J,) = J,, once
more leading to U, ,J, = J,. If we knew e # 1 implied J, = 0 we
could similarly deduce I(J,) = J by simplicity and hence U, J, = J,
(without the hat).

Surprisingly, it takes a bit of arguing to establish J, = 0. Suppose
in fact J, = 0. Then for z,,€J,, we would have z},eJ, + J, = J,,
and 2z, = 2}, would be trivial since U, J =U,J, =0, U, J,CU,,,J, =
0. But a simple J with idempotent is not nil and therefore has no
trivial elements, so 2}, = 0 and z,,,0ow,,, = 0 for all z,/,, w,, €J,,. But
then by (1.4) Uzl/zwl/Z = 2,20 H\(%,/50W,5) — Wyp0 By(25),) = 0, 80 Uzl/sz/z:
0, and since already U, ,J.CJ, = 0 we have U,,,J=0 and z,, would
be trivial. Again J has no trivial elements, so z,, =0, J,,, =0,
contradicting 1.14.

ProrosITION 1.17. If J 1s a simple Jordan algebra and e = 1, 0
a proper idempotent, then

Uso =y Us,dy=d,.

2. Invariance. To construct global ideals we must begin with
invariant Peirce ideals. We now turn to the question of conditions
under which an ideal is automatically invariant. Throughout this
section we will be concerned with ideals K in a diagonal Peirce space
Ji(1 =1, 0).

While V,,, ;.. K: and U, ,U; K; are not in general contained in
K,, they are in some sense contained in the “square root” and “fourth
root” of K;:V,,,.s,, maps K! into K;, and U, ,U, , maps K} into K,.
More precisely, we have the following useful technical result.

LEMMA 2.1. For any tdeal K, <|J, we have

(2.2) Vsl U o) C K,
and
2.3) U, Ur( UU(K,;).?zji) CK,.

In general, for x,yedJ,, ke K, acJ, we have
(2.4) Vs Ut = Uy e — UV, 0 € K,

(2.5) U.0,Uia =U,ypa —U U U, -V, UV, .0
+ Ui vwvw® CUpyne + K,

so that whenever ke K, is V-invariant, {xyk} =V, ke K,, then UkJAi
18 U-imvariant, U, U, (U,a) € K,.
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Proof. For (2.4) we have by (0.3) V, ,UaU, pn.a— UV, .0 €
U;, g0 —Ug,V,.a CK; whenever K;<J,. For (2.5) we use (0.2):
Uewa =10, U, U, + U U, U, +V,,U.V,. — Upwvwle = U, U, Ua
modulo K; since U, U,U,a € U, J,CK;, V,,U,V,,aeV,, UxJ,CK, by
(2.4), and U, pwweia € Uk, 7,0 CK,;. Applymg (2.4) to keK, acd,
yields (2.2), and applying (2.5) to ke UKJ (so {xyk} =0 by (2.2))
yields (2.3).

ExampLE 2.6. If B, C, are invariant ideals in J, so is their
product U,C,.

Proof. For V-invariance apply (2.4), for U-invariance apply (2.5).

ExampLE 2.7. If K, is an idempotent ideal in .J,, UKifi = K,,
then K, is invariant.

ExampLE 2.8. If B, are invariant ideals in J;, so is their sum
> B, and their intersection N B,.

ExAmPLE 2.9. For any ideal K, <] J; the infinite Penico derived
ideal P>(K,) = ) P*(K;) is an invariant ideal (P""'(K;) = P(P“K)))
where P(L,) =U,J,). Similarly for the infinite derived ideal D~(K)
(where D(L,) =U,,L;). Thus either K, contains a nonzero invariant
ideal, or else it is oo-nilpotent: P~(K,) = 0.

Proof. V-invariance of P~(K,) follows from (2.2),
Vi P HEKY)) € PYK,) ,

and U-invariance from (2.3), U, U, (P"**(K,)) c P*(K;). For D*(K,)
we use (2.4) to get V-invariance, V, , ; ,D""(K;) C D*(K,) and (2.5)
to get U-invariance, U,,,U;,,D"*K,) c D"(K;) (note V, ,U,,, V, .dus €
VeuUi,, D"V, D" C D" by the relation for the V’s).

We have seen in the Flipping Lemma 1.10 that one way of ob-
taining an invariant Peirce ideal to is flip an invariant ideal by U, ,.
Another way of obtaining an invariant Peirce ideal is to take the
kernel of U, , instead of the image.

KERNEL LEMMA 2.10. Ker U, ,={2¢€J;|U; 2 =|U;, UJ,=0} is
an tnvariant ideal in J;.

Proof. K, =KerU,,, is trivially U-invariant (U, ,U; K; = 0),
and is V-invariant because by 0.8 U, ,(V.,,4,,%) C{Ul, 00700002 —
Viwways Usynt2 = 0, and by (0.2) and (0.3)



PEIRCE IDEALS IN JORDAN ALGEBRAS 405

-
U, V2 UV(H/z 31/2)2']1
UJ1/2{ 21/2 1!1/2 Ui + U Ulﬂ/z Uﬁ/z + Vﬁ/z'ﬂl/z Uz V01/2»Z1/z
= Uptaypvayetds C U, (Usy, Uth) + U, (UJ))
+{ U’”x/z%/z-’x/z’ iz T Vﬂx/z ®y/3 UJx/z} UJ,—0=0.

K, is a linear subspace since for z, we K; we have U, 2UZMJ{ =

U, (U.+U,+ U, J)J. where by (0.3) U;,,U., ol = Us )y Vi 2 =
{Us,wrvmie — ViiwUrptz = 0. It is an outer ideal since U; ,( th)
U;,52< Uy ,2=0Dby (P2), UJI,ZUUW,JL UJ,,ZUJZU UJZJ c UJI,ZUJ =0
by (0.1), P2), and is an inner ideal since U, (UJ) 0, U;,,(Upiri, ), =
U,,,U.Us, UJ CU,MUJ =0 by (0.1).

We can easily show that a strongly semiprime ideal is invariant.
Recall that K, is strongly semiprime in J, if J, = J,/K, is strongly
semiprime in the sense of having no trivial elements Uzifi = 0; this
is equivalent to U,,J; C K; =z, € K.

THEOREM 2.11. Any strongly semiprime ideal K, <] J; is in-
variant.

Proof. For x,yed,, ke K, we have {xyk}c K, =U,,,J; T K;
(strong semiprimeness) = U,U,U,J; C K; (using (2.5)) = Uympmed: =
uv,u,u(U,UJ)cUUUJ,CK,; (by (0.1) =U,Ukec K,. This shows
V-invariance implies U-invariance. Further, since {zxy(U,a)} € K, by
(2.2) it shows U, U,(U,a) € K, i.e., U, U, U,J, C K;, hence by the above
{xyk} € K,, establishing V-invariance.

Since any maximal ideal in a unital algebra is strongly semiprime
(the quotient is simple with unit, therefore contains no nil ideals,
therefore contains no trivial elements), we have the important

COROLLARY 2.12. Any maximal ideal M, in J, is invariant.

This immediately shows that J, is simple if J is. We return to
this in §4, where we use a flipping argument to deduce that J, is
simple as well. In the remainder of this section we undertake a
more delicate analysis to show K, is invariant if it is merely semiprime
in J, (in the sense that J, is semiprime), or even if it has no trivial
ideals Uy, J; = 0 (this is equivalent to U, J C K,= B,C K, for B;<]J).

LemMMa 2.18. If K, is an tdeal in J, then H(K,) = K, +
Vivprn K + U, Uy K, is again an ideal in J.. In fact, for any
particular x, y € J,,, the subspaces
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K9 =K, +U,U,Uy J,

K® =K, +V.,,K, +U,U,UgJ,

K® =K, +V,,K, +U,U,K,

are ideals in J, with
K, CcK{"cK® cK{
and with each trivial modulo the preceding:

UK{“)Ji CK?, UKEZ)JiCKf) ’ UK?)Jt CK,.

Proof. Since H(K,) is just the sum of all K® for all possible
2,y €., it suffices to prove the K{* are ideals.

We first show each K{” is an outer ideal: U; K" c K{. For ac
J. and ke L, <|J, we have

UV.k = {Unoar,n — V.. Udlke (by (0.3))
=Upsarob — Vi Uk =V, Ucke (by (0.6))
eU; L, -V, U;L,~V,,L,cL; +V,,L,

U.U.Uk = {Upey —U,U.U, -V, UV, + Usvwvmdk (by (0.2))

= A{Uaony + (UUy = U,y +Vou Voo — Vi) U

~(Veor = Vo) UV + Uspwvianralle (by (0.2), (0.6))
= {Ulgany + U, U, U —(Usy + Vi) Us + Vopy Us,tyee

~Ved UsVeyy + Usvrvrall (by 0.3))
eU, L, +UUL, —(U;, +V;)Us,L; +V,,,Us,L;

-V, U3 Vel + U, 5Ly
cL,+UUL,~L,+V,,L,~V,;U;V,,L +L,
cL,+V,,L +UU,L,

(using our previous calculation to move V,, U;, past V,,). Taking
L, = K, shows K? is outer, while L, = UKijiCKi shows K, K are
outer (using (2.2) for K{").

Now we show the K{” are inner, in fact the stronger assertion
that each is trivial modulo its predecessor: UKZE"’ficK,-""”CK?’. For
J =1 we have K{’ =U,U,Ug,J; modulo the ideal K" = K;, so

UKi(l)ji = UU(x)U(y)U(Ki).?iji =U,U, UU(Ki)fi U. Uz‘fi
cU.U,UpxysJ; “K, =0 (by (2.3))

S0 UKgﬂficKi. In particular, K is inner and thus an ideal. Once
K{® is an ideal we have for j = 2 that K =V, K, modulo K", so

UK?)jz = U(”Ki)fi =U,U, UK,;jt CK"=0 (by (2.5))
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S0 UKiz)JAiCKf” and K too is an ideal. Then we have K =U,U,K,
modulo the ideal K{®, so

Uy ”J = UW)M,KlJ = U, U, U, U, U.J,cU,U, U, J;,CKP =0 so
Ug <3>J CK(z’ and K¢ is also an ideal trivial modulo its predecessor.

Our calculations show each U,U,K, is an ideal and each K, +
V..K, is an outer ideal; if 1/2 € @ outer ideals are ideals, so U, U, ,K;
and K, +V;, ,;,,K; are both ideals in this case.

REMARK 2.14. If invertible elements are dense one can show
B(JI/Z? J1/2)K1 <] J!. (B(:l), y) =1+ Vx,y =+ Uz Uy) .
Indeed, U,B(z, U,y)z = B(U,x, y)U,z shows for invertible z, € J, that

Ule(Jx/z, Ji K, = e0+mlB(Jl/2’ x,0d ) K,
= UaB(Jx/zy UaJl/Z)Kl(a =gt 951) = B( UaJx/zy Jl/Z) UaK1

= B(J,2) J1s2) U11K1 c B(Jx/zy Ji)K, ,

hence if such x, are dense BK, is outer, and it is inner since for the
spanning set of B(x,, ¥,.)k, we have Ugy, i/, = B, ¥) U B(y, x)J, C
Bz, y) U, J, < Bz, y)K,. It is not known if this holds in general. If
@ is a field with more than two elements then B(J,,, J,,)K; is just
K, +V{(Jys J1)K; + U(J, ) U)K, and thus is certainly an ideal.

Now we can establish invariance of semiprime ideals.
THEOREM 2.15. Any semiprime ideal K, <] J, is invariant.

Proof. Semiprimeness means J,/K, contains no trivial ideals.
But then K, = K® c K{® c K® cK{® with K¢f*V/K{# trivial forces in
turn K, = K = K = K®. This showsV, K, C K, and U,UK,C K,
for any particular z, y €J,,,, and thus K, is V-and U-invariant.

REMARK 2.16. We have established invariance of K, as long as
J, = J,/K, contains no ideals L, consisting entirely of trivial elements
(i.e., Uy, J.cK,—=L,CK). It is not known whether an algebra without
such 1deals is necessarlly sem1pr1me thls holds whenever 1/2 € @ since

L? = 0 implies 2U- Ji = L,o(L;0 1) — LzoJ = 0.

3. The invariant hull. If we have no specific information
about a given ideal K, <] J; which allows us to conclude it is invariant,
we must enlarge it by applying all possible V’s and U’s until the
result is invariant. The tnvariant hull Inv (K,) of the ideal K; is
the smallest invariant ideal containing K.
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In (1.9) we saw that V-invariance implies U-invariance when
1/2e®. More generally,

ProrosiTiON 3.1. The subalgbra E(Z/, 7°) of End (J,) generated
by the restrictions to J; of V 5, 5., and U, U, . reduceto Z’ +7" where
Z s the linear span of all operators

v.,u,---U.,U,
and 7" the linear span of all
Veiwi Ve,
where x;, y, belong to some spanning set for J,,. Further, 27 C 7.
Proof. The Jordan identities (0.4), (0.5) show that the partially
linearized U-operators U,U,, and U, ,U, can be replaced by products

of V-operators: U, U, . 7; U,.U,e 7. 1In particular, for y = 2z we
see as in (1.9)

20,U,e 7.
These together with the further Jordan identities
(0.8) U U, V.o =Uiye Uiy = Vooy U Uiy —UUpie € 77
(0.9) Vi UyU, =Us,y Uiyt = Uu,u UV = UpiyyeUs €77

show that any mixed term involving a product of U’s with at least
one V factors, or 2 times any product of U’s can be expressed solely
in terms of V’s,

T+ TV CV, 2T .

Thus the subalgabra generated by % and 7 reduces to % + 7~
with 2U cC 77

Since V,,, is bilinear in w, y, if {,} spans J,, then the V, ., span
Viypiye a0d Uy, Uy, is spanned by the U, U,; modulo terms U, U,,,.,,
qu,ukUui’ Uui,uquk,ue 7.
REMARK 3.2. For x,yeJ,, we have an operator identity on J,
Ua; Ux = Ua;z = UEi(xz)r Ux Uy + Uy Ux + Uj,y = UEi(xoy) + UEi(zz),Ei(yz)

showing U,,U,, -+ U,,, is an alternating function of the variables
x,€J,, modulo products with fewer U’s and either more V’s or
more multiplications from J; (which automatically leave any ideal
K, < J, invariant). Thus % is spanned modulo 7" and .#Z(J,) by
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all U,,U,,---U,, for u,<--- <u,, in some ordered spanning set
for “]1/2°

THEOREM 3.3. The invartant hull of a given ideal K, <] J, 1s
Inv(K) = %K, + VK, = ;ij. VE K+ ngJ"; K, .
If 1/2e @ this reduces to 3.V}, ; K.

Proof. A subspace is U- and V-invariant iff it is invariant under
the subalgebra generated by all U’s and V’s, which by 8.1 is just
Z + 7; so ZZK, + 7K, is the invariant closure of K,. To see this
remains an ideal in J, if K, is to begin with, note that this invariant
closure can also be represented as Inv(K,) = X2, H*(K,) where
H(L,) = L; +V;,,;,,L: +U;,,U;,, L, where by Lemma 2.13 each
HYK,) is an ideal and therefore their sum is too.

If 1/2e® we can dispense with the U’s by 3.1.

REMARK 3.4. By our comments 3.2, if J,,, is finitely spanned we
need only take a finite number of powers U:™..

REMARK 8.5. Inv (K;) is Baer-radical modulo K, since it is a
union of H"(K,), where H*K,) is Baer-radical modulo H* Y K,) (being
the sum over all z,yed,, of ideals K =K, +V, K, + U,U,K,
nilpotent modulo K, by (2.13)). Once more this shows that if K, is
semiprime in J; then Inv (K,) = K, and K, is invariant.

We can, if compelled, write down explicitly the ideal generated
by a diagonal Peirce ideal.

THEOREM 3.6. If K, is an ideal in a Peirce space J, (1 =1, 0) of
a Jordan algebra J, then the ideal it gemerates in J is

IK) =L@ L. D1
L=Tv (L) = (7 + 2K, = 3 (Vin, + UK,

3 0
Ix/z = V-’z/z Inv (K'L) = VJl/gyKi = Vh/z{jz:é le/zinlz}Ki
L =U,,,Inv (K) = (7" + Z)Uy,, K, = Inv (U,,,K)
= {V§1/2'J1/2 + U«?If/z} UJmKi °

3 k=0

Proof. The ideal generated by K, coincides with the ideal
generated by its invariant hull Inv (K,) = (7" + % )K, by (3.3), so by
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(L11) I, = Inv (K), L, =V, Inv (K)), I; = U, Inv (K,). Note that
U,y Inv(K) =U,,,(» + #)K, = (7 + #)U,,,K, since U, U, =
Uﬁflz UJ1/2 shows UJx/z?/ = ?/Uh/z’ and UJ1/2VJ1/2v-71/z + VJ1/2»=’1/2 UJ1/2C
Uiyorysrysiy, CUsyy by (0.8) shows U, 7" = 7°U, ,. Note further
that

VJ1/27/ c VJl/z 7; VJl/z InV (Ki) = VJl/Z%Ki
because

2
2 J
VJUz UJ1/2 < VJL 2 j%‘loV"uzvh/z

follows from the following obscure Jordan identity:

Vx Uy Uz = VU(z)U(u)w - Vz VU(u)z,z + VU(zlyV’ll,x - Vz Vy,z Vv,x
- VU({xuz),z)u + Vz Vy,(xyz) + V{mz} Vv,z

(or else substitute 1 in (0.5), V, V., =V, U, + Vy,, to see V, U, ,C
VJ1/2 VJ1/2'«71/2 + V-’1/2 = VJ1/2 7, 80

(0.10)

Vh/z UJ1/2 UJ1/2 < VJ1/2V UJ;/z < V-’1/2( UJ1/77‘ + UJ1/2)
C( Jl/‘]%‘)% _l_ VJl/zy = VJl/z%) .

ExAMPLE 3.7. The largest invariant ideal contained in K, <] J,
is the invariant kernel

Invker (K, ={ze K,|E(Z, 7 )z C K}
={2e K| V7, ,5.,.% Ui,z€ K, for all n, m}.

Proof. Certainly if z belongs to an invariant ideal I, <{ K, so
do all V*z and U™z, so z belongs to Invker (K;) = Z,. Conversely,
Z, is clearly a linear subspace which is invariant, E(%, 7°)Z,C Z,.
It remains to show Z, is an ideal.

Z,; is outer: the identities (0.3), (0.2) show

VU;, cU; +U; VU Bz, 7), UU;,cU; U* + Us,
+VU;, VU U + U, + U3 E(Z, 7YV U E(Z, 77)

and hence by induction E(7Z, 7" (U;,Z;) c U; (E(Z, 77)Z,) < U; K, C'K,.
Therefore U, Z, C Z,.

Z, is 1nner the identities (0.3), (0.2) show VU,, J,cU, VJ +
Uyz, ZzJ cUZth (since Z, is V-invariant), U“’(UziJI)C{UZiU +UZ¢ +
VU, V}Ji (smce Z; is U, V-mvarlant) cU ZiJi, hence by induction
E(?/ 77X UziJ) C UZZJi C Uy, J,c K, and Uy, J.c Z..

ExaMPLE 3.8. We give a straightforward example of Jordan
algebra having noninvariant Peirce ideals. Let D be an associative
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algebra with involution *, and let D’ be an ample subspace (D' C
H(D, *) is symmetric, contains 1, and has xD'z* c D' for all x e D:
if 1/2e® then D' = H(D, *)). Then the algebra J = H(D,, D') of
hermitian nan matrices over D with diagonal entries in D’ forms a
Jordan algebra with idempotent ¢ = ¢,,. Here a subspace K, =K'[11]
of the Peirce space J, = D'[11] is an ideal iff K’ is a Jordan ideal in
D,

(i) (outer ideal) x'k'2’ e K’ for all v’ e D', K e K’

(ii) (inner ideal) k'2'k' € K'.
On the other hand, such a K, is V-invariant iff K is closed under
traces,

(iii) (V-invariant) ¢(DK')C K': ok’ + K'x* e K’ for xeD, k' € K’
and U-invariant iff it is closed under norms,

(iv) (U-invariant) «k'z2* € K’ for all xe D, k' e K'.
These follow from the general rules V(a[lj], b*[15])e[11] = t(abc)[11]
and

U(a[15]) U(b*[15])ec[11] = abeb*a*[11]

and U(laj], d[1E]) UB*[15], f*[1k]Dc[11] = (abef*d* + dfeb*a*)[11]. In
this case U-invariance implies V-invariance (and conversely if 1/2 € @),
and the invariant hull of K, is

Inv (K,)) = K, +U,,,U,,.K, = (S aKa*)[11] .

For example, if we take D = M,(®) a split quaternion algebra
over a ring @ and D’ = @1, then K’ is an ideal of D’ iff ()#*K’' < K,
(ii) K Cc K', and K’ is V-invariant iff (iii) ¢(D)K’ = @K' Cc K', and
K’ is U-invariant iff (iv) n(D)K' = 0K'CK'. If 1/2€¢® or @ is a
field all ideals K’ of D’ are invariant, but if @ = Z[z], K’ = Zx* +
x*Z[x] + 2Z[«x] then one easily verifies that K’ is a Jordan ideal in
Z[x] which is not an associative ideal (and hence not invariant).

In this example we obtained the invariant hull from a single
application of U, ,U,,, because the coordinates of J,, = >, D[1j] are
closed under multiplication. To construct examples where the invariant
hull requires all V3, ,, , and U;", we take subalgebras where the
coordinates of J,,, are not closed. From now on our examples will

sit inside H(D,, D’).

ExAmPLE 3.9. (All V’s are necessary.) Let D = A(V) R @[¢] be
the ring of dual numbers (¢! = 0) over the exterior algebra A(V) on
an infinite-dimensional vector space V over a field @ of characteristic
#2, with canonical reversal involution fixing V. (Thus the symmetric
elements are spanned by the elements of A"(V) for n =0 or 1 mod 4.)
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Then the set H(D,) of all 2 x 2 matrices with entries in the associative
coordinate ring D forms a Jordan algebra. We take J to be the
subalgebra

J =e¢H(D,) + (VAV)[12]
= eH(D)[11] + {V AV + eD}[12] + ¢H(D)[22]

and J = J + @1[11] the subalgebra obtained by tacking on e = 1[11].
Thus H(D,) > J>J > eH(D,).

Since J, = &J, is trivial (U ;lfl = J? = 0 since ¢ = 0), any subspace
K,cJ, is an ideal in J,. However, only certain subspaces will be
invariant:

Vi nugtiztugnugti2tb{11] = 20, A ws N ug A u, A E[11]
Usysugtizdugnu st 11] = —2u, A Uy A us A u, A K[11]
Uul/\vlthk[ll] = 0 .

Thus a subspace K, = ¢K[11] will be invariant only if the subspace
K of H(D) is closed under multiplication by the degree 4 part of the
exterior algebra (generated by all w, A uw, A u; A u, for u, V). If
K = @v, then Vull\vl[lzl,wl/\tl[m] cte Vun/\vn[m],wn/\t"[m]Kl = &eQu, \ v, \ w, \
LA cos AUy A\ Vo AW, A Ty A V[11] Ced*™(V)[11], from which it is
clear that arbitrarily high powers of V, ,, . are needed to generate
the arbitrarily long elements eu, A U, A+ A %y, A v[11] in Inv (K).

ExampPLE 3.10. (All U’s are necessary.) Again we take H(D,)
for D an associative algebra with involution, but this time D is a
“square root” of an exterior algebra A(V) on an infinite-dimensional
vector space V over a field @ of characteristic 2. If V has basis
{vy, vy -} we let D = @[z, «,, ---] be a commutative polynomial ring
(with identity involution) where x? = »,;, v = 0. Note

D*CO[x}, 2% -] = O, vy, «-- 1= AV), (D) =0.
Let
J = H(DY) + {3, @x,)[12] = DY11] + {3 @x, + D*x;)[12] + D¥22]

and J =J + @¢[11]. Again J, = DY11] is trivial since the charac-
teristic is 2 and (D?%? = 0, so any subspace K, CJ, is an ideal in J,.
Here V-invariance is automatic,

Vit nac[11] = 2abe[11] = 0 .

U-invariance of K, = K[11] means closure of K under even products
of v,’s, since

Ua[m] Ub[12]c[ll] = azbzc[]—l] ’
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and if a = > ax; + >, dix; then o = D, alw;,. From this it is clear
that arbitrarily:large powers U, 1, U,y * * Usy, 1%l 11]= 0,2, - - 0,9, [11]
are needed to obtain the invariant hull of K, = ®y[11].

4. Simplicity of J, and J,. We use our constructions to show
that Peirce subalgebras J, and J, inherit simplicity from J. The
basic idea of the proof is easily stated. Since a simple algebra J
contains no proper ideals K, there are no proper projections in the
Peirce subalgebras J, and J,, consequently by 1.11 there are no proper
snvariant ideals in J, or J,. Since J, has unit element ¢ there exist
(by the usual Zornification) maximal ideals K,, necessarily strongly
semiprime in J, by (2.12), so any maximal K, is invariant and there-
fore zero; but K, = 0 maximal means J, is simple.

For the nonunital algebra J, we cannot use this argument, but
we can make use of the simplicity of J,: any ideal K, in J, is flipped
into an ideal K, =U, ,K, in J,. If this image is zero the same holds
for the invariant hull of K, forcing this hull to be zero and K, = 0.
If on the other hand the image is all of J, then the same holds for
K¢; but the double flip of K¢} is contained in K,, which forces K, =
J,. This means J, is simple.

Now to fill in the details.

MAIN THEOREM 4.1. If e is an idempotent in a simple Jordan
algebra J them the Peirce subalgebras J,(e) and J,(e) are also simple.

Proof. The result is vacuous if e =0 (J, =0, J, = J), so we may
assume ¢ = 0. Then J is not nil, Nil (J) % J, so by simplicity Nil (J) =
0 and in particular J contains no trivial elements. Each .J; inherits
this strong semiprimeness since an element trivial in J, is trivial
in all of J(U,,J =U,J,), therefore J; is not trivial and will be simple
if it has no proper ideals. We know J; contains no proper invariant
ideals, and we must deduce it has no proper ideals whatsoever.

We have already seen this is true for J, thanks to its unit e,
so consider J,. Suppose we have an ideal K, <]|J,. By the Flipping
Lemma 1.10 the image K, =U, K, is an ideal in J,, so by what we
have just shown it must either be J, or 0.

First consider the case K, =U,,K,=0. Then K,cCKerU,,,,
which by the Kernel Lemma 2.10 is an invariant ideal of J,. Such
an invariant ideal can only be J, or 0, and it is not all of J, since
U, .Js # 0 by (1.17), so KerU,,, must be 0 and K, was 0 to begin
with. So far we have shown that K, = 0 implies K, = 0.

Now consider the case K, =U, K, =J,. Since J, is strongly
semiprime it has no nilpotent ideals, so K, # 0= K, = UKofo #0=
K =UK")JA0¢ 0. But by the previous case K; = 0 implies K, =
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U, K¢ is nonzero and therefore all of J,. Thus by (1.17) J, = UJl,ziL =
U,,(U;,,Ki). On the other hand, U, U, Ky =U,,,U; (Upxyids)
K, by (2.3), so we have K, = J,. This shows K, = J, implies K, = J,.
Thus K, <]J, implies K, =0 or K, = J,, and J, too is simple.
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