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THE LEBESGUE CONSTANTS FOR (/, 4)-SUMMABILITY

RICHARD A. SHOOP

It is well-known that the Fourier series of a continuous
periodic function need not be pointwise convergent. This
fact is a consequence of the unboundedness of the Lebesgue
constants, which are the norms of the partial sum operators.
It is equally-known that the Fourier series of a continuous
function is uniformly (C, l)-summable to the value of the
function. Thus, the question naturally arises as to which
summability matrices are effective in the limitation of Fourier
series of continuous functions. In this paper we consider
a very general class of matrices, the (/, dn) means, and show
that their Lebesgue constants are unbounded. An interesting
corollary is that the Fourier series of a continuous periodic
function need not be everywhere almost convergent.

If A = (ank) is a regular summability matrix, the nth Lebesgue
constant corresponding to A is defined by

(1.1)
Σ a** sin (2k + l)ί

π Jo sinί
-dt .

The sequence {Ln(A)} is of considerable importance in the theory of
Fourier series in that the unboundedness of this sequence implies
the existence of a continuous function whose Fourier series fails to
be A-summable at a specified point [1, pp. 58-60]. Conversely, if

and if the sequence {Ln(A)} is bounded, then the Fourier series
of each function continuous on an interval [α, b] is uniformly A-
summable to the value of the function on [a, &]. Extensive study
of the Lebesgue constants has been made by a number of authors
including Livingston [4] for the Euler means, Ishiguro [2] and Newman
[7] for Taylor summability, Lorch [5] for the Borel exponential and
integral methods, Sledd [10] for Sonnenschein matrices, and Lorch
and Newman for [F, dn] means [6], and for Hausdorff means [8].

The (/, dn) means are defined as follows: Let / be a nonconstant
function, analytic on the disc \z\ < R for some R > 1, and let {dn}
be a sequence of complex numbers, such that for all n, dn Φ —/(I).
The elements of the matrix A are then given by the relations

α<κ> = 1 , α<>fc = 0 ( fc ^ 1 )
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(1.2) ^

This family of matrices was introduced by Smith [11] as a generali-
zation of the [F, dn] means of Jakimovski [3], to which they reduce
if f(z) = z. In case dά = 0 for all j , (1.2) becomes

fc=0

and A is called the Sonnenschein matrix generated by / [12]. The
purpose of the paper shall be to derive an asymptotic expansion for
the sequence {Ln(A)} for a class of regular (/, dn) matrices. In the
final section, we shall demonstrate that the unboundedness of the
Lebesgue constants for a particular (/, dn) mean implies the existence
of continuous functions whose Fourier series fail to be everywhere
almost convergent.

2* Preliminaries* In addition to the assumptions made regarding
the function / and the sequence {dn} we further assume that

(2.1) the Maclaurin coefficients of / are real and nonnegative;

(2.2) | / ( * ) I < 1 for \z\£l(zΦl);

(2.3) /(I) = /'(I) = 1 , while f'\l)Φθ;

(2.4) d% ^ 0 for all n

(2.5) ΣJX + dnΓ = - .

Condition (2.5) is necessary for regularity of A, as is condition
(2.2) in case dn = 0 for all n. Moreover, conditions (2.1), (2.4), and
(2.5) are sufficient for regularity [11]. The following two lemmas
will be useful in § 3. The first of these is due to Lorch and Newman
[6].

LEMMA 2.1. Let \ak\ <^1 and \bk\ ^ 1 for k = 1, , nf and let

A be a positive constant. If \ak — bk\ <, Ack for k = 1, , n then

n n

Π dk — Π bk
J f c = l k = l

LEMMA 2.2. Let K be a positive constant and let a, β e [0, π/2].
If \eia - eίβ\ ^ K, then \a - β\ ^ Kπ/2.

Proof. eίa - eiβ = 2i exp [i(a + β)/2] sin [(a - /5)/2], so
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\eia -eiβ\ = 2 | s i n [ ( α - β)/2] ^ — \a - β\ ,
Ίί

and the lemma follows,

3. The asymptotic behavior of {Ln(A)}. According to (1.1),

where

\ 4
π Jo sm t

*. = Σ am* sin (2k + l)ί .

From (1.2) and (2.3) it follows that

« TTTT

M 1
Define

The assumptions made about / cause its Taylor expansion about
z0 — 1 to be of the form

(3.1) f(z) - z + a,(z - If + 0(z - I)3 ,

where α2 = /"(l)/2 > 0 by (2.1). It follows that

(3.2) R^i = e2it + di - 4a2t
2 + O(f)

(3.3) pse
ilf' = e-2ίί + ds - 4a2t* + O(f) .

Since cί̂  ̂  0 for all j , these relations imply that

(3.4) Pi = Rf + O(f)

and

Now (3.4) implies that

1 + di 1 +

so that

n n

ΓT rdΠ K? Σ (i + d,-)-1 Ξ
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by Lemma 2.1. It follows that

= -±r ΠΠ ^
3=11 +

exp

+ ± θΛ~\

[i( -t + Σ <P;)]} + O(Hnf)

(Π - ^ M sin ΓA- Σ «?, - ?»,) + ί]

x exp Γ-f Σ (θ} + ?>y)Ί + O(iV) .

Hence,

sin [ i Σ «' -
Suppose that 0 < ξ < π/2. Then

sin ί
-dί

(3.6)

i=i 1 + dj sin t
dt

We may replace sinί by t in the integral on the right of (3.6),
introducing an error of O(£).
Thus,

o sinί

Π J

» i = 1 1 + •

Using the expansion

γ Σ (*i - <Pi)\ ί + cos £-ί s i n

we obtain
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J o i = i l + d3- t

— cos t
t

dt sin t
o t

It = O(ξ) .

Therefore,

;ξ \κn\
Jo sin

(3.7)

o i-i 1 + dj
dt + O(f) + 0{H£) .

We now estimate (Xβ\Kn|/sin Λdί. To this end, define Re** = f(e2ίt).

From (3.1) it follows that

R = 1 - 4α2f

or

(3.8) J2 = 1 - 4α2ί
2(l

where ^ is bounded in a neighborhood of t = 0. Now

= i?2 + 2^,- cos θ

+ d) .

Substitution of right-hand side of (3.8) for R yields

R2 < 1 -
(3.9)

d)

8α2ί
2(l +

+ tf(t)) .

If ί is sufficiently close to zero, then \tψ(t)\ < 1/2, and the right-hand
side of (3.9) is dominated by

(3.10) (1 + dj)2 - (1 + ds)[4aj? - 36α2ί4] .

If we further insist that t be less than (18α2)~
1/2, then it follows that

S6alt4 < 2a2t\ so (3.9) and (3.10) combine to yield

(3.11) R) ^ (1 + d0f - 2a2t\l +

Using (3.11) and the familiar inequality 1 + x < ex, valid for real x,
we obtain

< exp (-
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so that
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Analogously, one shows that

Hence,

and

\κn\ £

Π
i=i 1 +

+ dj
π +

Jί sinί 2

This estimate, together with (3.7) gives

e χ p

(3.12)
dt

0{ξ) [ΓX exp (-HJ2)].

We now replace the product appearing in the integral on the right
of (3.12) by a more managable expression. By equation (3.2)

f(e2ίt) j + 2it - (2 + 4αa)ί2

so that

^ χ ,. 2 + 4α.
1 + dy 1

2+2 _μ n(—L—\

By Lemma 2.1, it follows that

i = exp {2ίHnt -(3.13) Π f
i=i 1 +

where Sw = 2 Σ*=i d i ( ! + ^i)"2 Hence,

Π T ^ V = exp {-(4α2£Γ% +
i 1 + d

and (3.12) becomes
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SJf] dt
Jo s m t Jo t

+ O(ς) + O(Hnζ
s) + O[f-1 exp ( — iί,

From (3.13) it follows that

exp (i Σ θj) = exp (2iHnt) + 0{Hnf) .

Lemma 2.2 now implies that

"SΓ1 ft 9 TJ + _i_ Γϊ(TT-+%\
2_j (/j — ΔJtlnZ -γ- \J\£lnZ ) .

In similar fashion it is shown that

ΣςPi = -2HJ +O(Hnt*) .

Hence, sin 1/2 Σ iβj - Ψό) = sin 2£Tni + O(Hntf), and

(3.14) J ' T / 2 ^ L L ^ = ( ίexp[-(4α 2iϊ% + Sn)t*]^
Jo s m ί Jo

+ O(ξ) + O(iίMf3) + OK"1 exp (-#.£')] .

Here, the interval of integration may be extended from [0, ξ] to
[0, π/2] with an error of O[ξ~ι exp ( — ίίΛf2)]. This having been done,
we now let <J = H^β. Since Hn —> co as ^ —> °o, all of the error
terms in (3.14) become o(l). We now make the substitution un =

and sn — 4a2Hn + Sn. Thus

L,Λ(A) = I exp ( — snt
2)! m Un ' d£

7Γ Jo ί

Since, for our choice of w% and sΛ, sΛ —> co and u2

n/sn—> co, the derivation
of [6; §5] may be applied, yielding

(3.15) Ln(A) = ^ " u l

where

a = —-=-0 + -
π2 π Jo t π Ji t ^ π

and C denotes Euler's constant. In terms of Hn and Sw, our expansion
takes the form

a + 0(1) ,

from which it is clear that (L%(A)} is an unbounded sequence. We
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note in conclusion that if d3- = 0 for all j, then Sn = 0 and Hn = n,
so that for Sonnenschein methods we have

π2 a2

which is the result obtained by Sledd [10].

4* A special case. A regular matrix A is said to be strongly
regular provided every almost convergent sequence is A-summable.
Lorentz [9] has shown that a necessary and sufficient condition for
strong regularity of a regular matrix A = (ank) is that

(4.1) lim7, Σ j ank — anΛλΛ \ — 0 .

If we take f(z) — ez~ι and dn = 0 for all n, then the resulting (/, dn)
mean is the Borel matrix:

ank - e~ —-

Now

Σ a n l c - o n , t . h ι | = e

= c » Γ '

(k + 1)!

+ 1)! ^ fc! ' ίέi (fc + 1)! J

By Stirlings formula, nn/n\en = 0(n~1/2)f so that e~n[2(n"/nl) - n] -> 0
as ^ —> ̂ -, and A is strongly regular. It follows that there exist
continuous functions whose Fourier series fail to be almost convergent;
for if this were not the case7 then the Borel matrix would sum the
Fourier series of each continuous function, contrary to the unbound-
edness of the Borel-Lebesgue constants.
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