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FOURIER SERIES WITH BOUNDED
CONVOLUTION POWERS

CHARLES H. HEIBERG

Let / be defined on Γ" and have an absolutely convergent
Fourier series

Set \\f\\=Σ\fm\. In this paper sufficient conditions for ||/*H =
0(1), as k->oo, are obtained.

THEOREM. Let f be defined on Tn, have an absolutely conver-
gent Fourier series and satisfy

(1) \f(eίσ)\ ^ 1 for all σ .

If for each σ such that \ f(eίσ) \ — 1 there exists a rotation λ of
R", a polynomial p such that Re p{τ) > 0 for all τ Φ 0, an n-tuple
p of positive integers such that p((r1/PiTi}) = rp(τ) for all r > 0 , and
a function 7 in Cm(βn), m = max {n + 1, plf p2, , pn), such that

(2) 7(r)= o ( i > ? < ) , τ •O,

and if for all τ in some Rn-neighborhood of 0

( 3 ) f(ei{'+xιr))) = c exp (β τi - (p + 7)(τ)) ,

where \c\ = 1, βeRn, then

( 4 ) H/11 -0(1) , as A; > oo .

It is shown in § 2 that this theorem extends a result obtained
by B. M. Schreiber in 1970.

1* Introduction* Let B and D denote the open and closed
unit discs respectively. The problem of characterizing those func-
tions / of n complex variables which are analytic on Dn and for
which (4) holds has been solved only for n = 1. See [1, 2]. For
the general case, n arbitrary, sufficient conditions on / and necessary
conditions on / have been given [9, 6] and related problems have
been studied [4, 5]. Unsolved, even in the case n = 1, is the pro-
blem of determining all functions analytic on Bn for which (4) holds.
This problem is equivalent to the problem of determining all endo-
morphisms of the Banach algebra of power series of n complex
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variables which converge absolutely on Tn. See [8, 7].

2* Remarks, definitions and notation* To see that the theo-
rem in this paper extends Schreiber's result, Theorem 7.5 in [9],
let n = 2 and consider f(z) — h(z)g(zί)l(z2) where

The function f(eίτ) has one absolute maximum, namely at τ =
(0, 0), and about this maximum has a local expansion of the form

f(eir) - c exp (/S τΐ - ατ* - ftrjr* - dτ1/ + o(τj + τ'2)) ,

r -> (0, 0), where Re (ατ? + δrίτ* + dr^2) > 0 for τ ^ (0, 0). (For
details see [5, pp. 141-3].) Schreiber's result [9, p. 426] holds only
for functions having about each absolute maximum a local expansion
of the form

f(eίr) = cexp(/3 τΐ - Σ *M ~ Σ bάτ* - Σ dίlkφξ

+ O(\\τ\n),

τ —> (0, 0), where M = max (mx, m2).
Define a polynomial ^ in ^ variables to be positive definite if

p(τ) > 0 for all τ Φ 0 and to be g-homogeneous of index I if there
exists an w-tuple q of positive integers and a positive number I
such that for all r > 0 and all <7 in Rn, ρ((r1/qiσty) = rΣp(σ).

Let Γ, ^, i2, and C denote the unit circle, integers, real numbers
and complex numbers respectively. For any set S let Sn denote
the w-fold cartesian product of the set with itself. For any subset
S of Tn let CS denote the complement of S in T\ The letters σ, r,
and z denote points of Rn, Rn, and Cn respectively. Alternatively
denote a point z of O by using vector notation <X>, where zt

represents the ith component of z, and let ez denote (eH). Let 0
and ϊ represent the origin of R% and the identity of Tn respectively.
The scalar product of two points σ and τ of Rn will be denoted
σ-τ. Let δ^ denote the Kronecker delta. Take products indexed
by the empty set to be equal to one.

Let B(σ, r) denote the set of points eiτ of Tn such that the
Euclidean distance of τ from σ is less than r. Let Ef denote the
set of points eίa of Tn such that \f(eiσ)\ = 1. Let L\Rn) and A(Rn)
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denote the space of Lebesgue integrable functions on Rn and the
space of their Fourier transforms respectively. Similarly define
L\Zn) and A(Tn). For any function ζ on Tn let suppζ denote the
support of ζ.

Finally, the letters a, b, c, d will denote absolute positive con-
stants. The use of one such letter in two inequalities does not
mean that the letter represents the same absolute constant in both
inequalities. However, the use of such a letter in an inequality
involving the indices k or m means that the constant represented
by the letter is independent of k and m. The phrases "for k suffici-
ently large" and "for all m" will be omitted finitely many times
from this paper.

3* Proof of theorem*

LEMMA 1. Let p be a positive definite, q-homogeneous polynomi-
al of index 1. Then q5 is an even integer for 1 ̂  j ^ n and

Σ τ¥ < cnρ(τ), for all τ Φ 0 .
3=1

Proof. Fix j , l ^ j ^ n . Let h(t) = ρ((tδtίy), for all t in R.

Since p is g-homogeneous of index 1,

for all t > 0 and hence for all ί, h being a polynomial. Since h is
positive definite, q^ is an even integer.

Assume that τ5 Φ 0, let r — τq/ and define σt by τ — {r~llqia^).
Since p is g-homogeneous of index 1, p{τ) = rp(σ). Since σ5 = 1
and since p is positive definite there is a positive constant ao such
that p(σ) > a,-. Thus, p(τ) ^ a5τ)κ Note that this inequality also
holds if Tj = 0. Summing over j yields np(τ) ^ Σ?=i aότVi from
which the lemma follows since each a3- is positive.

LEMMA 2. Let f be defined on Tn and suppose that for some
real number r in the interval (0, π) f vanishes on CB(σ, r). Let g
be defined on Rn by

g(τ) =f(e^
+τ)) if \τ\<r ,

= 0 if I τ I ̂  r .

Then feA(Tn) if and only if geA(Rn). Moreover, there are posi-

tive numbers depending only on r such that a\\g\\ <Ξ | | / | | < b\\g\\.

Proof. Without loss of generality, assume that σ = 0. Then
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Lemma 2 is the special case of Lemma 7.7 of [9] obtained by letting
H = {0}.

The following lemma is well-known and therefore its proof is
omitted.

LEMMA 3. Let X be a rotation of Rn and g be a function defined
on Rn. For each μeL\Rn)

( 5 ) μo\ = βo\

so that g e A(Rn) if and only if goXe A(Rn). Moreover,

\\g\\ = \\g°M\.

LEMMA 4. There exists a constant M = M(n) so that for any
sequence {aq}qezn of complex numbers and any constant b in Cn

( 6 ) ΣI au ^ M(πΣv(q, I) aq I')8"""1, n ^ 1 ,

where the sums are over all q in Zn, the product is over all I e
Δn = {0, I f and

Proof. See Lemma 3 of [6].

LEMMA 5. Let u and w be q-homogeneous polynomials with
indices Iu and Iw respectively. Let σ be a point such that u*w(σ)Φ
0. Then

\ulw\((r1/qίσ>>) = 0(1), as r >0 ,

if and only if Iu > Iw.

Proof. Applying the definition of g-homogeneity to u and to
w yields

\ulw\((rι/qίσί

s)) — rIu~Iwu(σ)/w(σ)

from which the lemma follows directly.

LEMMA 6. Let u be a q-homogeneous, positive definite polynomial
of index Iu and v a polynomial in n variables such that

( 7 ) \v(τ)\ =0( | t t(τ) | ) , τ >0 .

Then the index of q-homogeneity of each term of v is greater than
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or equal to Iu.

Proof. It has been implicitly assumed in the statement of the
lemma that each term of v is g-homogeneous. It is straightforward
to prove that in fact each term of any polynomial is g-homogeneous
and that a sum of terms having a given index of ^-homogeneity is
g-homogeneous with that same index. Therefore, if w is defined to
be the sum of those terms of v having smallest index of g-homo-
geneity and if Iw denotes the index of w, it suffices to prove that
/„ ^ /..

Fix a point σ such that w(σ) Φ 0. Since w is g-homogeneous,
σ Φ 0. From (7) it follows that

( 8 ) I v/u I « r 1 / 9 ^ » = 0(1), as r > 0 .

Since v — w is a sum of terms each of index exceeding Iΰ and since
w(σ) Φ 0 it follows that each term of v — w upon division by w and
evaluation at (rι/Hσϊ) is either zero or by Lemma 5 approaches 0
as r —> 0. Thus,

v w «rι/q*σt}) - o(l), as r > 0 .( 9 )
ί w

Since

J£_ = JL(i + (v
u u

it follows from (8) and (9) that

- 0(1), as r > 0 ,w
u

which by Lemma 5 implies that Iu <̂  Iw since w(σ) Φ 0 and u(σ)φθ,
u being positive definite.

LEMMA 7. Given any finite, pair wise-disjoint collection
{B(σ, 2rσ)}σes of open balls in Tn there exists a family {ζσ}σes of
nonnegative functions defined on Tn such that for each σ e S

( i ) supp ζσ = B(σ, 2rσ),
(ii) ζσ = l'on B(σ, r),
(iii) ζ σ ( O e C°°(i2 )

and such that
(iv) Σioesζa^l on T\

Proof. This lemma follows directly from Proposition 29 on page
254 of [3].
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LEMMA 8. Let f be defined on Tn, have an absolutely conver-
gent Fourier series and satisfy (1). Further assume that Ef is
nonempty and finite. If {rσ}σeEf and {ζσ}σBEf satisfy (i) — (iv) of
Lemma 7 and if, for each σ e Ef, Xσ is a rotation of Rn followed
by translation by σ, then

||/ fc||-0(l), k >co, if\\(ζσ.f
k)oeu°\\ -0(1) , k >oo,

for each σ e Ef .

Proof. This lemma is a direct consequence of Lemmas 2 and 3
of this paper and Theorem 3.3 of [9].

Proof of theorem. From (2), (3), and Lemma 1 it follows that
for each point eiσ of the set Ef, which was defined in § 2,

(10) \f{eί{o^τ)))\ ^ e x p f - c Σ
\ 3 = 1

for all τ in some neighborhood of 0 and hence that Ef has no limit
points. Since Tn is compact, Ef is finite. If Ef = 0 , then by the
spectral radius formula ||/fc||—>0, as k—>oo. So assume that EfΦ0.
Also, by Lemma 8 it suffices to assume that Ef = {0} and that λ is
the identity. Thus, it suffices to prove that

g Σ J α f f i 4 | =0(1), k >oo ,

where the coefficients aq>k are defined by

/ kf iz\ , ''C~ί

 rΊ iz q

\e ) '— x j (J/q^j^e »

For this purpose let b — kβ and aq = aq>k, where β is defined by
(3), and show that the right side of (6) remains bounded, as k
tends to ex), by showing for each I in Δn that

(2_Σ - Σ )dlPj)

qeZn

as k —> co 9 where J denotes the set of integers j for which ls Φ 0.
Choose r0 > 0 so that (3) and (10) hold for all τ such that |τ| <

r0. Let B denote the set {σ e Rn: eίσ e 5(1, r0)}. Let Sf denote the
differential operator

• i— — bj

Recall that products indexed by the empty set are taken to be 1
so that if J — 0 , £? is taken to be the identity. Use ParsevaPs
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equality to write

o Σ ( Π I ffy - h I2) I aq,k |
2 - \ 13fP(*") |2dr

and conclude that (11) will follow from

S (2 Σ - Σ )d/2>, )
| / V r ) l 2 ^ 0(& ' β " β l

B

k —• co, a n d

The last estimate is easy since for some 3 in (0, 1), \f(eίτ)\ < δ on
5FnYB. Thus, to prove the theorem it suffices to establish the
estimate given in (12). Since, by (3),

f\eίτ) =cexvk(β τί - (p + τ)(τ

for all τ eB and since b — kβ it follows that

(13) I^f\e iτ)\ = \£2rjexvk{-p-γ)(r)

for all τ e B, where for any subset S of {1, 2, , n) the differential
operator £2fs is defined by £2fs = Πίes3|3ίi.

Expanding the expression on the right side of (13) by applying
3fj yields

(14) I/VOI = I Σ * 1 ^ 1 Π (-&H{P + 7)(τ

where the sum is over all partitions & of J, \&\ denotes the
number of members in & and the product is over all subsets H of
J belonging to &.

By hypothesis 7 6 Cm(Rn) where m = max1Sign ί>t. Applying
Taylor's formula yields

(15) 7(τ)=v(τ) + 0 ( | τ r ) , r >0,

where ι (r) is a polynomial in n variables. Since |7(τ)| and | r] m are
both 0(Σ^?0, τ->0, it follows from (15) that \v{τ)\ is also. This
implies by Lemma 6 that the index of ^-homogeneity of each term
of v(τ) is at least 1 since X τϊ* is a ^-homogeneous polynomial with
index of p-homogeneity equal to 1 and since by Lemma 1 X ?ί£ is
positive definite. Thus, the polynomial μ = p + v has no term with
index of p-homogeneity less than 1 and

{p + 7)(τ) = μ(τ) + 0(| r I"), τ > 0 .

Since p, 7, μ e Cm(Rn), m}>n + l, Taylor's formula and the last
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equality imply that

3Γ*(P + 7)(τ) - &Hμ(τ) + 0 ( | r | - ^ ' ) ,

τ —> 0, where | H | denotes the number of elements in H. Since (3)
and (10) hold for all τeB,

\exp(-p-Ί)(τ)\ ̂ exp(-cΣ*50

This, (14) and the preceding estimate imply that

(16) \&f\eiT)\ ^ Σ ^ m Π (\&sμ(τ)\ + c|z-|~~^) exp (~c Σ ^ )

where the sum and product are indexed as in (14).
For any w-tuple q of nonnegative integers,

&H(H τV) — 0 iί qά = 0 for some j in H,
3

= Π τjy otherwise ,

where

(17) τό = qό-l if jeH,

= gy otherwise .

Also, the index of ^-homogeneity of any term aJljTp of μ is at
least 1, so that

l ^ Σ Qi/Pi = Σ rsiPi + Σ

Thus,

(18) I^Hμ{{k-^ότ.))I ^ cΛ^V*^'

for all τeB. Also, since m ̂  p^ for 1 ̂  j ^ nf

This estimate, (18) and (16) imply upon substitution of k~ί/piτά for
τ, in (12) that

as fc-> c>o, where the sum and product are indexed as in (14). From
this estimate (12) follows and the theorem is proved.
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