CANCELLING 1-HANDLES AND SOME TOPOLOGICAL IMBEDDINGS

MICHAEL H. FREEDMAN

In this note we use the existence of a certain type of handle decomposition (see corollary) for compact simply connected P. L. 4-manifolds and R. Edwards results on the double suspension conjecture to prove:

THEOREM 2. Let $\alpha \in H_2(M; Z)$ where M is a compact simply connected P. L. 4-manifold. Then there is a proper topological imbedding (possible nonlocally flat) $\theta \colon S^2 \times R \to M \times R$ (mapping ends to ends) with $\theta_*[S^2 \times R] = \overline{\alpha} \in H_2$ ($M \times R; Z$). $\overline{\alpha}$ is the image of α under $\times R$. Proper, here, means inverse images of compact sets are compact.

In [2], we considered the problem of constructing smooth proper imbeddings, θ , and showed that if α is characteristic (dual to $w_2(\tau(M))$, the only obstruction to the existence of θ is an Arf invariant which is equal to the Milnor-Kervaire number $(=(\text{signature }(M) - \alpha \cdot \alpha/8)(\text{mod }2))$ when M is closed and that if α is ordinary (not dual to $W_2(\tau(M))$ there is no obstruction. This suggests two problems: (1) Can θ always be arranged to be topologically locally flat, and (2) can θ always be arranged to be P. L.?

Here is our "handle cancellation" theorem:

THEOREM 1. Let M be any compact connected P. L. manifold of dimension = m (assume M orientable if m = 3). Let N be a compact connected codimension 0 submanifold of ∂M . If $\pi_1(M, N) = 0$, then there is a codimension 0 submanifold, \overline{N} , of M with: (1) $N \hookrightarrow \overline{N}$, (2) the inclusion $N \hookrightarrow \overline{N}$ is a homotopy equivalence, (3) $M = \overline{N} \cup$ 2-handles \cup 3-handles $\cup \cdots \cup$ m-handles.

Note. The P. L. category is convenient here since handle decompositions always exists.

Proof. If $n \ge 5$, the usual arguments for cancelling handles produce the desired $\overline{N} \xrightarrow{\text{P. L.}} N \times I$ (see Appendix [3]). We need only consider the cases m = 3 or 4.

Let m = 4 and let $\mathscr{H}(M, N)$ be a handle decomposition of M relative to N. We may assume $\mathscr{H}(M, N)$ has no zero-handles.

Let $\{h_i^1\} = \{D_i^1 \times D_i^{m-1}\}$ be the 1-handles. Let $\{c_i\}$ be closed curves

on L_1 , the level after the 1-handles are attached, each consisting of $(D_i^1 \times \text{pt.})$ for some pt. $\in \partial D_i^{m-1}$ and an arc in $N - \{D_i^1 \times \partial D_i^{m-1}\}$. We claim that the latter arcs may be chosen so that each curve, c_i , is null homotopic in $X \stackrel{\text{def}}{=} \overline{M - (1\text{-handles of } \mathscr{H}(M, N))}$. Since m = 4, $\pi_1(X) \to \pi_1(M)$ is an isomorphism. The arcs may be chosen (since $\pi_1(N) \to \pi_1(M)$ is epic) so that each c_i represents $0 \in \pi_1(M)$ and, therefore, $0 \in \pi_1(X)$.

Let $\{\gamma_i\}$ be the disjoint simple closed curves in L_1 along which the 2-handles $\{h_i\}$ are attached. Picking paths to the base pt., *, $\{\gamma_i\}$ determines relations $\{r_j\}$ and $\pi_{i}(X) = \pi_{i}(L_i)/\langle r_j \rangle$. Choosing a path from c_1 to *, we have $[c_i] \in \langle r_j \rangle$. So $[c_i] = \prod_{k=1}^n u_k x_k u_k^{-1}$ where $u_k \in \pi_1(L)$ and $x_k \in \{r_j, r_j^{-1}\}$. For each curve c_i , introduce a trivial oriented (2-handle, 3-handle) pair. Let h_i^2 be the new 2-handle. Choose a path from ∂h_i^2 to *. Now perform a sequence of *n*-handle passings. h_i^2 should be passed over the oriented $(+ \text{ or } - \text{ as } x_k = r_j)$ or r_{i}^{-1} 2-handles corresponding to x_{1}, \dots, x_{n} along arcs corresponding to the elements $u_1 \cdots u_n$. The framing along each arc is immaterial so long as it restricts at the end points to a framing induced by the orientation of each 2-handle. Let $\{\gamma_i\}$ be the curves along which $\{h_i^2\}$ are attached after the above handle passings. γ_i is homotopic to c_i . By the handle cancellation lemma [3], attaching 2-handles to $\{c_i\}$ would result in a product $N \times I$. Since homotopy type depends only on the homotopy class of attaching maps, $ar{N} \stackrel{ ext{def}}{=\!\!=} N \cup \{h_i^1\} \cup$ $\{h_i^2\} \stackrel{\text{h.e.}}{\simeq} N \times I$. \bar{N} has the desired properties.

Let m = 3. If $\pi_1(N) = 0$ then $\pi_1(M) = 0$ and M must be a homotopy (S³-interior of closed disks). Let $\overline{N} = \overline{M} - \{\text{closed disk} \cup$ thickened arcs to ∂ components $\not\supset N\}$, so $M = \overline{N} \cup 2$ -handles $\cup 3$ handles. We now assume $\pi_1(N) \neq 0$.

If $\pi_i(N) \to \pi_i(M)$ is an isomorphism, every imbedded 2-sphere in M seperates M, one component of the complement being a homotopy B^3 with finitely many punctures. Let $\overline{M} = M \bigcup_{\text{spherical $\widehat{\sigma}$ components}} (3\text{-cells})$. By the sphere theorem, \overline{M} is a $K(\pi, 1)$ so (\overline{M}, N) is an h-cobordism. But $M \stackrel{\text{diff}}{==} \overline{M} \cup 2\text{-handles}$, so \overline{M} satisfies the conditions for \overline{N} .

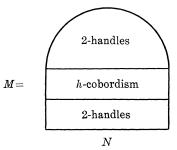
Assume $\pi_1(N) \to \pi_1(M)$ is epi. By Dehn's lemma, if $\pi_1(N) \to \pi_1(M)$ is not injective, there is an essential simple closed curve, $\alpha \subset N$, bounding an imbedded 2-disk $\beta \subset M$. Let (M', N') be the result of ambient surgery (handle subtraction) along β . $\pi_0(N') \to \pi_0(M')$ is an isomorphism. (Proof: $\beta(\alpha)$ disconnects M(N) if and only if there is no curve in M(N) meeting $\beta(\alpha)$ algebraically once. Since $H_1(N) \to$ $H_1(M)$ is epi, there is a dual curve for β if and only if there is a dual curve for α .) **PROPOSITION.** On each component, $\pi_1(N') \rightarrow \pi_1(M')$ is epi.

Proof. M is obtained from M' by attaching a 1-handle, and N' is obtained from N by the corresponding 0-surgery. The proposition can be deduced from the following group theoretic fact: Let $\theta: A \to X, \phi: B \to Y$ be group homomorphisms. If $\theta * \phi$ is epi, then θ and ϕ are epi.

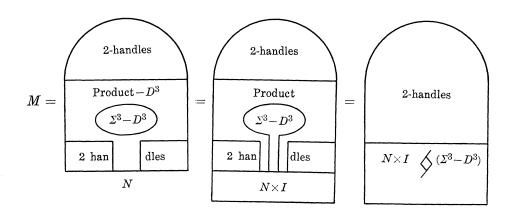
Proceeding inductively (on the genus of the components of N'), we obtain (M'', N'') with $\pi_1(N'') \to \pi_1(M'')$ an isomorphism on each component. This decomposes M as:

Diagram 1:

Diagram 2:



By a theorem of J. Stallings [5], every *h*-cobordism between orientable surfaces is the connected sum of a product and a homotopy 3-sphere, Σ^3 . So we have:



 Note. The orientation restriction in dimension 3 results from ignorance about h-cobordisms on RP^2 .

COROLLARY. Let M be a compact simply connected P. L. (=smooth) 4-manifold. $M \xrightarrow{\text{P. L.}} K \cap 2\text{-handles} \cup 3\text{-handles} \cup 4\text{-handles}$, where K is a compact contractable 4-manifold.

Proof. Apply Theorem 1 to $(M - D^4, \partial D^4)$. Let $K = \overline{N} \cup D^4$.

REMARK. A. Casson has recently exhibited (unpublished work) a simply connected P. L. 4-manifold with boundary, M, with the property that every handle decomposition of M, $\mathscr{H}(M)$, must contain a 1handle. This answers negatively a question raised in [4] on the existence of (relative) 2-spines. So the preceding corollary is all one can hope for.

Proof of Theorem 2. Let $M \xrightarrow{\text{P. L.}} K \cup 2$ -handles \cup 3-handles \cup 4-handles. Let $\hat{M} = \operatorname{cone}(\partial K) \cup 2$ -handles \cup 3-handles \cup 4-handles. $H_2(M; Z) \cong H_2(\hat{M}, \operatorname{cone}(\partial K); Z) \cong H_2(\hat{M}; Z)$. Any element of $H_2(\hat{M}, \operatorname{cone}(\partial K); Z)$ is represented by a relatively imbedded 2-disk constructed as a linear combination of 2-handles in the above handle decomposition by taking ambient boundary-connected-sums. So every element, α , of $H_2(\hat{M}; Z)$ is represented by a simplicial imbedding, ω , of S^2 in \hat{M} . By a theorem of R. Edwards, [1], (cone ∂K) $\times R$ is (topologically) homeomorphic to $K \times R$, $\hat{M} \times R$ is (topologically) homeomorphic to $M \times R$. The composition:

$$S^2 imes R \xrightarrow{\omega imes \mathrm{id}_R} \hat{M} imes R \xrightarrow{\mathrm{top. homeomorphism}} M imes R$$

is the topological imbedding with the claimed properties.

References

1. R. Edwards, Unpublished results on the double suspension conjecture.

2. M. Fredman, A converse to (Milnor-Kervaire theorem) $\times R$, etc..., to appear.

3. J. Milnor, Lectures on the h-cobordism theorem, Princeton Math. Series, (1965).

 J. Milnor and M. KerAaire, On 2-spheres in 4-manifolds, Proc. Nat. Acad. Sci. U.S., 47 (1961), 1651-1657.

5. J. Stallings, On Fibering Certain 3-Manifolds, Topology of 3-Manifolds and Related Topics, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962, 95-100.

Received October 20, 1976 and in revised form August 9, 1977. Author partially supported by NSF Grant MPS 72-05055 A03.

UNIVERSITY OF CALIFORNIA, SAN DIEGO LA JOLLA, CA 92037