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WEAK LOCAL SUPPORTABILITY AND APPLICATIONS
TO APPROXIMATION

J. M. BORWEIN

Perturbed optimization problems are studied using a
weaker notion of local supportability than that developed
by Ekeland and Lebourg. This weakening allows for a
more comprehensive treatment of such problems. In parti-
cular we prove that nearest points exist densely for closed
relatively weakly compact sets in spaces with locally uni-
formly convex norms and provide a simplified proof in this
framework that a normed space with a Fr6chet norm is an
Asplund space.

This paper introduces a notion of a local subgradient for a
lower semicontinuous function on a Banach space. This subgradi-
ent is required to satisfy a uniformity condition on a given bounded
set in the space. The first section establishes the existence of such
subgradients in weakly compactly generated Banach spaces. The
following sections consist of applications of this result. Section two
discusses generic differentiability of convex functions and contains
a simple unified proof that spaces with Frechet norms are Asplund
spaces and weakly compactly generated spaces are weak Asplund
spaces. In section three general perturbed optimization problems
and the existence of farthest points are discussed. Section four
shows, essentially, that any relatively weakly compact set C in a
Banach space with a locally uniformly convex norm possesses a
generic set of points with nearest points in C. This extends a known
result for reflexive spaces.

Recently Ekeland and Lebourg [11] have introduced the notion
of a local ε-support for a function and have profitably applied this
to the study of perturbed optimization problems (including nearest
and farthest points) and generic Frechet differentiability. Rainwater
[16] has provided a self-contained proof of this last result for convex
functions which was deduced in [11] from more general perturba-
tional theorems. Subsequently Lau [13] has applied the ε-supports
to establish the existence of dense nearest points for any closed
bounded set in any locally uniformly convex reflexive space. Since
the results on approximation are deduced from the existence of
appropriate Frechet derivatives they are unavailable for application
in more general spaces and hence do not provide best possible results
(for nearest and farthest points, particularly). In this paper we
introduce a more general notion of local support, examine the impli-
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cations for generic Gateaux differentiability and apply it to various
approximation problems. Having made the initial adjustments many
of our proofs mirror those in [11] and these propositions will be
given with a minimum of proof. We therefore attempt to stay close
to the notation of [11].

1* i£ uniforrn local ε-supports* Let V be a Banach space and
F* its topological dual and let ( , •) denote the canonical bilinear
form on Vx F*. Let | | - | | * denote the dual norm to || | |. Let F:
V ^> R\j {-foo}. The effective domain of F, dom F, is the set of
points at which F is finite.

Let K be an arbitrary closed, bounded set in F.

DEFINITION 1.1. A continuous linear functional u* e F* is K-
uniformly locally e-supporting to F at u iff F(u) < °o and there
exists 7] > 0 such that

(1.1) ]imF( u + tV)-FW>(u*,y)-e Vy e V
+ tt->0+

(1.2) F ( u + tk) - F ( u ) ̂  (u*, k) - e VkeK,0<t<7].
0

The set of all such u* will be denoted Sκ>εF(u) and will be called
the K-ε-support of F at u. If it is nonempty, JP is said to be locally
ε-supported uniformly on K. The symbol Nκ>ε(F) will denote those
u for which Sκ,εF(u) is nonempty.

REMARKS 1.2. If K is empty, u* is an approximation to a
Gateaux derivative. If K is the unit ball B, the definition reduces
to Ekeland and Lebourg's notion of ε-supportability. We shall be
mainly interested in the case in which K is (relatively) weakly
compact.

These i£-ε-supports have analoguous properties to those of e-
supports. In particular Sκ,εF(u) is a convex set which decreases in
size as ε decreases or K increases and satisfies

(1.3) u* e Π Sκ>εF(u) ΓΊ -Sκ,ε(-F(u)) <=> u* = F'κ(u) .
ε > 0

(By Ff

κ{u) we will mean a Gateaux derivative which is approach-
ed uniformly for directions in K; we will say F is K-smooth.)

Corresponding to the hypothesis (H) in [11] we need:
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There exists on V a nonnegative nonzero continuous func-
(H(K)) tion g of bounded support which is K-smooth whenever it

is nonzero.

Again, by translation and homotopy, g may be presumed non-
zero at any given point and zero outside as small a ball as needed.

THEOREM 1.2. If V satisfies H(K), then for every lower semi-
continuous F, NKyε(F) is dense in dom F.

Proof. We proceed as in [11]. Pick u0 e dom F and a small
neighborhood N of u0 on which F is bounded below. We now take
g to be nonzero at u0 and zero outside an arbitrarily small neigh-
borhood NoaN of u0. Let

(1.4) G(u) = F(u) + h(u); h(u) = —(u) .
9

G is lower semicontinuous, bounded from below and hence, by
Theorem 1.1 of [10], there is some point uε such that

(1.5) G(u) - G(uε) ^ -—6\\u -uε\\ Vue V .
2

Since g is i£-smooth and uε e dom G c dom h, — h is Z-smooth. Let
w* = _ h'κ(uε). One easily verifies from (1.5) that 0 e SKfS/2G(uf) so
that, by (1.3),

u* G Sκ,ε/2G(uε) + Sκ,ε/2( - h(uε)) c Sκ,εF(uε) .

Moreover, uε e No, which establishes the density claim.

To give this substance we note that any V which has an equi-
valent Z-smooth norm has H(K). Again as in [11], one takes the
composition of the norm with a Cλ function of bounded support.
Less trivially we have the following proposition.

PROPOSITION 1.3. Let F* have an equivalent strictly convex
dual norm, || |l* and let W be any weakly compact set. Then V
has an equivalent Wsmooth norm and hence has H(W).

Proof. Let Vo be the subspace which is the closed linear span
of W(V0 — sp W). By the results in [6, pg. 161] (on factorization
of weakly compact operators), these is a reflexive space (Y,||| |||)
with unit ball B{Y) and a continuous linear operator T: 3Γ—> Vo

such that WaT(B(Y)). Let T denote the mapping T considered
as mapping Y into V and define a new norm | I* on F * by
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(1.6)

By the renorming theorem of Troyanksi [19] we may presume
that HI HI* is locally uniformly convex. Note that | |* is equivalent
to || [|* as T* is continuous and is a dual norm since T* is an
adjoint mapping. Thus | I* induces an equivalent norm | | on V.
We show that | | is W-smooth. Notice first that | | is smooth
since | |* is strictly convex. Let uoe V, and let un converge to u0

in norm. Since | | is smooth the support functίonals fUn converge
weak* to fUQ. Thus | /« Λ +/!*-> 2. It follows from (1.6) that
\\\TfUn + TfUQ\\\l - 2(||| ΓΛJJIi + lllfΛJIIl) converges to zero with n.
Since 111 "| 11 * is locally uniformly convex, 111 TfUn — fUQ \ | | * -> 0. In
other words, given ε > 0, there is some nQ such that for n^t nQ

sup (f *(/.. - Λo), b) = sup (fUn - Λo, Tb) £ e .

Since WaT(B(Y)), we have

(1.7) s u p (fu% - fUQ9 w) > 0 a s n > oo .
weW

The standard equation [6, pg. 2]

(1.8) A. (y) < 1M + ty 1"" u

\u\ t \u + ty\

which holds for any t > 0 and any nonzero y and (1.7) now show
that \u + tk\ — \u\/t converges to fu(k)/\u\ uniformly for k in W.
Thus [ I is ΫP-smooth.

In particular, when V is weakly compactly generated the result
holds and W can be chosen to be densely spanning and absolutely
convex. In this case the norm of (1.6) can be said to be "almost"
Prechet. This is the important case for applications. The sequence
space lt(N) is an example of a space without property (H) to which
the proposition applies. It will be convenient from now on to
denote

keK

and to consider || |U a s the norm on Cb(K), the space of bounded
continuous functions on K endowed with the norm topology.

2* An application to iί-Asplund spaces* We will say V is
1£-Asplund if given any lower semicontinuous convex function /: F—>
R{j{+oo}9 f is ϋΓ-smooth on a dense Gδ subset of (dom/)°. Thus
for K = B(φ) we have the classical notion of a strong (weak)
Asplund space [2], [5]. We introduce the set MKtt(f) by
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W = \u: 3δ > 0 with sup /<» + W + /<« ~ *fc> ~ 2 ^ > < si .
0<t<δ

When K is the unit ball and / is a norm, Sullivan [18] has
studied such sets and called / ε-approximately Frechet. When K—
φ, Mκ,ε(f) is just dom/.

PROPOSITION 2.1. Let K be a symmetric set. Then
( i ) NKt,(J) <= Mκ>ε(f) whenever 2δ < ε.
(ii) If f is convex and lower semicontinuous Mκ>ε(f) is open

in (dom/)°.
(iii) 1/ we Γ\β>0MKte(f) Π (dom/)° αm£ ίC has closed span V

then f is K-smooth at u.

Proof. ( i ) follows on applying (1.2) to —/ for k and —k and
then adding the resulting expressions.

(ii) Since / is convex it is in fact locally Lipschitz on (dom/)°
[5]. Also in this case

--ίfc)-2/(u)
Λfχ..(Λ = UV.βπp—i =—ί ^ Z-L <p

JceK 1

n

Suppose u 6 Mn and sup^e^ f(u + tk) + f(u — tk) — 2f(u)/t < e — δ.
Now pick ^ such that \\u — ̂ J | , \\u — u2\\ ̂ 2η implies | | / ( t θ —
f(u2)\\ ^ LWUi - u2\\. T h e n i f m ^ m a x ( l / ) 7 , w ) a n d i f \\v — u \ \ ^ τ j
it follows that u ± (l/m)k, v ± (l/m)fc, v are all within 2τy of tt.
Finally, when \\v — u\\ ̂  δ/ALm

V m / \

m

m /

< 4 i

1

m

/ ( •

m

m /

Since /(w + (l/m)k) + /(% — (l/m)k) — 2f(u)/l/m is a decreasing func-
tion of m, it follows that veilί^ and MKyB{f) is open in (dom/)°.

(iii) Since / is convex, d+f(u; h) — limί 0̂+ f(u+th)~f(u)/t exists
and is finite at u. Since u e Πε>0 MβtX(f)9 we see that d+f(u; k) =
— d+f(u; —k) for all keK. Since d+f(u;k) is continuous in & and
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K is generating, we must have d+f(u;h) = —d+f(u; — h) identically
in h which implies that / is Gateaux differentiable with derivative
d+f(u; •)• Let us call this derivative u*. Since for t > 0 and ke
K we have

( 2 β 2 ) /(M + tk) - f(u) ^ ^ fc) ^ /(tt - tfe) - ^

and as uef}ε>0MKyε(f), we must have for each ε > 0, some <5 with

t

Thus / is ϋΓ-smooth at u.

_ {u*f k ) <ε vfc e iί, 0 < t < δ .

We will say that K is generating for V if the closed span of
if is V.

THEOREM 2.2. If V has property H(K) for some symmetric
spanning set K, V is KΆsplund. In particular every space with
{H) is a strongΆsplund space and every weakly compactly generat-
ed space is KΆsplund for any generating weakly compact set K.

Proof. On collecting the parts of Proposition 2.1 together it
suffices to observe that by Theorem 1.2, NKtB(—f) is dense in (dom
/)° for any l.s.c. convex function / (an examination of the proof
of Theorem 1.2 shows that it does not matter that —f{u) may be
— oo for u not in (dom/)°). Thus by Baire's theorem Π £ > o ^ , £ ( - / )
is a dense Gδ set in (dom/)° on which / is iΓ-smooth.

This proof method has unfortunately no hope of dealing with
the general question of when a space is weak-Asplund, but it does
provide a self-contained proof of several different results at the
same time. We also remark that if / is a norm and NB>δ(f) = V
for some d < 1/2 then V is a strong Asplund space. This is a tri-
vial consequence of the fact that by Corollary 2.1 (i), MB>εQ\-\\) = V
for some ε < 1 which Sullivan [18] has shown implies V is an
Asplund space.

3* Perturbed optimization* We now examine the substance
of §2 of [11] for our more general local supports. Throughout the
section we suppose K is convex, symmetric and generating. Let
X be a set and /: V x X-> R. Let

(3.1) F{u) = inf f(u, x) > - oo yu e V .
xeX
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Let Aθ = {xe X: f(u, x) ̂  F{u) + θ).

PROPOSITION 3.1. Assume that

(3.2) F is K-uniformly locally ε-supported to u

and that there exist θ > 0, rj > 0 such that

(3.3) Vx e Aθ, v —> f(y, x) is Frechet-differentiable at v for

\\V — U\\<>7),

(3.4) {v —>fl{v, x): x e Aθ} is equicontinuous at u in V* .

Then there exists rjίf θx > 0 such that

(3.5) diameter {fXv, x): \\v-u\\<*ηί9 xeAθl}^e/S in Cb(K) .

Proof. The proof is more or less line for line as that of Pro-
position 2.2 of [11]. We note that since we are only interested in
directions in K and distances in C(K) metric we need only assume
that K — e supports exist.

Let

(3.6) iiJUft, θ) - {f'v{v, x):\\v-u\\^7], f(u, x) S F(u) + θ}

and let Tε(K) be defined by

(3.7) ue Tε(K) *=> 17], θ > 0, Cb(K)-diameter Alκ(rj, θ) ̂  ε .

PROPOSITION 3.2. Assume ueTε(K) and that there exist a, β>
0 such that

(3.8) {f'viv, x): \\v — u\\ ̂  a, f(v, x) ̂  F(u) + β} is norm bounded
in V*.

Then Tε(K) is a norm neighborhood of u.

Proof. This is now exactly as Proposition 2.3 of [11].

PROPOSITION 3.3. If (3.3), (3.4) and (3.8) hold F is locally
Lipshitzian at u. Moreover, if the filter GU(K) generated by
{AϊtK(θ, rj): θ; η > 0} converges to u* in Cb(K), F is K-smooth at u
with Fκ(u) — u*.

Proof. Again the only real difference from Proposition 2.4 of
[11] is that we are only concerned with directions in K and the
topology in Cb(K) rather in Cb(B). We derive as in [11] that F is
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Lipschitz locally at u and that

ί->0+

uniformly for keK. This in conjunction with \Jn^NnK = V and
the locally Lipschitzian nature of F implies that F'(u) exists as a
Gateaux derivative. Hence F is ϋΓ-smooth.

Thus, collecting propositions yields:

THEOREM 3.3. Suppose that V satisfies H(K) for some symme-
tric, convex generating set K and that for some open set Ω aV every
point of u satisfies (3.3), (3.4), (3.8).

Then F is locally Lipshitzian on Ω. Moreover, there is a dense
Gδ subset T of Ω such that

(3.9) the filter GU(K) converges in Cb(K) ,

and

(3.10) F is K-smooth with F'κ(u) the limit of GU(K); also F'κ
is continuous from T to Cb{K) .

Proof. By Proposition 3.3 F is locally Lipschitz on Ω. By
Theorem 1.2, for ε > 0, NK,£F) is dense in Ω. By Propositions 3.1
and 3.2, Tε(K) is dense and open in Ω. By Baire's theorem (on Ω)
T = ΓineN T^jJJK.) is a dense Gδ set in Ω.

Let ueT. For each n in N, Gu contains a member of Cb(K)-
diameter less than 1/n. By (3.3), (3.8) the filter members eventually
are uniformly bounded in the norm topology on V*. Since Cb(K)
is complete the filter converges to some element g in Cb(K). Since
UnK = V and the filter members are eventually uniformly bounded
in V*9 the filter converges pointwise to a functional u* in F *
which extends g. By Proposition 3.3 this limit is F'κ(u).

Continuity in Cb(K) now follows as in Theorem 2.5 of [11].

COROLLARY 3.4. If V is weakly compactly generated, the con-
clusions hold for any weakly compact generating set. If V has
property (H) the conclusions hold in the norm topology in F* .

We now consider general convex suprema as an application.
Let f{u, x) be a family of lower semicontinuous convex functions.
Using conjugate convex functions (h*(u*) = suptteF(w*, u) — h{u)) we
write (using fo** •= h)
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F(u) = sup/(u, x) = sup (u*, u) — f*(u*, x) < oo .
xeX u*ev*,xeX

THEOREM 3,5. Suppose V is weakly compactly generated by W.
Suppose that f: V x X -> R is continuous and convex in u for each
x and that for each u in V there is some M > 0 with

(3.11) f(u, x)^M for xeX.

There is a dense Gδ set T in V such that F'w{u) exists for u
in T and such that

(3.12) (u*, u) - f*(u*, xn) > F(u) — \\u*- F^(u)\\w > 0 .

Proof. We may assume W is symmetric and convex. It suffices
to verify that the suprema version of (3.5), (3.6), (3.8) hold for the
functions (u*9 u) — /*(%*, x). Since each of these has derivative u*
with respect to u, it suffices to show that for some m > 0, there
exists c > 0 such that

(3.13) | | ^ - t ; | | ^ η and (u*, v) - f(u*f x) ̂  F(u) - 1

By hypothesis F is continuous (being finite and lower semi-
continuous) so there exists η > 0 with f(v, x) ̂  F(u) + 1 when ||ι; —
u\\ <^2η. For these v we have, therefore,

f*(u*, x) ̂  257||^*|U + (u*, v) - F(u) + 1

and so if f*(u*9 x) ̂  (u*, v) + F(u) + 1 and \\u - v\\ ̂  η

The remaining conclusion is now a direct application of (3.10).

COROLLARY 3.6. Let f(u, x) — f(u — x) + g(x) where X is a
weakly compact subset of V, f is bounded on bounded sets and con-
vex and g is weakly upper semicontinuous. ( i ) Then there is a
dense Gδ set T in V such that for ue T, Fw(u) exists and

F{u) = max f(x — u) + g{x) .
xeX

(ii) If, in addition, f is a locally uniformly convex function
then it suffices that X is relatively weakly compact and g is norm
upper semicontinuous and bounded.

Proof. ( i ) We may suppose that X c W. Since X is bounded
and / is bounded on bounded sets (3.11) holds. Let xneX, uteV*
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be a minimizing sequence. We may assume that xn converges weakly
to a?0. On using (3.12) we see that (u%, xn) converges to (Fw(u), x0).
Moreover,

(u*, u) - f*(ti*, x) = (u*f u-x) + g(x) - f*(u*) .

As ut also converges weak* to ύξ = Fw(u) and / * , being a

conjugate is weak* lower semicontinuous, f*(u*) ^ lim f*(u*). Also

g(x0) ^ Umg(xn). Thus

(3.14) F(u) ^ f{u - x0) + g(xQ) ^ « , ") - / * « , a?o)

^ lim « , w - α?n) + flf(a?J - / * « )

^ lim (M , W - xκ) + g(x.) - /*(«•)

(ii) Suppose X is relatively weakly compact. We may apply
the previous considerations to C = co X and deduce that some
sequence xn in X exists with lim g(xn) = #0 and

(3.15) F(tt) = lim « , w - α?J - / * « ) + g(xn) £ f(μ - x0) + g0 .

Since /(w — α?J + flr(α?») ίg JP(^) and / is weakly lower semicon-
tinuous we must have

(3.16) f(u - xn) > f(u - α?o); »» > ^0 weakly.

(Here we have used the fact that suj)xeC f(u — x) = sup^ex/ί^ — a?)
for any lower semicontinuous convex function.) It follows from
(3.15) and (3.16) that

lim

Thus

(3.17) lim / ( ? ί - = ^ + ^=^-°) - \[f{u - χ%) + /(u - tf0)] ^ 0 .

To say that / is locally uniformly convex is to say that (3.17) im-
plies u — xn/2 converges in norm to u — xJ2. Thus xn —> a?0 in norm
and xQ 6 X. This means that #(#0) ̂  sr0 and (3.15) completes the
proof.

REMARKS 3.7. (i) If we let X be singleton in Theorem 3.5
we recover one of the main results of Theorem 2.2.

(ii) In Corollary 3.6 (ii) one may also consider functions for
which (3.16) implies {xn} converges in norm and proceed without
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(3.17). This is done in [3] for reflexive spaces with / = α>(||.||)
where ω is a convex continuous strictly increasing function and
|| || has property (K) (see §4).

(iii) The case of Corollary 3.6 (ii) in which g = 0 and / is the
square of a norm which is locally uniformly convex is proved by
Lau in [14]. He has no requirement that the space be weakly
compactly generated. However, this requirement can be weakened
if one wishes to dispense with the differentiability of F. Moreover,
in applications this is little liability since span X is weakly com-
pactly generated. Since there is always an equivalent locally uni-
formly convex norm for span X [6] and since any farthest point
in this norm for u in X necessarily is a strongly exposed point of
X, one can then proceed as in Lau's papers [15], [12] to derive
Lindenstrauss-Troyanski's original result [19] that every weakly
compact convex set is the closed convex hull of its strongly exposed
points (see the remark at the bottom of page 209 of [11]).

COROLLARY 3.8. Let V be a weakly compactly generated space
{generated by W) and let C* be a weak*-compact subset of F * .
There is a dense Gδ set TaV such that if ueT there is some c* e
C* with

(3.18) (c*, u) = max (u*f u)
u*eG*

and

(3.19) (c* - c*,u) >0, deC* ==> \\c% - c*\\w >0 .

In particular, C* is the weak* closed convex hull of these points
satisfying (3.19).

Proof. Theorem 3.5 with X= C*, x = u*, f(u, u*) == (u*9 u)
implies (3.18) and (3.19) and the final conclusion now follows from
a standard separation argument.

Since W is spanning any point satisfying (3.19) is at least
weak*-exposed and in fact a good deal more. In reflexive spaces
they are strongly exposed points. It would be interesting to study
these TF-weak* strongly exposed points more carefully, particularly
in duality with W-Asplund spaces.

REMARK 3.9. It suffices for the results of this section that
(3.3) be replaced by

(3.3') Vx e Aθ, v > f(v, x) is IΓ-smooth at v for | |v — u\\ ^ η .
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4* Nearest points* As a final application of if-s-support points
we indicate an adaptation of Lau's proof method in [13] which
establishes the following result. We say a norm has property (K)
if whenever ||a?n|| converges to ||a?|| and xn converges weakly to x
we have xn converges in norm to x. Locally uniformly convex
spaces and l^S) on any set S are among the spaces with this pro-
perty.

THEOREM 4.1. Suppose V has property (ic) and V* has an
equivalent strictly convex dual norm. Let K be a relatively weakly
compact, norm closed subset of V. There exists in V a dense Gδ

set T such that each point u in T has a nearest point in K. That
is: there exists k0 in K with

(3.20) | | u - fco|| = inf \\u - k\\ .
keK

Proof. Let r(u) = infΛeJΓ \\u — k ]]. Let 0 < ε < 1 be given and
define A£δ, u*) and Aε by

(3.21) Aε(δ, u*) = {ue V/K: keK, \\k - u\\ ̂  r(u) + δ

=* (u*, k - u) <,(s - l)r(u)}

(3.22) Aε = U {Aε(δ, v*y. I ||w*|| - 1 | < s, δ > 0} .

In [13], Lau shows that Aε is open and dense in V/K whenever
V has property (H). He then shows that T = f\neNA1/n is the
desired set possessing nearest [points. Lau's proof that Aε is open
requires no special hypotheses on ί or V and his proof that T
satisfies (3.20) relies only on property (A:) and relative weak com-
pactness of K.

Lau in fact shows that, for any point u in T and any weakly
convergent minimizing sequence kn in K converging to k0 in the
weak closure of K, one has [||Λ?» — u\\ converging to ||fc0 — u\\. It
now follows from (Λ:) that k0 lies in K and the infimum is attained.

It remains to show that Aε is dense even in absence of property
(H). We do this in the following propositions.

PROPOSITION 4.2. Given ε,η>0 and u0 e V/K, there exist u in
V, ύ* in V* and t0 > 0 such that

(3.24) \\ύ-uo\\ίίy, u*eSktεr(u),

(3.25) r ( g + t ( f e " " g ) ) " " r ( g ) ^ ( g * y f e - C ) - e l | f e - g l l VkeK,0<t<t0.

Proof. An examination of (1.7) and (1.8) shows that the norm
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of (1.6) actually satisfies the additional equation:

(3 26) lim
+ t \u\

uniformly for k in K. We can now produce a if-smooth function
of bounded support satisfying the same additional uniformity. If
we repeat the process of Theorem 1.2 for r we derive (in addition
to u* G Sκ,er(ue)) that

(3.27) G(^£ + t(k - iQ) - GftQ

and, setting d = (l/2)r(u0),

(3.28) ( ? f )

t 2

whenever 0 < t < <5X. If we arrange in advance for g to have its
support in a neighborhood of u0 of diameter less than both d and
?7, it follows that \\uB — uo\\ < d and so r(uε) > d. Then (3.27) and
(3.28) combine to give

(3.29) r(u. + t(k - u.)) - r(u.) ^ ^ k - Uε) - ±{d + \\k-u.\\)
t Δ

^ +(u*, k — u8) — ε\\k — uε\\

for 0 < t <; t0 (t0 depends on K and u0) and keK. Since | | ^ ε — u o | | ^
37, u = uε and ^* = u* are the desired points.

PROPOSITION 4.3. If u, u* satisfy (3.23), (3.24) for ε > 0, then
u 6 A2ε. Jί follows that A2ε is dense in V/K.

Proof. Let δ = (t0εr(u))/2 where 0 < ε < 1/2 and ί0 are as above.

Suppose that

(3.30) k e K and \\k-u\\^ r(u) + δ .

Since (1 - t)\\k - u\\ ^ r(w + ί(fc - u)), (3.30) and (3.25) combine
to give

( l - ί ) | | f c - u\\ - \\k-u\\ +δ^t(u*,k-u) -tε\\k-u\\

if 0 < t ^ t0 and k satisfies (3.30). Thus, setting t = ί0>

A ^ (W*f k-u)- ε\\k - M||

or
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(3.31) (-1 + 2ε)r(u) ^ -r(«) + \r{u) + ε(r(u) + δ) ^ (« , k - u) ,

for fc satisfying (3.30). Once we have shown that 11 — | |M* | | | < 2ε
it will follow that u e A2ε(β9 u*) c A2ε and u0 e A2ε as required. This
final assertion is proven below.

PROPOSITION 4.4. If u* lies in Sκ,εr(u), then

Proof. For any v in F we have by (1.1)

r { u + t t > ) _ r{u) ^ ( M ^ fc) _ £ o < t < t w ^

Setting i; = fe/||fc||, 8 = ί/||λ|| we have

(3.32) r { μ + sK) ~~ r W ^ (u*, Λ) - ε| |λ| | 0 < s < s(h) .
ss

Since r has Lipschitz constant one (έ.32) produces

(3.33) (1 + e)||& || ^ u*(h) and ||%*|| ^ 1 + e .

Let \\u — kn\\ — r(u) = εw converge to 0. Pick tn with tn\\u—
k%\\ - ε ^ 2 so that

r{u) - r(u + tn{K - u)) ^ \\u - K\\ - ε. - (1 - Q H M - fcJl

= 1-1/6. > 1 .

Consider (3.25) for this choice of kn. It yields

r(u) -r(u + tn(kn - u)) < (-u*, kn - u) Λ

tn 11 kn — u 11 ~ 11 kn — u 11
^ \\u*\\ +e

for n ^ n0. Since the left-hand side converges to one we have the
desired inequality 1 — e <S ||%*||.

We show that in fact this method yields the following theorem.
Here mK = {(xlf x2, , xj: x1 = α;2 = = #m 6 K).

THEOREM 4.5. Let \\ ||*, i = 1, 2, , m 6β equivalent norms
with property (tc). Let K be relatively weakly compact and norm
closed and consider

i n f m a x | | f c - n ^ = F(u19 •••, u m )
keK l g ί ^ m
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where ut9 i = 1, 2, , m are arbitrary points in ΓL î V. Then
there is a dense Gδ set T in ΠΓ=i V/K which has "simultaneous"
nearest points in K.

Proof. Let || |U be defined on ΠΓ=i V by

U K •• , O I U = m a x H^ll, .
i=l," ,m

Set (vl9 , vm) = v. Then we may write

F(v) = inf ||v -mk\U .
mfcemϋΓ

We may consider the sets Aε, constructed before, for this pro-
blem. Then T = f)ε>0Aε is a dense Gδ set in Π£i VfmK. More-
over, there is for each %eΓ, by the construction of T, a minimiz-
ing sequence mkn in mK with

— wlU • ||mfc0 — uW^mk^ >mk0 (weakly) .

Suppose t h a t \\mk0 — uW^ — \\k0 — u^. There is some i between
I a n d n w i t h \\kn — ^ 1 ! * — > \\k0 — u^.

If i = 1 it follows from property (Λ:) that kn — ux converges in
II Hi "to k0 — u^. Thus kn converges in each norm (by equivalence)
to koe K and

F(ulf uzy , un) = max p 0 - u^U .

If i Φ 1, ||fc0 — Ui\\i ̂  \\k0 — Will! so t h a t (since || | | t is weakly
lower semicontinuous) 11 fc» — w< 11< still converges to 11 fc0 — w< Ili
Again using property (/c) for || -1 | 4 completes t h e proof.

COROLLARY 4.6. If K is a norm-closed relatively weakly com-
pact subset of a weakly compactly generated space V with property
(fc), the set of points of V/K with nearest points in k contains a
dense Gδ set.

This includes Lau's theorem in [13] as the reflexive case. Some
condition like relative weak compactness is necessary since in the
space c0 with Day's locally uniformly convex norm, Cobzas [4] has
provided a convex body for which the corollary fails. Similarly,
some condition like (ic) is necessary as Edelstein has exhibited a
strictly convex renorming of 12 for which it fails [9]. It would be
interesting to know whether one can remove the strict convexity
hypothesis of Theorem 4.1.

We note that the algorithm given in [7] for constructing dense
nearest points in uniformly convex space can also be adjusted for
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simultaneous uniformly convex approximation. We also note that
Theorem 4.5 holds because || |L has property (A;) for directions in
the diagonal.
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