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SOME ABSTRACT GENERALIZATIONS OF THE
LJUSTERNIK-SCHNIRELMANN-BORSUK

COVERING THEOREM

H. STEINLEIN

Ljusternik and Schnirelmann and independently Borsuk
proved the following well known result: Let H19 -—,Hk be
closed subsets of the sphere Sn such that Uί=i Hi = Sn and
Hi n (—Ht) = 0 for i = 1, , k, then k ^ n + 2.

In this paper, this result is considered from an abstract
topological viewpoint: We develope methods for the proof
of generalizations of this result in the context of the genus
in the sense of A. S. Svarc.

1* Introduction The main concept, which is used in this paper,
is the "genus" in the sense of A. S. Svarc (cf. [6, 7]).

DEFINITION 1. (cf. [6, 7, 8]; for another way to introduce this
notion cf. [6, 7].) Let M be a topological Hausdorff space, p a prime
number and /: Af-> M a free ^-action (i.e., / is continuous, fp = id
and f(x) Φ x for all x e M). Then

Γ,/): = {GdM\There exist disjoint closed sets Go, •••, G H c J l ί

with U& 1 Gi = G and f(G0) = G, for i = 1, . . . , p - 1} ,

and the genus g(M, f) is defined by

g(M, / ) : = min {card %?\%?c: rέ?(M, f) , U gf = M) .

The genus has several very nice properties (cf. [6, 7, 8]). It
is closely related to the earlier notions of the Ljusternik-Schnirelmann
category [5] and the Yang index [9]. In general, it is difficult to
compute the genus, but there are various estimates in terms of the
dimension, connectivity, or (co-)homology of the space.

As for the Ljusternik-Schnirelmann-Borsuk result, it is interest-
ing that, independently of the prime number p and the action /,
we always have g(Sn, f) = n + l (this result is mainly due to
KrasnoseΓskii [4]). Thus, in the Ljusternik-Schnirelmann-Borsuk
theorem, we could replace the estimate k >̂ n + 2 by k ^
g(Sn, —id) + 1, and with this estimate, the result holds in a trivial
way in a much more general setting.

THEOREM, (cf. [9, 8].) Let M be a Hausdorff space, f: M-> M a
free Z2-action (i.e., a fixed-point-free involution) and let Mίf , MkaM
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be closed sets such that U*=i Mt — M and Mt Π /(AT,) = 0 for i =
1, •-.,&. Then k^g(M,f) + 1.

On the other hand, the analogous question for Z^-actions with
p 2̂  3 seems to be much more complicated. I formulate it only for
normal spaces, since I have no idea how one could treat the general
case of Hausdorff spaces.

Problem 1. Let M be a normal topological space, ^ 3 a prime
number, f:M-^M a free ^-action and M19 ••, MkcM closed sets
such that U"=i Mt = M and AT, Π f(Mt) = 0 for i = 1, ., k. What
is the best estimate of g(M, f) in terms of k and pΊ

There is some motivation for this problem. If one could prove
an estimate g(M, f) ^ r(k, p) with r(k, p) = o(p) for every fixed k,
this would imply that the following long standing conjecture in
asymptotic fixed point theory is true (cf. [8]).

Conjecture. Let E be a normed space, HcE a nonempty closed
convex set and f: H-^ H a continuous map such that fm°(H) is
relatively compact for some moeN. Then / has a fixed point (?).

At present, instead of the needed o(p)-estimate, only a O(p)-
estimate is known: In [8], g(M, f)<L(p — l)/2(fc — 2) was proved
for compact spaces M, a result which will be slightly improved in
this paper.

The main result of this paper (Theorem 2) is a reduction of
Problem 1 to the equivalent problem of computing the genus of
nice space Lk,p with nice actions φk,p on it. It will be shown that
g(M, f) ^ g(LktP, φktP), where (LktP, φk,p) is a prototype for (Jlf, /) in
Problem 1.

To date, only for p — 2 or for k = 3 have the values of
g(LkyP, φk)P) been computed and only rough estimates are available
for the general case. But the spaces LkyP and the actions φktP seem
to be nice enough to allow numerical computations of g(LkjP, <pkfP)
for small numbers k and p (e.g., k, p ^ 7), which might suggest the
general result one should expect. My own (a little vage) conjecture
is g(LktP, φk,p) = k - s(k, p) with s(k, p) 6 {1, 2, 3}.

2. The reduction of Problem 1. Let N: = {1, 2, 3, •••} and
Λ00: = {x: JV-* R\x(n) = 0 for almost every neN), equipped with
the usual Euclidean topology. Let Ete J?°°, E^n): = <?i% for all neN,
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and for q e N, I c {1, , q} and i e {1, , q} let

- co [Eά\j 6 {1,

Thus J9_! is the closed (q — l)-dimensional simplex spanned by
Eu •• ,£7g and Δ\_γ and Δq_VΛ are (closed) faces of Δq_x. We denote
by [σ] the barycenter of a simplex σ.

Now we are able to state our first theorem:

THEOREM 1. Let Mbe a normal space, keN, p a prime number,
f: M-+ M a free Zp-action, and M19 , Mk c M closed sets such that
\Ji=i Mt = Mand Mi Π f(Mt) = 0 for i = 1, ••-,&. ΓAe
α continuous map h\M—>dΔk_γ such that h{M^)(zΔk_VΛ and

Λ-i*))) c U co {[z/f_J I {i} c i Γ c {1, . . , k}\{j}} ,

particular h(f(h~\Δk_VΛ))) Π Λ-r.i — 0 /of i = 1, , &.

Proo/. Because of Mi Π /(-M*) = 0 and the normality of the
space M, there exist open Nt c ilί with Λf, c JVi and JV< Π f(Nt) = 0
(i = l, ..-,&). For/ , J c { l , ...,&}, let WIy. = Γliβ{ί,...tk)

We want to define h\M^dΔk_γ such that for
{1, ••-,&} we have

( 1 ) h( WItJ) c co {[Jf_J \JdKdI)

(i.e., roughly speaking, fe maps WItJ into the traverse Tr (Δi^) in
the complex Δ{_λ\ cf. [2]). The existence of such a map A can be
proved as follows:

We proceed by induction on card /, starting with the trivial
case card I = 0, i.e., 1=0. In this case we have J = 0 and hence

WItJ - Π Mt=0
ie {l>" ,k}

(observe that /(Πieu,...,*} Mt) Π ΛfyC/Cftf,.) Π M, = 0 for every j e
{1, •••,&} and hence n*e(i,...,fc} M, = 0 ) .

Let ne {0, , k — 2} and assume that we could define /*, on

M{n): = U Π -Mi
lc{l,••-,/«} iei l , . . . , fc}\7

d I%
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such that (1) holds for 0 ^ J c / c { l , , k} with card/ <* n and
such that h is continuous on M{n).

Since for Ilf I2 c {1, •••,&} with It ^ /2 and card Ix = card /2 =
n + 1, we have

n M%Γ\ n Λ*i = n ^ c M ^ ,
ie{l, ,/c}\/1 te {l,.. ,fc}\72 <e{l,. ,fc}\(J1Π7'2)

it suffices to extend h independently to all the sets M{n) U
Γiie a,.--,mi Mi with card/— w + 1 according to our conditions. The
union of all these extensions will be an extension of h to M{n+1)

with all the desired properties.
Thus we choose a fixed Io a {1, ••-,&} with card Io = n + 1. We

define the extension of h to M{%) U Γheu,....^tfi by induction on
card J, where Jalo: We start with card J = n + 1, i.e., J = Jo, and
define

h(x): = [Alu] f o r a l l x e W
Io,Io

Since M(%) Π ̂ o , ^ = 0 , this extension is justified and of course
continuous.

Let m 6 {2, , n + 1} and assume that we have defined h on

( )

such that (1) holds for all 0 ^ J c / c { l , •••,&} with card/ ^ ^ or
card J ^ m and I = Io and such that fe is continuous on ΛfI™*.

Since for Jlf J2 c /0 with Jx Φ J2 and card Jγ — card J 2 = m — 1
we have

it suffices to extend h independently to all the sets Mff U WIθtJ with
card J — m — 1 according to our conditions. The union of all these
extensions will be an extension of h to M^"1} with all the desired
properties.

Accordingly, let JQczI0 with cardJ0 = m — 1. Then we have

wl0,Jo n M^
= wl0,jQ n (M^ U U wlQλ

\ JCIQ /card J~2z

u
I

- U (V/0,Jon Π Af«)u UU
./c=/0
card J
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= U wΣ j u U i ^ / j ,
JQCUCIQ ' JQCZJCZIQ
card I^n card J^m

and hence

r# }) = U HWJ,J0) U U HWlQ,j)

c U co{[2/f.J|J 0 c ί Γ c I } U U co{[4f_J|JciΓc/0}
0 JQCZJCZIQ

Since every closed convex subset of a finite dimensional normed
space is an AR(normal), we can extend h\Wl tJ n3f^

m) continuously to
WlQyJo such that

By this iterative construction, we finally obtain an extension
of h to the set M%, which is equal to M{n) U C\ί&{u...,k]\lQMu since
for every xeM there is a i 6 {1, ••-,&} with ccί iS/̂  .

This shows that we can extend h continuously to M{n+1) such
that (1) holds for 0 Φ J a la {1, , k) with c a r d J ^ ^ + 1 and
such that

h(M(n+1))a U U co{[Jf.t

card 7g%+l

cU U U co{|
ϊ = l 7c{l.. .Jfc}\(i} 0ΦJCZI

card /^w+1

c I J A ,.,- = dJu 1 .
^ ^ K — I . I K I

Thus we have proved the existence of a continuous map h: Λf—> 9Λ-i>
which fulfills (1) for all 0 =£ J c J c {1, , k). We have to prove
that (1) implies h{Mι)aAk_VΛ and

h(f(h-\A_1H))) a U co {[4UI{ΐ} c ίΓc {1, , &}\{i}}
i=i

for i = 1, •• , Λ.
Let /,: = {1, , &}\{i}. Then we have

U Λ(TΓ/ < M Γ)C U co {[ΛfLJ | J c if c J J
0ΦJczIi 0ΦJdi

In addition,
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= U hiMt\Nt)

c y co{[ΔU]|{i}cJΓcα, , k}\{3}}c3Λ-ΛΛ-1;i

and hence

(Λ_i:«))) cΛ(/W)) <zh{M\Nt)

c U co {[ΛfLJ1 {*} c JSΓc {1, , fc}\{i}} .
ii

For every & 6 N and every prime number p we define

£*,*: = {(&i> , a?P) 6 (SΛ-OΊIf m, n 6 {1, , p), n == m + l(mod p)

and xm e Λ_1;ί, then xw g 4_ 1 : J

and

^ , P : = {(«i, , fl?p) € (3Λ-i)p |If w, w 6 {1, -., p}, n = m + l(mod p)

and ίc«€Λ-i:

* . e U co {[Jf.JI {i} c if c {1, ., k}\{j}}} .

Obviously, LkfP c LktPf and the map φ fc>p: LktP -> LktP,jpkiP(xlf , ^ ) : =
(cc2, •••, ajp, oji) is a free Zp-action on LktP and on LfcjP. Now we can
prove

THEOREM 2. Let M be a normal space, ke N, p a prime number
and f:M—>M a free Zp-action. Let Ml9 , MkczM be closed sets
such that U t i Mt = M and M, Π f{Mt) = 0 for i = 1, , k. Then
we have g{M, f) ^ g(Lk,p, <pktP) = g(LktP, <pktP).

Proof. By Theorem 1, there exists a continuous map h: M —> 3Λ-i
such that feίJlίi) c Λ-i i and such that

h{f{h-\Ak_VΛ))) c U co {[Jf.J | { i}cJfc{l, . . . , &}\{i}}

C 3Λ/C-IVΛ-I;Ϊ -

Let P: AT— £ 4 i P , P(αj): = {h{%\ h(f(x)\ , h(fp~\x))). Obviously, P
is an equivariant map (i.e., P ° / = %,*> ° P) and hence g(M, f) ^
g{LkiP, φkίP) ^ ^(L,,p, ^ , p ) (cf. [7,^8]).

Conversely, g(LktP, φk,p) ^ g{LktP, φkίP) follows from the fact that
Lk)P can be covered by the closed subsets Mt: = {(xu , xp) 6
I//c,p|α?1eΛ_1;ί} (i = l, •••,&), which obviously have the property
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Mt Π <pk,p(Mi) = 0 , and hence t h e es t imate g(M, f) <̂  g(LktP, <Pk,P)

applies to (LktP, φk)P) instead of (M, / ) .

REMARKS. 1. Theorem 2 reduces Problem 1 to the following
equivalent problem:

Problem 2. Let keN and p a prime number. What is the
value of g(LklP, φkfP) = g(LktP, φktP)ϊ

The end of the proof of Theorem 2 shows that, in fact, the
value of g(Lk)P, φk>p) gives the best estimate for g(M, f).

2. Since the LktP are finite dimensional compact sets, Theorem
2 shows that for Problem 1 one cannot expect a better estimate for
finite dimensional compact spaces M than for the larger class of
normal spaces.

3. Computing g{LkiP, <pk>p): First results. I can give here the
exact value of g(Lk)Pf φktP) only for the special cases p = 2 and k = 3.
For the rest, only rough estimates are available.

THEOREM 3. (cf. [9] and [8], Satz 8.) Let keN. Then
g(Lkti, φkt2) = k - 1.

Proof. Let Mt: = {(xu x2) e Lky2 \ xx e Λ- i J (i = 1, •••,&). Then we

have ikfi Π φk>2(Ml) — 0 and hence ikffc c Ufef Ψk^M^), which implies

fc fc-l fc-1

Since Mt U <Pk>2{M%) e ^{Lkt2, φki2), we have (/(L*,^ φkt2) S k — 1.

It is a well known fact that the sphere Sk~2 can be covered by
closed sets M19 , Mk such that Mt Π (—Mt) = 0 for i = 1, , k
(cf. [1]). Thus, by Theorem 2 we have g(Lkt2, φkf2) ^ ^(Sfc"2, —id) =
fc-1.

A less trivial result is

THEOREM 4. Let p ^ 3 be a prime number. Then

%f p == 3

if V ̂  5 .

Proof. I. Obviously, L3>3 =̂  0 and hence ^(I/3,3, ^3,3) ^ 1. On the
other hand, for every xeL3t3, the set Mx\ = {(α?!, ίc2, α?3) eLg^l^e J2;i}
contains exactly one of the points x, <p3,z(x), φ\,z{x), which shows
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that φUMi) Π φUMJ = 0 for j , k = 0, 1, 2, j Φ k and U;=o <PUMJ =
L8i8. Hence g(L3t3, φ3t3) ^ 1.

II. Let p ^ 5. To show that g(L3yP, φ3}P) >̂ 2, we consider the
space S\czC) with the ̂ -action f: S1'-^ S\ f(z): = e{{p-1)/p)πiz. We
cover S1 by the sets Mά: = {eίoc\2π(j - l)/3 ^ a ^ 2πjβ) for j = 1, 2, 3.
By the definition of /, it follows that M,- Π /CM,-) = 0 . Hence, by
Theorem 2, we have 2 = ̂ (S1, /) ̂  g(LStP, φ3fP).

It remains to prove that g(L3)P9 φ3)P) ^ 2. For every as =
(a?!, , α?p) e L8>3>, we define

ϊ7,: - {(αx, , a9) e {1, 2, 3}^^, 6 Δtxaj for i = 1, , p} .

For α, 6 e {1, 2, 3}, α ^ 6, let

(1 if b = α + l(mod 3)
r (2 if 6 = α + 2(mod 3) ,

and for each j e {1, , p}, let

(i + 1 if j ^ p - 1 , . [j - 1 if

J : = i, ., . and j ~ : =
(1 if j = p [p if

Then, for xeL3)P, we define

where (αx, •••, ap) is an arbitrary element of Tx. We have to show
that this definition does not depend on the special choice of
(al9 , ap) e Tx. L e t (aίf , ap), (bu -- ,bp)eTx a n d l e t j u . , i , e

{1, , p) with j \ < j2< < iι such that ajk Φ bjjc for A; = 1, , i,
but a5 = 6y for i 6 {1, , p}\0\, , JΊ}. Then, by the definition of
L3>p, we have

k9bdk} for & = 1, •-.,? .

Hence we have, setting J: = {jr, , i r , ii, , i j ,

1 p 1
— Σ r(aj9 aj+) = — Σ r(a, , aj+) + ί
3 i=i 3 ie{i,...,p}U

= 4 Σ r(6if 6ί+) + i = -ί Σ r(6if δi+) .
3 ie{l,.. ,j>}U 3 i=l

Obviously, v(α) 6 iV, >̂/3 <̂  v(sc) ^ 2p/3 and v(x) = v(φ3iP(x)) for all
xeL3,p. Furthermore, all the sets Wn: = v~\n) (neN) are closed.
Since L3yP is the finite, disjoint union of the closed sets Wn(n e N,
p/3 ^ n ̂  2p/3), which are invariant under φ3fP9 it suffices to show
that g(Wn, φ3tP) ^ 2 for all we N, p/8 ^ n ̂  2p/8.
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We assume that there exists such an n with g(Wn9 φZ)P) ^ 3.
Without loss of generality, we may assume that g(Wn, φ3)P) — 3,
otherwise we could replace Wn by a subset Wn with φz,p(Wn) = Wn

and g(Wn, <p3tP) = 3.

Let h: dΔ2-> S\(zC) be a homeomorphism such that

| 0" ~ 1)^- ^ « ^ i^} for i = 1, 2, 8 .

We want to construct a map P: TFΛ —> Sι via a homotopy argument,
such that P is equivariant with respect to <p3tP and /: S1 —> S1,

/(^): = e«^>/*»^ , i.e., P(φa,P(x)) = β ^ ' ^ PίaO = /(P(a?))

for all se ϊF*. This will imply that g( Wn9 φz,p) ^ g(S\ f) = 2 in
contradiction to #(TF*, 9>8,p) = 3 (cf. [7] and [8], Hilfssatz 10).

Since g{Wn, φStP) = 3, there exist closed subsets W{J>k\ W{J]

(j = 1, 2, 3; & = 0, , p - 1) such that WiΛ = U U ^ ' f e ) , Ui=i WiΛ =
Wn, W^f]W^ = 0 for ^ , h = 0, . . . , p - l , A^ Ĵfc, and
^3,P(WΪ''0)) = W' fc) for Λ = 1, , p - 1 (i = 1, 2, 3). We have to
construct a special homotopy

H: {W{:] U TΓi2> U W%0)) x [0, 1] > S1:

(a) We define

H(x, ί): = Λfo) for (a?, ί) = {{xl9 -. -, a?p), t)

6 ((W™ U m 2 ) U T^?'o)) X {0}) U (W™ X [0, 1]) ,

and

H(x, 1): = f\H{φtP\x\ 1)) = e ( ( 2 * ί ) / 2 ^OW f c )

for a; = (^, • • - ,« , )€ TΓi1'^ with fc 6 {1, • , p - 1}. Thus,
jff( , 1) is equivariant on Wiυ.

(b) Let d,: ΐΐ™ x [0, 1] -> (0, 2ττ),

^ y ) for (», t)e TF? x {0,1}

and

dxfo t): = tdάx, 1) + (1 - t)d,(x, 0) for (a?, ί) e Wi1} x (0,1) .

Observe that we used here the fact that for x = (xlf , xp) e W^
we have x2 Φ xlf which implies H(φZyP(x), 0) = h(x2) Φ h(x?) = H(x, 0).
Now we can define

H(x, ί): - H{φl-\x), t) Π β"^^pm< > «
m = l
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for (x, t) e W£ k) x (0,1), k e {1, , p - 1}.
(c) H is now given in particular on (W? x [0,1]) U (W£M x {0}).

By a well known homotopy extension theorem (cf. [3], p. 14), we
can extend H continuously to the set (W™ U W%M) x [0,1] such that
H((WS) U WSM) x [0,1]) c S 1 . Furthermore, we can define for xe
W%Λ) with ke{l, •• ,p-l}:

H(x, 1): = f\H(φξrXx), 1)) = e^'"^H{φ^k(x), 1) .

(d) Let d2: (W^ U Wί2)) x [0,1] -> (0, 2τr) be defined analogously
to dt. Since, for x e W™ U WL2), (au , ap) e Tx and s e {1, , p},
we have

2π
o ^ r(am9 αm +) - Σ d*(<PZΛv), 0)
3 m=l m=l

2ττ

3 '

which implies

Σ d2(φ™~\x), 0) = —— Σ (̂αm» ̂ m+) = 2πw ,
m=l 3 w=l

it follows for every (a?, t) e (W^ U WL2)) x [0,1] that

Σ d2(φl-m(x)91)

/XT'
m=]

m = ]

Hence, for (a?, ί) e W

Hi^ixlt)

= H(x,

= H(x,

= H(x,

L

Ίfl + (1 — ί

ϊ» x [0,1] and

k

m = l

/•̂  1 1 p^di(ψ3tp

P

t) Π e"2 1 9^1"

t) Π eίd^tvm^
m=l

This justifies the definition

H(x ( ί ) : = H { φ ϊ Λ ί

+• ( i

)2TΓΪJ

A e

,.),«

• , . , . «

,ί) ; _

B),ί)

ίr =

{1,

Π
m = l

Π
m = l

t) Σ dz{φl~p

m{x)f

2πn .

•••, j) - 1}, we

Jϊ(x, ί)ei2™ = iϊ(x,

k

0)

have

for (x, ί) e Wi2-*1 x (0,1), k e {1, , p - 1}.
(e) To obtain H on (FI11 U W U W?>0)) x [0,1], we apply the

same homotopy extension theorem as in (c). Finally, we obtain
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P: Wn -> S1 by

(H(x, 1) for xeW^Ό WL2) U WS'0)

\fKH{φtP\x)y 1)) for g 6 W£>k) with ]fc e {1, , p - 1} .

For k ^ 4 and p *> 3, only estimates of g(Lk>p, φktP) are known,
which seem to be not best possible in most cases. However, we
can prove a new result, which yields, in conjunction with Theorem
2, a slight improvement of Satz 10 in [8]:

THEOREM 5. Let p ^ 3 be a prime number and & e {3, 4, 5, •}.
Then we have

g(Lk>p, φk)P) = g(ZktP9 φktP) S p ~ (k - 3) -ί
^ [2 if p ^ 5 .

Proof. Let Λf,: = {(xu • • - , » , ) € £fe)P | ̂  e Λ-i .J and J P ^ =
ί = 1, , fc — 3), and let

\d=k-2 /

Then we have

^ fc-3

As a consequence of Theorems 2 and 4, we have

_ (1 if P = 3
9(G, 9 θ ^ L ..

(2 if ί? ^ 5 .

Furthermore, in the proof of Satz 10 in [8], it was shown that
9(Fit φk,P) ^(p- l)/2. I t follows that

&.r, 9k.,) ^ Σ δ(Ft, 9k.,) + 9(G, <ph,,)
< 1

^ JPZLl(fc - 8) +
- 2 (2 if p ^ 5 .
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