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SOME ABSTRACT GENERALIZATIONS OF THE
LJUSTERNIK-SCHNIRELMANN-BORSUK
COVERING THEOREM

H. STEINLEIN

Ljusternik and Schnirelmann and independently Borsuk
proved the following well known result: Let H, .-, H, be
closed subsets of the sphere S* such that U%, H,=S" and
Hn(—H)=¢@ fori1=1,---,k, then k= n + 2.

In this paper, this result is considered from an abstract
topological viewpoint: We develope methods for the proof
of generalizations of this result in the context of the genus
in the sense of A. S. Svare.

1. Introduction The main concevpt, which is used in this paper,
is the “genus” in the sense of A. S. Svarc (cf. [6, 7]).

DerFINITION 1. (cf. [6, 7, 8]; for another way to introduce this
notion cf. [6, 7].) Let M be a topological Hausdorff space, p a prime
number and f: M — M a free Z,-action (i.e., f is continuous, f? = id
and f(x) = « for all xe€ M). Then

& (M, f): = {G < M|There exist disjoint closed sets G,, ---,G,_,C M
with U= G, = G and fYG,) =G, for i =1, ---,p — 1},

and the genus g(M, f) is defined by
g(M, f): =min{card & | CcE M, f), UZ = M}.

The genus has several very nice properties (cf. [6, 7, 8]). It
is closely related to the earlier notions of the Ljusternik-Schnirelmann
category [5] and the Yang index [9]. In general, it is difficult to
compute the genus, but there are various estimates in terms of the
dimension, connectivity, or (co-)homology of the space.

As for the Ljusternik-Schnirelmann-Borsuk result, it is interest-
ing that, independently of the prime number p and the action f,
we always have g¢g(S*, f) =n + 1 (this result is mainly due to
Krasnosel’skii [4]). Thus, in the Ljusternik-Schnirelmann-Borsuk
theorem, we could replace the estimate k=n+2 by k=
9(S*, —id) + 1, and with this estimate, the result holds in a trivial
way in a much more general setting.

THEOREM. (cf.[9, 8].) Let M be a Hausdorff space, f M— M a
free Zyaction (i.e., a fized-point-free involution) and let M,,---, M,C M
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be closed sets such that Ui, M, =M and M, N f(M) =@ for i=
1, -+, k. Then k= g(M, f) + 1.

On the other hand, the analogous question for Z,-actions with
» = 3 seems to be much more complicated. I formulate it only for
normal spaces, since I have no idea how one could treat the general
case of Hausdorff spaces.

Problem 1. Let M be a normal topological space, p = 3 a prime
number, f: M —~ M a free Z,-action and M, ---, M, C M closed sets
such that Ui, M, = M and M; N f(M,) = @ for =1, ---, k. What
is the best estimate of ¢g(M, f) in terms of %k and »?

There is some motivation for this problem. If one could prove
an estimate g(M, f) < r(k, p) with »(&, p) = o(p) for every fixed k,
this would imply that the following long standing conjecture in
asymptotic fixed point theory is true (cf. [8]).

Conjecture. Let E be a normed space, H C E a nonempty closed
convex set and f: H—> H a continuous map such that fm(H) is
relatively compact for some m,c N. Then f has a fixed point (?).

At present, instead of the needed o(p)-estimate, only a O(p)-
estimate is known: In [8], g(M, /) < (»p — 1)/2(k — 2) was proved
for compact spaces M, a result which will be slightly improved in
this paper.

The main result of this paper (Theorem 2) is a reduction of
Problem 1 to the equivalent problem of computing the genus of
nice space L, , with nice actions ¢, , on it. It will be shown that

9(M, ) < 9(Liy,py Pr»)y Where (Ly,,, Pi,) is a prototype for (M, f) in
Problem 1.

To date, only for p =2 or for k¥ =3 have the values of
9(Ly, ,, Pr,) been computed and only rough estimates are available
for the general case. But the spaces L, , and the actions @, , seem
to be nice enough to allow numerical computations of ¢(L, ,, #..,)
for small numbers & and p (e.g., k, » < 7), which might suggest the
general result one should expect. My own (a little vage) conjecture
iS g(Lk.m ¢Ic,p) =k — S(ky p) With S(k, p) € {1, 2) 3}°

2. The reduction of Problem 1. Let N:={1,2,3,---} and
R*: = {&: N— R|x(n) = 0 for almost every me N}, equipped with
the usual Euclidean topology. Let E, e R, E(n): = J,, for all neN,
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and for ge N, Ic{l, ---,q} and 7€ {1, ---, ¢} let

4y i =co{l, ---, B},
4;;: =co{E;|jel},
Aoyt = 427 = co{E;|jefl, ---, g}\{i}},

0y =Udy s
i=1

Thus 4,., is the closed (¢ — 1)-dimensional simplex spanned by
E,..--,E, and 4_, and 4,_,,; are (closed) faces of 4,_,. We denote
by [o] the barycenter of a simplex o.

Now we are able to state our first theorem:

THEOREM 1. Let M be a normal space, ke N, p a prime number,
fiM— M a free Z,-action, and M, ---, M, C M closed sets such that
UM, =Mand M;Nf(M,) = @ for 1 =1, ---, k. Then there exists
a continuous map h: M — o4,_, such that h(M,) C 4,_,., and

WA ) © U o (4116} € K (L, -, NG

FES

wn particular h(f(h () Ndo_yi = @ for 1 =1, -+, k.

Proof. Because of M;N f(M,) = @ and the normality of the
space M, there exist open N,c M with M;cC N, and N, Nf(N,) = @
(t=1,---,k). Forl, Jc {1, .-, k}, let WI,J::nie(i,---,k)\I Mi\U:ieJ Nj~

We want to define h: M — dd,_, such that for @ =#JcCIC
{1, ---, k} we have

(1) hW; ;) Ceo{l4i]lJc KC I}

(i.e., roughly speaking, h maps W, into the traverse Tr (4i_,) in
the complex 4i_,; cf. [2]). The existence of such a map % can be
proved as follows:

We proceed by induction on card I, starting with the trivial
case cardI = 0, i.e., I = . In this case we have J = @ and hence
Wi = ieqn. ) M. = o
(observe that f(Micw,..... M) N M;Cf(M;) N M; = @ for every je

{1, ---, k} and hence Nicy,....s M; = D).
Let ne{0, ---, k — 2} and assume that we could define 2 on
MP:= U N M

IC{l,+ee, k) de{l,oee, BI\I
card I=n
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such that (1) holds for @ #JcIC(l, ---, k} with card] < and
such that n is continuous on M‘™.

Since for I, I,c{l, ---,k} with I, I, and card I, = card I, =
n + 1, we have
. M, = M,c M™ ,
e (L, kNI 1€ (1,0, ki\Ig el -, EIN(I1NTy)
it suffices to extend & independently to all the sets M™ Uy
Nicw-.oz M; with card I = » + 1 according to our conditions. The
union of all these extensions will be an extension of % to M=*v
with all the desired properties.

Thus we choose a fixed I, {1, ---, k} with cardI, =% + 1. We
define the extension of » to M™ U Micu,...ins, M; by induction on
card J, where JC I,: We start with cardJ =»n + 1, i.e., J = I,, and
define

h(x): = [4ie,] for all we W, , .

Since M™ N W, , = @, this extension is justified and of course
continuous.
Let me{2, ---, n + 1} and assume that we have defined & on
M:=M"U U W,

JcIy
card J=m

such that (1) holds for all g =JcIc{l, ---, k} with cardI < n or
card J = m and I = I, and such that » is continuous on M{".

Since for J, J,c I, with J, # J, and cardJ, =cardJ,=m — 1
we have

— (m)
Wiys, 0 Wi, = WIO,JIUJZ cMy,

it suffices to extend % independently to all the sets M{y U W, , with
cardJ = m — 1 according to our conditions. The union of all these
extensions will be an extension of 2 to M{* ™" with all the desired
properties.

Accordingly, let J,c I, with cardJ,=m — 1. Then we have

Wiy O MEY
= Wiy N (M“” U U W,O,J)

Jci
card J=m

=Wy NMYU U (W, NWy.,)
gﬁ'éngm
- IC(H-,M <WI°"7° n n M’) U U Wiou,

Te{l,--, [212V4 JCIg
card I=n card J=m
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= U WIﬂIO,JOU U WIO,JUJO
TCil,+-+, k} JcI,

card T<n card J=m
= U W,,u U Wy,
JocICIg JoCJ I
card Isa card J=m
and hence
MWis N M) = U W)U U A(W,,)
JocICIo Jocd Iy
card Isn card J2m
c U co{lgi]lJ;cKcItu U eco{l4iJl[JcKcC I}
JocIcTy JocJCIg
card I=sn card J=m

Ceo{l4r ]|J,c KC1}.

Since every closed convex subset of a finite dimensional normed
space is an AR(normal), we can extend thIO,JOnM;;M continuously to
W,,.s, such that

h(W3,,5,) C cO {[4illJ,c KT} .

By this iterative construction, we finally obtain an extension
of h to the set M®, which is equal to M™ U Micu,..,ons, Mi, since
for every xe M there is a je{l, ---, k} with z¢ N;,.

This shows that we can extend % continuously to M“™*Y such
that (1) holds for @ =JcIc{l, ---,k} with card/ <#» +1 and
such that

M=)y U U cof[4i]|lJCc KT}

Ic{l,---,k} @+JCI
card ISn+1

k
cU U U cofl4r)lJcKcT)
=1 IC{1.-+-k\{} @#JCI
card I=sn+1

k
Cil;,1 Ak——l:i = aAk—1 .

Thus we have proved the existence of a continuous map h: M — 04, _,,
which fulfills (1) for all @ =JcIc{l, ---,k}. We have to prove
that (1) implies h(M,) C 4,_,.; and

WS4 ) © U co {1} K 1, -, BAGH

for i =1, ---, k.
Let I: ={1, ---, k}\{¢}. Then we have
rM)c U MWync U co{l£i,]lJcKcI}
@FJCI; @+JClI;
Cdiiy =Dy -

In addition,
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WM\NY = U MAN)
c U o (45116} € KL, -+, BNG) C s Mo

§#i

and hence
B o) © BUAND) € RLN)
cUeo (4511 S KL, -+, B3} -

i+
For every ke N and every prime number p we define

Lk,p: = {(xu %y x:n) € (aAk—l)plIf m, ne {1’ ] p}y n=m+ l(mOd p)
and L € Ak—-l:il then L € Ak—l:i}

and

Ly = {(#y, -, 2,) € (04, _)?|If m,me{l, -+, p}, n = m + 1(mod p)
and x, € 4,_,;, then

zae U eo (45116} C KL, -+, BN\ -

j#t

ObVi0u81y’ Lk,p c Lk,py and the map Py, ,: Lk,p - Lk,p’ ¢k,p(w1: T xp): =
(@ +++, &, x,) is a free Z,-action on L,, and on L,,. Now we can
prove

THEOREM 2. Let M be a normal space, ke N, p a prime number
and frM— M o free Z,-action. Let M, -+, M, C M be closed sets
such that Ui, M, = M and M;Nf(M) =@ for 1 =1, ---, k. Then
we have g(M, f) = g(ik,m Pr,p) = g(Lk,m Prp)-

Proof. By Theorem 1, there exists a continuous map h: M — d4,_,
such that (M, c 4,_,, and such that

R(f(RH (L)) < ,Q co{[Ai]lstc KL, -, BI\{5}}

C 0\ -1 -

Let P: M — L, ,, P@): = (h), h(f(x)), ---, i(f*"'(x))). Obviously, P
is an equivariant map (i.e., Pof = @,,c P) and hence g(M, f) =
g(Zk,p’ ¢k,p) é g(Lk.p’ sok,p) (Cf- [77 8])'

Conversely, g(Ly.,, Pi.) < 9(Ly.p Pi,) follows from the fact that
L,, can be covered by the closed subsets M, = {(x;, -+, ®,)€
L,,lz.e4,_.;}) G=1,---, k), which obviously have the property
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M, N @, (M)= @, and hence the estimate g(M, f) < 9L, Pi.n)
applies to (Ly,,, P.p) instead of (M, f).

REMARKS. 1. Theorem 2 reduces Problem 1 to the following
equivalent problem:

Problem 2. Let keJy and p a prime number. What is the
value of g(Ly,, Pro) = 9( L,y Pro)?

The end of the proof of Theorem 2 shows that, in fact, the
value of g(Ly,,, Pi,») gives the best estimate for g(M, f).

2. Since the L, are finite dimensional compact sets, Theorem
2 shows that for Problem 1 one cannot expect a better estimate for
finite dimensional compact spaces M than for the larger class of
normal spaces.

3. Computing g(L, ,, ®;.,): First results. I can give here the
exact value of g(L,,,, ., only for the special cases p = 2 and k = 3.
For the rest, only rough estimates are available.

THEOREM 3. (cf. [9] and [8], Satz 8.) Let keN. Then
9Ly Pro) =k — 1.

Proof. Let M;: = {(x, @) € Ly s|@ €4y} 6 =1, ---, k). Then we
have M; N @, (M;) = @ and hence M, C U!z! @, .(M,;), which implies

k k-1 k-1
Lk,z = HMi = il__._,lMi UM, = iszl(M’ U @k,z(M)) .

Since M; U @ (M) € G (L2, Pre)y We have (L, Pre) <k — 1.

It is a well known fact that the sphere S*~* can be covered by
closed sets M, ---, M, such that M,N(—M,)= @ for 1 =1, ---, k
(ef. [1]). Thus, by Theorem 2 we have g(L., P2 = 9(S*2% —id) =
k— 1.

A less trivial result is

THEOREM 4. Let » = 3 be a prime number. Then

1 if p=3
La’ = .
0w Pon) = 15 o0 o5

Proof. 1. Obviously, L,, + @ and hence g(L;,; ®;;) = 1. On the
other hand, for every xe€ L,, the set M;: = {(x, ., %;) € Ly ;| %, € 4.}
contains exactly one of the points z, @,.,(x), #%.(x), which shows



292 H. STEINLEIN

that g)g,a(M1) N g’g,s(MD = @ for j, k= 0; 1; 2, .7 # k and U?i:o QD.{,a(Mx) =
L,;. Hence g(Ls;, P, = 1.

II. Let p =5. To show that g(L;,, #;,) =2, we consider the
space S'(CC) with the Z,action f:S'— S, f(z): = el?» 0Pz We
cover S! by the sets M;: = {¢*|2x(j — 1)/3 < a < 275/8} for 7 =1, 2, 3.
By the definition of f, it follows that M; N f(M;) = ©. Hence, by
Theorem 2, we have 2 = g(S", ) =< 9(Ls,,, Ps.p)-

It remains to prove that g(L;,, #;, <2. For every z=
(@), +-+, x,) € L,,, we define

T.: = {(ay -+, a,)€{L, 2, 8}?|w;€ 4y, for j =1, ---, p}.
For a,befl, 2,3}, a # b, let
1 if b=a + 1(mod3)

, 0): = .
(@, 9) 2 if b=a + 2(mod3),
and for each je{l, ---, p}, let
n j+1 if j<p—1 ) J—1 if j=2
Jjt= e and j: = e -
1 if 7=»p » if j=1.

Then, for xe L, ,, we define
12
v(x): = §' Z. r(@aj, a;+) ,

where (a,, -+, a,) is an arbitrary element of T,. We have to show
that this definition does mnot depend on the special choice of
(@, +++,a,)eT,. Let (aj,---,a,), b, ---,b,)eT, and let 7, ---, 7, €
{1, ---, »} with 7, < j, < --- < J, such that a;, #0b; fork=1,---,1,
but a; =b; for je{l, ---, pP\{4y, ---, 5}. Then, by the definition of
L, ,, we have

aj];" = aj; = b],‘: = bj; € {1, 2, 3}\{a’fk’ bjk} fOl' k= 1, vy, l.

Hence we have, setting J: = {j;, ---, 37, 7y, -+, 11}
1 1
—Z 'r(a,, aj+) = = Z ’I'((l,', aj*) +1
3 i=1 3 et PN
1

1 ?
— ?,-e(l;,p)\J r(b;, b;+) + 1 = ng r(b;, bj+) .
Obviously, »(x)e N, p/3 < v(x) < 2p/3 and v(x) = v(®, ,(x)) for all
x€L,,. Furthermore, all the sets W,: = v7*(n) (ne N) are closed.
Since L, , is the finite, disjoint union of the closed sets W,(n¢€ N,
p/3 < n =< 2p/3), which are invariant under @, ,, it suffices to show
that g(W,, #,,) <2 for all ne N, p/3 < n < 2p/3.
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We assume that there exists such an » with g(W,, ¢,,) = 3.
Without loss of generality, we may assume that g(W,, #;,) = 3,
otherwise we could replace W, by a subset W, with @, (W,) = W,
and g(W,, ?.,) = 3.

Let h: 04, — S'(cC) be a homeomorphism such that

W) = el - DE sa <2 for j=1,23.

We want to construct a map P: W, — S' via a homotopy argument,
such that P is equivariant with respect to ®,, and f: S'— S,

f(2): = 0Pz, e,  P(P,(®) = """ P(x) = f(P(x))

for all xe W,. This will imply that g(W,, ®,,) <g(S, f) =2 in
contradiction to g(W,, ®,,) = 8 (cf. [7] and [8], Hilfssatz 10).

Since g(W,, ®,,) = 3, there exist closed subsets W, Wy
G=12238k=0,---,p—1) such that W = Uizt Wi?, U=, WY =
w,, W@ naWwew =g for k,k=0---,0—1, k #k and
Pk (WEN) = WE» for k=1,---,p—1 (j=1,2,8). We have to
construct a special homotopy

H: (WP UW2yWweo) x[0,1]]— S
(a) We define

H(x, t): = h(xl) for (x, t) = ((xly Tty xp)} t)
e(WR UWg Uuwe" x {0h)u (W x [0,1]),

and
H(zx, 1): = f{H@PL(x), 1)) = &' &2 (., )

for x=(a, -+, x,)e W® with ke{l, ---,p —1}. Thus, H(-): =
H(-, 1) is equivariant on W.
(b) Let d;: WP x [0, 1] — (0, 27),

dy(x, t): = arg (—_—H(}’;S(';(“t))' D) for (z,t)e WP x {0,1)

and
d,(x, t): = td(2, 1) + 1 — t)d,(x,0) for (x,t)e WP x (0,1).

Observe that we used here the fact that for = (x,, ---, 2,) € WY
we have «, # x,, which implies H(®; ,(x), 0) = h(x,) # h(x,) = H(x, 0).
Now we can define

k —m
H(z, t): = H@i:4®), ) T[ edaehs o
m=1
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for (x,t)e W» x (0,1), kefl, ---, p — 1}.

(¢) H is now given in particular on (W X [0, 1]) U (W&® x {0}).
By a well known homotopy extension theorem (cf. [3], p. 14), we
can extend H continuously to the set (W U W) x [0, 1] such that
H(WY U We”) x [0,1]) c S*. Furthermore, we can define for x¢
wek with ke{l, ---, »p — 1}:

H(m’ 1). — f"(H(@Q’,;"(x), 1)) — 6((2”i)/p)”kH(¢§’,;k(x), 1) .
(d) Let dy: (W UWP) x [0, 1] — (0, 27) be defined analogously

to d,. Since, for xe WP U WP, (a, --+,a,)€T, and se{l, ---, p},
we have

ar & 2 met 2

5 mZﬂ P(@my Cm+) — szl dy(P55 (@), 0)| = 3’
which implies

Z _— _ 2t &

g:.‘.l dz((ps,p ((17), 0) - _3— Z;. ’r(am, a’m+) = 27[% ’

m=1

it follows for every (z, t)e (WP U W) x [0, 1] that
3, d(@5"@), )
= ¢ 31 d(@l@), D) + L — 1) 3, dots"@), 0)
= th:‘,l%:ifn + 1 — t)2zn = 27n .
Hence, for (x,t)e WP x [0,1] and ke{l, ---, »p — 1}, we have
H(pt;4(@), 1) 1 esol™ono

&
eid1(¢§;m<x),t> I gideap g @)1

1 m=1

= H(z, t)

m

=NE=E

k
ewz(?g”zm(z),t) H eidz((ag’;m(a;),t)
+1 m=1

= H(zx, t)

m

= H(, t) [] e'%%i:" = = H(g, t)e™™ = Hx, t) .
m=1

s
>

This justifies the definition
k
Hr, t): = H@34@), ) ] e
m=1
for (x,t)e W&» x (0, 1), ke{l, ---, p — 1}.

(e) To obtain H on (WP UWP2 U W) X [0,1], we apply the
same homotopy extension theorem as in (¢). Finally, we obtain
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P.W,— S by

P(z): = H(z,1) for xe WP U WP U WS
O UMHEEE @), 1) for we WY with ke{l, .-+, p —1}.

For # = 4 and p = 3, only estimates of ¢(Lj,,, P, are known,
which seem to be not best possible in most cases. However, we
can prove a new result, which yields, in conjunction with Theorem
2, a slight improvement of Satz 10 in [8]:

THEOREM 5. Let p = 3 be a prime number and ke {3,4,5, ---}.

Then we have

1 4f p=3
2 if p=5.

g(Lk,P) ¢k,p) = g(Ek,m ?k,p) é p ; l(k - 3) ‘l‘ {

Proof. Let M:={®, -, x)el,,|le,ed,_,;} and Fy:=
Uizt @i,(M) =1, ---,k —3), and let

- k »
G: = Lk,p ﬂ ( - 2Ak._1;j> .

i=k—

Then we have
- k—3
Lk,p = L—Jl Fi U G .

As a consequence of Theorems 2 and 4, we have

1 if p=3

G =
g( ’¢k,p)—{2 if pg5.

Furthermore, in the proof of Satz 10 in [8], it was shown that
9(F,, @) < (p — 1)/2. It follows that
- k—3
g(Lk,py q)k,p) é g{g(Fi’ @k,p) + g(G; ¢k,p)

1 if p=3
2 if p=5.

p—1,
<221 3>+{
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