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TAKESAKΓS DUALITY FOR REGULAR EXTENSIONS
OF VON NEUMANN ALGEBRAS

YOSHIOMI NAKAGAMI AND COLIN SUTHERLAND

We extend Takesaki's duality to regular extensions, and
hence twisted crossed products, of von Neumann algebras
by locally compact groups.

Introduction. For a von Neumann algebra M, ε denotes the
canonical map of the automorphism group Aut(ikf) of M to the quotient
Aut(Λf)/Int(Af) = Out(ikf) of Aut(M) by the normal subgroup of inner
automorphisms. When M* is separable, and G is a separable locally
compact group (always endowed with a right Haar measure and
modular function Δ), we can associate to certain Borel mappings
a{m): 11-> at e Aut(Λf) with t\-*e(at) a homomorphism, a family of ex-
tensions of M by G, known as regular extensions, or, in special cases,
twisted crossed products, [7, 10, 12, 13, 15]. Indeed, since ε(a8)e(at) =
e(ast) there is a Borel family (s, t) e G x G ι-> u(s, t) e M of unitaries
such that

ί oc8oat = Ad u(s, t)oast

((or (α (x) ήoa = Ad uo(c (x) δ)<>a)

where δ is the isomorphism of L°°(G) into LΓ(G) (x) L°°(G) determined
by (δ/)(«, ί) = f(st), f e L°°(G); a: M-+M®L~(G) is given by (α(α?))(ί) -
αt(α?), x e l and (wf)(β, ί) = %(s, ί ) ί 0 , 0 for f e Sίf (x) L2(G) (g)L2(G)
(where M acts on , ^ 7 ) .

Since 11-> ε^^) is a homomorphism, we see

αr(w(s, t))u(r, st) = fu(r, s, t)u(r, s)u(rs, t)

for some Borel map fu:G x G x G—> M with unitary values in the
center of M. Also, /„ is a 3-cocycle for the natural action of G on
the center of M. If fu cobounds, we may assume, by modifying by
unitaries in the center of M, that

( 2 ) ar(u(s, t))u(r, st) = u(r, s)u(rs, t)

on G x G x G. Hence we may construct the regular extension
M®a,uG of M by G, as the von Neumann algebra on
generated by the operators

= at(x)ζ(t) , (λ (r)f)(t) Ξ u(

for ίceikf, r e G and f e £tf (x) L2(G). (See [13, Theorem 3.1.6] for
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further details on regular extensions and the significance of fu

cobounding.)
In order to formulate Takesaki's duality for a general locally

compact group, we introduce the concept of a dual action of G on
a von Neumann algebra N; this is an isomorphism β of N into
N®R(G) satisfying

where R(G) is the von Neumann algebra generated by the right
regular representation λ of G and 7 is the isomorphism of R(G) into
R(G) (x) R(G) determined by 7(λ(ί)) = λ(ί) (x) λ(ί), t e G. The crossed
dual product JV by G, N ®^ G, is the von Neumann algebra generated
by β(N) and 1 (g) L°°(G), [3, 6, 8, 9, 11, 14]. Our main result, Theorem
2 extends Takesaki's duality to regular extensions, thus answering a
question raised in [13, §1],

Duality for regular extensions. Before beginning our discussion,
we define unitaries U, V, V and W on L\G) (x) L\G) by

, {Uξ){s, t) = f(t, 8) , (Vξ)(8, t) = ξ(8t, t) , (F'f)(8, *) = A{tγ'*ζ{t-% t) ,

and W = UVU, so (Wζ)(8, t) = ξ(s, ts). Note that AdU is the symmetry
σ:x®y^y<g)x,δf = AdV(f (x) 1G), f e L~(G), and

LEMMA 1. // α is defined on M<ξξ)ayUG by

iί is α duαi action of G on

Proof. Direct computations easily show

ί Ad 1 (x) TΓ

(Ad 1 ® TΓ*(λ (r) (g) 1G) - λ*(r) (g) λ(r) .

The identity (ά(g) 0O($ = (^(g)7)°α now follows trivially on the gen-
erators of Λf®α>tt(?, and hence on all of M®atUG.

Following [6, 8], we say that actions1 a3' of a group G on von
Neumann algebras Mh j = 1, 2 are equivalent if

1 An action α of G on ikf means a homomorphism of G into Aut(ikf) such that
ί l-> cet(x) is σ-weakly continuous for each x£M.
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for some isomorphism p of Mx onto M2; we denote this relation by
{M19 a1} ~ {M2, a2}.

THEOREM 2. Let a = Ad 1 (x) F'°(/ (x) σ)oAd %*<>(« (x) 4 and

α(») Ξ= Ad 1 (x) l f f (x)V\x <g> lff) fa? e (M® G)®G) ,

so that a is the action2 of G on (M (g>a>u G) <&t G dual to a. Then
a is an action of G on M® B(L\G)) and we have

M® G) ® G, a\ ~ {M®B(L\G))f a) .

Proof. We note first that the operators a(x), x e M, λu(r), r e G
and l(g)/, /eL°°(G) generate M®B(L\G)). Indeed, if N is the von
Neumann algebra generated by the above operators, then i
L°°(G). If xeN'f then for all yeM we see that

at(y)x(t)ξ(t) = (a(y)xζ)(t) = (xa(y)ξ)(t) = x(t)at(y)£(fi)

a.e. on G, so that x(ί) 6 Mr a.e. Since also λu(r)x = xXu(r) for all
r G G, we obtain x(t)u{t, r) — u(t, r)x(tr) a.e. in t for each r e G. A
routine argument now shows α? e ΛΓ (g) l f f, and N = M® B(L2(G)).
Note that in fact we have shown that α(a?), x e l and 1 (x) LTO(G)
generate Mg)L°°(G).

Now define a map p: Λf(g) B{L\G)) -> Λf(g) B{L\G)) (x) B{L\G)) by
|t> = Ad 1 (x)F*oAd u*o( α (x) *). We have then

( = α(«) (X) l β

( 5 ) j

Of these, the last is trivial, the first follows from (1), and the second
is checked as follows. Since, from (2),

ast-i(u(t, r))u(st~\ tr) = u(st~\ t)u(s, r) ,

we have, for ξ e Si? (x) L\G) (x) L\G),

s, t)

-\ t)

"1, ίr)

= u(st~\ t)*att-i(u(t, r))u(st-\ tr)ξ(sr, tr)
2 a is an action oί G on M if and only if a is a normal isomorphism of M into

Jkf® L°°(G) with (a®c)oa = (c<g>δ)oa, [8, Theorem 2.1].
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= u(s, r)ξ(sr, tr)

= ((λ (r) (g) λ(r))f)(β, ί) .

Since, from (4), the right hand sides of (5) generate

p is an isomorphism of M<g>B{U{G)) onto {M <&a,u G) ®* G.
It remains to check the identity {p®t)°a = a°p. Notice that

a = Ad(l®V'UV)op, and that

(V'UVξ)(s, t) = Δ{tγ*ξ{s, r 's) , ((V'UV)*ζ)(s, t) = A(ts-ψ2ξ(s, si"1) .

Thus we obtain

(p (g) c)oά(a(x)) = (p® ί)<»Ad(l <g)V'UV)(a(x) ® l e )

(g) l σ (g) 1 G ,

and

do (g) ί)oα(λ»(r)) = (p ® ήoAά(l®VUV)(X%r) ® λ(r))

= λ (r) (8) λ(r) (g)

Also

(g) / ) = Ad (1 ( g ) F > ( ί (8) σ)oAd tt*(l (g) 1G (g) / )

= Ad (1 (g) F ' ) ( l <8> / <8> lβ) = 1 <8> * / ,

where (ιcf)(s, t) = /(t^s), by direct computation.
Finally, noticing that Ad V'(X(r) (x) 1G) = λ(r) (x) 1G, and that

AάV'(f ® 1G) = Λ:/, we obtain also

aop(a(x)) = a(x) (g)lG®lG ,

a°p(Xu(r)) — a(Xu(r) (x) λ(r))

= Ad(l (x) 1G (g) F')(λw(r) (x) λ(r) (x) l σ )

= λ w (r) (x) λ(r) (8) l β ,

and

β (8) / )
= Ad(l (g) 1G (g)F')(l ® l β (g) / (g)

the equality (p(g)c)°ά = a.op is verified.
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COROLLARY 3. If *λ(r) is defined on βίf' ® L\G) by

(uX(r)ξ)(s) = J(r)1/2u(r, r"1*)*^-1*) ,

then at = Ad *λ(ί)°(α( ® ί).

Proof. It suffices to show the indicated equality on the generators
a(x), λM(r) and 1 ® / of M ® B{L\G)). We compute

= Δ{t)ι>*u{t, t-'sYioίt (X) ί(α(x)) l i

= ιt(t, t-1β) α t(α l-i.(«))M(ί, r '

for f e J T ® L2(G) and

(α(α(a;))ί)(s) ί) = ((α(χ) ® lβ)ί)(s, t) - α.(aj) (g) lof (β, ί) ,

for ζ e £ίf 0 L\G) ® L2(G). Similarly, we have

(Ad λ(t)o(αt®«)(λ (r))ί)(β)

= J(t)ι/2u(t, t-ιs)*at(u(t-ιs, r))Cλ(ί)*|)(ί-1sr)

= u(t, t-'syatiuit-'s, r))u(t, t^isrMsr)

= u(s, r)ζ(sr) (by (2))

and

(Ad- λ(t)o(αf (g) 0(1 (X) /)f)(β) = (Ad" λ(ί)(l

= n{t, t-ιs)*f{t-ιs)u{t, t-ιs)ξ{s)

= f(t-'8)ξ(8)

for ξ<=βέr<g>L\G). Since

(dί(λ (r))ί)(βf ί) = ((λ (r) <8) lβ)ί)(β, ί)

and

s, t) - ((l ® /c

for I e Jg^ ® L2(G) ® L\G), the verification is complete.
This result is a partial clarification of [13, Proposition 2.1.3]

asserting that the 2-cocycle u ® lβ cobounds with respect to at ® ί
in iki(g)B(L2(G)). Indeed, it is trivially checked that

u(s, t) Θ l β = (α. <g) 0
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as required.
For a given action Θ of G on a von Neumann algebra N, we

write Nθ = {x e iV: #*(#) = α?, Vt 6 G}, the fixed point subalgebra of N.

COROLLARY 4. M®α,M G = (Λf <g) B{L\G)))\

Proof. Since ((Λf®MG)®*G)* = α(M®α,wG) by [8, Proposition
6.4], Takesaki's duality (Theorem 2) tells us that

aim® G) = p{{M®B{L\G))f) .

From (4) and (5), we see that a and p agree on M®α > t tG, so that
M®a,uG = {M®B{L\G))f as claimed.

Corollary 4 gives some information on when regular extensions
M<5$ai,uG and Λf®α2?vG of M by G, with εoα1 = εoα2, are iso-
morphic. For if α1 and α2 denote the actions of G on M = M®
B(L\G)) with fixed point algebras M®αi,tt G and Λf ®β2ιV G respectively,
then ii?®«iG and iί?®«2G will be isomorphic whenever there is a
Borel map teG r-*ut with a\ — Adutoά2

t and t6tαf(w.) = i ί̂s for t, seG,
[14]. On the other hand these crossed products are isomorphic res-
pectively to {M®^,UG)®B{L\G)) and (AΓφ^.G) <g> B(L\G)), [8].

Also, note that εoα1 = ε α2 whenever εoα:1 = εoα2, so it is necessary
only to provide conditions under which the "comparison cocycle"
O)«i,α2 associated to a1 and α2 is trivial, [13]. The hypothesis of the
next result are two situations in which this is known to happen,
[1, 4].

COROLLARY 5. Let Λf ®Λi,u G and M ®α2,v G 6e regular extensions
of M by G with εoα1 = εoα2. If either

(1) G is discrete, acts freely on the center of M, and is a
locally finite extension of a solvable group; or

(2) G is a compact, abelian and connected group K, or KxR,
and acts trivially on the center of M,
then (Λf ®βifW G) (x) B{L\G)) and (M®a2,υ G) (x) B(L\G)) are isomorphic.

Just as in the case of ordinary crossed products, regular extensions
may be characterized by the existence of a dual action and of a
distinguished family of unitaries.

THEOREM 6. Let N be a von Neumann algebra with N* separable
and β a dual action of G on N. Then the following two conditions
are equivalent:
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( i ) there is {M, a} with M* separable such that {N, β} ~
{M<ξ$atUG, a} for some u; and

(ii) there is a Borel map ί = G π v(t) e N with unitary values
such that β(v(t)) = v(t) (x) λ(ί), t e G.

The proof goes the same way as in the proof [5, 8, 11] except
the following lemma.

LEMMA 7. Assume the condition (ii) in Theorem 6. Then, N
is generated by Nβ Ξ= {ye N: β(y) = y (x) 1G) and v(t), teG.

Proof (Takesaki). Let N = i\Γ(x) F^ β = (c (x) σ)o(β (g) c) and v(t) =
#(£) (x) 1, where J ^ is a factor of type 1^. Then y§ is a dual action
of G on N, Nβ = Nβ ( g ) ^ is properly infinite and /3(v(t)) = v(t) (g) λ(ί)
for all £. Therefore iβ is dominant3, because β(v) = (v® lβ)(l(g)TΓ)
for a unitary v in N(g}L°°(G) defined by (vξ)(t) == v(t)ζ(t), [2,9].
Therefore there exists a strongly continuous unitary representation
u of G in JV such that β(u(t)) = %(t) ® λ(ί) by [5, 8,11]. In this case
N is generated by Nβ (g) JP^ and w(ί), ί e G. If e is a projection in
N of the form 1 ® ί9 with dim p = 1, then {iV, /S} is identified with
{Ne, β

e). Since ^(v(ί)) = v(t) (x) λ(t), ί e G, v(t)u{t)* e ΛΓ̂3 <g) ̂  and hence
= ew{t)u{t)e for some ^ (ί) e Nβ ® F^. Here we may assume that
= ew(t)at(e). So, ^(ί) is a partial isometry. If x is an arbitrary

element in Nβ ® F^, then

exu(t)e = exw(t)*w(t)u(t)e ~ exw(t)*v(t)

and hence e(Nβ (x) F^u{t)e = Nβv(t). It remains to show that
e(JV^(x)F^)u{t)e, teG generate βiSfe = iV. Since the set L of all finite
linear conbinations of xu(t) with x e Nβ ® F M and ί 6 G is a σ-weakly
dense *-subalgebra of JV, βLe is σ-weakly dense in eNe — N. Conse-
quently, Nβv(t), teG generate N.

Proof of Theorem 6. That (i) => (ii) has already verified in
Lemma 1.

(ii) => (i). Let M == Nβ. Since β(v(t)xv(t)*) = v(f)xv(jb)* (x) lσ for
xeM,v(t) normalizes M. Also with u(s, t) = v(s)v(t)v(st)*, we see
β(u(8, t)) = u(β, t) (g) l β , so M(S, ί ) e l for s,teG.

Set α8 Ξ Adv(s) |"Λf. Then asoat = Ad u(s, t)°ast and
ar(u(s, t))u{r, st) = u(t, s)u(rs, t). Then a and u determine a regular
extension M ®α,tt G of Jlί by G, with generators α(Λf) and λtt(s), SGG.
Define a unitary i; in N<g}L°°(G) by (v£)(t) = v(t)ξ(t). Then, by di-

3 A dual action β of (r on N is said to be dominant, if iV̂ 3 is properly infinite and

{iV, ,8} - {#, ^}, where i\T - N®B(L2(G)), β=(t® σ)o(ββ> ή and β = (Ad 1 (8)^) °^ . If

β is dominant, then {N, β} - {ΛΓ, /3} - {(Ng>d

B G)®$ G, β}.
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rect computation,

v*Xu(s)v = β(v(έ)) and v*a(x)v = β{x)

for seG and x e l . Thus v*(M®a,uG)v = /3(iN0 by Lemma 7.

According to the above theorem we know the relation between
[2, Theorem III. 3.1] and [5, Theorem].
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