SETS OF INTEGERS CLOSED UNDER AFFINE OPERATORS-THE FINITE BASIS THEOREMS

D. G. Hoffman and D. A. Klarner

This paper is a continuation of investigations of sets T of integers closed under operations f of the form $f\left(x_{1}, \cdots, x_{r}\right)=$ $m_{1} x_{1}+\cdots+m_{r} x_{r}+c$, where $r, m_{1}, \cdots, m_{r}, c$ are integers satisfying $r \geqq 2,0 \notin\left\{m_{1}, \cdots, m_{r}\right\}$, and $\operatorname{gcd}\left(m_{1}, \cdots, m_{r}\right)=1$. We have two goals here:
(1) to prove that $T=\langle f \mid A\rangle$ for some finite set A, where $\langle f \mid A\rangle$ denotes the "smallest" set containing A and closed under f, and
(2) to show that unless $|T|=1, T$ is a finite union of infinite arithmetic progressions, either all bounded below, or all bounded above, or all doubly infinite.

We shall lean heavily on the notation, definitions, and results of [1].

Definition 1. Let $r \in \boldsymbol{P}$. An r-ary affine operator f on \boldsymbol{Z} is an operator of the form

$$
f\left(x_{1}, \cdots, x_{r}\right)=m_{1} x_{1}+\cdots+m_{r} x_{r}+c,
$$

where $m_{1}, \cdots, m_{r} \in \boldsymbol{Z} \backslash\{0\}$, and $c \in \boldsymbol{Z}$. Let $\sigma(f)=m_{1}+\cdots+m_{r}$, let $\rho(f)=r$.

We call f a positive operator if each $m_{i} \in \boldsymbol{P}$, a prime operator if $r \geqq 2$ and $\operatorname{gcd}\left(m_{1}, \cdots m_{r}\right)=1$, and a linear operator if $c=0$. Denote by \mathscr{P} the set of all positive, prime, linear operators, and by \mathscr{H} the set of all prime linear operators that are not positive. For each $f \in \mathscr{P},\langle f+1 \mid 0\rangle$ is a periodic set by Theorem 12 of [1]; let $\delta(f)$ be its smallest eventual period.

Lemma 1. Let $f \in \mathscr{P}$, let $a, s, t \in Z$, with $(\sigma(f)-1) a+s \in N$, and $(\sigma(f)-1) a+t \in \boldsymbol{P}$. Then $T=\langle f+\{s, t\} \mid a\rangle$ has an eventual period $\delta(f) \operatorname{gcd}(t-s,(\sigma(f)-1) a+t)=\delta(f) \operatorname{gcd}((\sigma(f)-1) a+s,(\sigma(f)-1) a+t)$.

Proof. Define a sequence ($T_{n} \mid n \in \boldsymbol{P}$) of subsets of \boldsymbol{Z} as follows: let $T_{1}=\langle f+t \mid a\rangle$, and for $k \in P$, let $T_{2 k}=\left\langle f+s \mid T_{2 k-1}\right\rangle$ and $T_{2 k+1}=$ $\left\langle f+t \mid T_{2 k}\right\rangle$. Then certainly each T_{n} has an eventual period $\delta(f)((\sigma(f)-1) a+t)$, and further $T=\bigcup_{n \in P} T_{n}$. Thus T has an eventual period $\delta(f)((\sigma(f)-1) a+t)$. If $(\sigma(f)-1) a+s=0$, we are done. Otherwise, we may interchange the roles of s and t in the argument above to conclude that T also has an eventual period of $\delta(f)((\sigma(f)-1) a+s)$.

Theorem 1. Let $f \in \mathscr{P}$. Then there exists $v \in \boldsymbol{P}$ such that for all $a \in N, b \in P, T=\langle f \mid a, b\rangle$ has an eventual period $v \cdot \operatorname{gcd}(a, b)$.

Proof. We may assume $\operatorname{gcd}(a, b)=1$. If $f\left(x_{1}, \cdots, x_{r}\right)=m_{1} x_{1}+$ $\cdots+m_{r} x_{r}$, then T is closed under the two operators $g+k\{a, b\}$, where $g\left(x_{1}, \cdots, x_{r}\right)=m_{1}^{2} x_{1}+m_{2} x_{2}+\cdots+m_{r} x_{r}$, and $k=m_{1}\left(m_{2}+\right.$ $\left.\cdots+m_{r}\right)$. Let $v=\delta(g) k(\sigma(g)-1+k)$. By Lemma 1, the set $T_{a}=$ $\langle g+k\{a, b\} \mid a\rangle$ has an eventual period $\delta(g) \operatorname{gcd}(k(b-a),(\sigma(g)-1+k) a)$, which divides v. Similarly, $T_{b}=\langle g+k\{a, b\} \mid b\rangle$ has an eventual period v, thus $T=\left\langle f \mid T_{a} \cup T_{b}\right\rangle$ does also.

Definition 2. For each $f \in \mathscr{P}$, we denote by $\nu(f)$ the smallest positive integer such that for all $a \in N, b \in P,\langle f \mid a, b\rangle$ has an eventual period $\nu(f)(\sigma(f)-1) \operatorname{gcd}(a, b)$.

Theorem 12 of [1] considered sets $\langle f+c \mid A\rangle$, where $(\sigma(f)-1) A+$ $\boldsymbol{c} \subseteq \boldsymbol{P}$. We remark that Theorem 1 above can be used to extend Theorem 12 of [1] to the case $\{0\} \neq(\sigma(f)-1) A+c \subseteq N$.

Theorem 2. Let $f \in \mathscr{P}$, let $c \in \boldsymbol{Z}$, let $A \subseteq \boldsymbol{Z}$, with $\{0\} \neq(\sigma(f)-1) A+$ $c \cong N$. Then $\langle f+c \mid A\rangle$ is a periodic set with an eventual period $\nu(f) \operatorname{gcd}((\sigma(f)-1) A+c)$.

Proof. By Theorem 1 of [1], we may assume $c=0$. Let $a \in A \cap P$. For each $b \in N, T_{b}=\langle f \mid a, b\rangle$ has an eventual period $\nu(f)(\sigma(f)-1) \operatorname{gcd}(a, b)$, thus $T=\bigcup_{b \in A} T_{b}$ has an eventual period $\nu(f)(\sigma(f)-1) a$, and so does $\langle f+c \mid A\rangle=\langle f+c \mid T\rangle$.

Lemma 2. Let f be a prime operator, let $t \in \boldsymbol{Z}$. Then there is a positive, prime operator g such that for any $T \subseteq \boldsymbol{Z}$ with $t \in T$, if T is closed under f, then T is closed under g.

Proof. If f is the operator $m_{1} x_{1}+\cdots+m_{r} x_{r}+c$, then let $g=$ $m_{1}^{2} x_{1}+\cdots+m_{r}^{2} x_{r}+2 t \sum_{i<j} m_{i} m_{j}+(\sigma(f)+1) c$.

Theorem 3. Let $A \subseteq Z$, let f be a prime operator. Then $\langle f \mid A\rangle=\langle f \mid B\rangle$ for some finite subset $B \subseteq A$.

Proof. Let $t \in A$, produce g as in Lemma 2. Let $\alpha=g(0) /(1-\sigma(g))$, let $P=\{n \in Z \mid n \geqq \alpha\}$. By Theorem 12 of [1], and its extension noted above, there are finite sets B_{1} and B_{2} such that $\langle f \mid A\rangle \cap P=\left\langle g \mid B_{1}\right\rangle$ and $(-\langle f \mid A\rangle) \cap P=\left\langle g \mid B_{2}\right\rangle$. But then $\langle f \mid A\rangle=\left\langle g \mid B_{1} \cup\left(-B_{2}\right)\right\rangle$, and clearly $\left\langle f \mid B_{1} \cup\left(-B_{2}\right) \cup\{t\}\right\rangle=\langle f \mid A\rangle$. Finally, we need only choose a finite $B \subseteq A$ so that $B_{1} \cup\left(-B_{2}\right) \cup\{t\} \subseteq\langle f \mid B\rangle$.

With Theorem 3, we have achieved goal (1).
We now turn our attention to sets of residue classes in the ring \boldsymbol{Z}_{d}. We make the convention that any integer divides 0 ; hence $a \equiv$ $b(\bmod 0)$ if and only if $a=b$, and $\operatorname{gcd} \phi=\operatorname{gcd}\{0\}=0$. Further, if $d \in N$, and $A, B \subseteq Z$, define $A \subseteq B(\bmod d)$ if for all $a \in A$, there is some $b \in B$ with $a \equiv b(\bmod d)$, and $A \equiv B(\bmod d)$ if $A \subseteq B \subseteq A(\bmod d)$. Finally, define $\gamma(A)=\operatorname{gcd}(A-A)$; and if C is a set of residue classes, define $\gamma(C)=\gamma\left(\bigcup_{A \in C} A\right)$.

The following theorem is essentially Theorem 10 of [1].
Theorem 4. Let $d \in \boldsymbol{P}$, let f be a prime operator, let $A \subseteq \boldsymbol{Z}$ with $f(A) \subseteq A(\bmod d) . \quad$ Then $f(A) \equiv A(\bmod d)$.

Definition 3. Let R be a family of finitary operators on a set X, let $A \subseteq X$. We denote by [R, A] the following family of operators: let $f \in R$ be an r-ary operator, let K, L be a partition of $[1, r]$ with $K \neq \phi$, let $\tau: L \rightarrow\langle R \mid A\rangle$; define a $|K|$ ary operator g on X as follows:

$$
g\left(x_{i} \mid i \in K\right)=f\left(y_{1}, \cdots, y_{r}\right)
$$

where

$$
y_{\imath}= \begin{cases}x_{i} & \text { if } i \in K \\ \tau(i) & \text { if } i \in L .\end{cases}
$$

Let $[R, A]$ be the set of all such operators g. Thus $T=\langle[R, A] \mid B\rangle$ is the smallest set containing B, and with the property that if f is an r-ary operator in R, and $x_{1}, x_{2}, \cdots, x_{r} \in\langle R \mid A\rangle \cup T$, and at least one $x_{i} \in T$, then $f\left(x_{1}, \cdots, x_{r}\right) \in T$. In particular, $\langle R \mid A\rangle \cup\langle[R, A] \mid B\rangle=$ $\langle R \mid A \cup B\rangle$.

Theorem 5. Let $f \in \mathscr{P} \cup \mathscr{H}$, let $c \in \boldsymbol{Z}$, let $d \in \boldsymbol{P}$, let $A, B \subseteq \boldsymbol{Z}$. Then, if $B \neq \phi$,

$$
\langle[f+c, A] \mid B\rangle \equiv\langle f+c \mid A \cup B\rangle(\bmod d)
$$

Proof. We need only show, for all $a, b \in \boldsymbol{Z}$, that $a \equiv a_{1}(\bmod d)$ for some $a_{1} \in\langle[f+c, a] \mid b\rangle$. We may further assume $f \in \mathscr{P}$, and $(\sigma(f)-1) a+c,(\sigma(f)-1) b+c \in P$. Let $s=d \nu(f) \operatorname{gcd}((\sigma(f)-1) a+c$, $(\sigma(f)-1) b+c)$, let $t=\delta(f)((\sigma(f)-1) a+c)$, and suppose first $s<t$. By Theorem 2, $a+s N \sqsubseteq\langle f+c \mid a, b\rangle$. (Recall that for sets X and $Y, X \sqsubseteq Y$ means $X \backslash Y$ is finite, and $X \doteq Y$ means $X \sqsubseteq Y \sqsubseteq X$.) Thus we need only show

$$
a+s N \cap\langle[f+c, a] \mid b\rangle \neq \phi
$$

But if the above intersection is empty, then $a+s N \sqsubseteq\langle f+$
$c|a\rangle=T$ and so T has an eventual period s by Theorem 4 of [3]. But T has smallest eventual period t, so t divides s, contradicting $s<t$.

In the general case, let $a^{\prime}=a+k d((\sigma(f)-1) b+c)$, where $k \in \boldsymbol{P}$ is chosen so large that $\delta(f)\left((\sigma(f)-1) a^{\prime}+c\right)>s$. Since

$$
s=d \nu(f) \operatorname{gcd}\left((\sigma(f)-1) a^{\prime}+c,(\sigma(f)-1) b+c\right)
$$

the special case above shows $a^{\prime} \equiv a_{1}(\bmod d)$ for some $a_{1} \in\left\langle\left[f+c, a^{\prime}\right] \mid b\right\rangle$. But $a^{\prime} \equiv a_{1}(\bmod d)$.

The innocent Lemma 3 lead to the fundamental Theorem 3 on closed subsets of \boldsymbol{Z}. The following lemma, with analogous hypotheses, will lead to the fundamental Theorem 6 below on closed subsets of $\boldsymbol{Z}_{d}, d \in P$.

Lemma 3. Let $d \in \boldsymbol{P}$, let $a, b \in \boldsymbol{Z}$, let $A \subseteq z$, let f be a prime operator with

$$
f(A)+\{a, b\} \cong A(\bmod d)
$$

Then $A+(a-b) \equiv A(\bmod d)$.
Proof. By Theorem 4, $A-a \equiv f(A) \equiv A-b(\bmod d)$.
Corollary 1. Let $d \in \boldsymbol{P}$, let f be a prime operator, let $A, B \subseteq \boldsymbol{Z}$. If $f(A)+B \subseteq A(\bmod d)$, then $A+\gamma(B) \equiv A(\bmod d)$.

Definition 4. If f is the r-ary affine operator $m_{1} x_{1}+\cdots+$ $m_{r} x_{r}+c$, let

$$
\theta_{1}(f)=\operatorname{gcd}\left(m_{1}, \cdots, m_{r}\right)
$$

and let

$$
\theta_{2}(f)=\operatorname{gcd}\left(m_{i} m_{j} \mid 1 \leqq i<j \leqq r\right)
$$

Lemma 4. Let f be a linear operator, let $A \subseteq \boldsymbol{Z}$. Then $\gamma(f(A))=$ $\theta_{1}(f) \gamma(A)$.

Proof. Certainly $\theta_{1}(f) \gamma(A)$ divides each element of $f(A)-f(A)=$ $f(A-A)$; thus $\theta_{1}(f) \gamma(A)$ divides $\gamma(f(A))$.

For the converse, let f be the operator $m_{1} x_{1}+\cdots+m_{r} x_{r}$; let a, $b \in A$, as we may suppose $A \neq \phi$.

Then, for each $1 \leqq i \leqq r$,

$$
\begin{aligned}
m_{i}(a & -b)=\left(m_{1} a+\cdots+m_{r} a\right) \\
& -\left(m_{1} a+\cdots+m_{i-1} a+m_{i} b+m_{i+1} a+\cdots+m_{r} a\right)
\end{aligned}
$$

so $m_{i}(a-b) \in f(A)-f(A)$. Thus $\gamma(f(A))$ divides each $m_{i}(a-b)$, and
hence divides $\theta_{1}(f)(a-b)$. This holds for all $a, b \in A$, thus $\gamma(f(A))$ divides $\theta_{1}(f) \gamma(A)$.

Theorem 6. Let f be a prime operator, let $A \subseteq Z$, let $d \in P$. If $f(A) \cong A(\bmod d)$, then $A+\theta_{2}(f) \gamma(A) \equiv A(\bmod d)$.

Proof. Let f be the r-ray operator $m_{1} x_{1}+\cdots+x_{r} x_{r}+c$, let $R=[1, r]$. For each $K \subseteq R$, with $K \neq \phi$, define an r-ary, linear prime operator $f_{K}, a|K|(r-1)$-ary linear operator g_{K}, and an integer c_{K} as follows:

$$
\begin{aligned}
& f_{K}\left(x_{1}, \cdots, x_{r}\right)=\sum_{i \in K} m_{i}^{2} x_{i}+\sum_{i \in R \backslash K} m_{i} x_{\imath}, \\
& g_{K}\left(x_{i, j} \mid i \in K, j \in R, i \neq j\right)=\sum_{\substack{i \in K \\
j \in R \\
i \neq j}} m_{i} m_{j} x_{i, j}, \\
& c_{K}=c\left(1+\sum_{i \in K} m_{i}\right) .
\end{aligned}
$$

Thus any set closed under f is closed under the $r+|K|(r-1)$ ary operator $f_{K}+g_{K}+c_{K}$, so $A \subseteq\left\langle f_{K}+g_{K}(A)+c_{K} \mid A\right\rangle \subseteq\langle f+c \mid A\rangle$. By Lemmas 3 and 4, and by Theorem 2 of [1], (we may assume the hypotheses there apply), $A+\theta_{1}\left(g_{K}\right) \gamma(A) \equiv A(\bmod d)$. As this holds for all $K \neq \phi$, the theorem is proved, since $\operatorname{gcd}\left(\theta_{1}\left(g_{K}\right) \mid \phi \neq K \subseteq R\right)=\theta_{2}(f)$.

By virtue of the above theorem, and Theorem 1 of [1], the calculation of $\langle f \mid A\rangle(\bmod d)$, where f is a prime operator, and $d \in \boldsymbol{P}$ can be reduced to the special case $d=\theta_{2}(f)$. We are thus lead to considering sets closed $\left(\bmod \theta_{2}(f)\right)$; before we do so, we briefly investigate unary operators in the residue class rings.

Let $m, M \in Z$, with $\operatorname{gcd}(m, M)=1$.
Definition 5. For each $a \in N$ let $m^{[a]}=\sum_{j=0}^{a-1} m^{j}$. Thus $m^{[0]}=0$, and $m^{[1]}=1$.

Lemma 5. Let $a, b \in N$. Then
(i) $\quad m^{a}=(m-1) m^{[a]}+1$.
(ii) $\quad m^{[a]}=\left\{\begin{array}{cc}a & \text { if } m=1 \\ \frac{m^{a}-1}{m-1} & \text { if } m \neq 1 .\end{array}\right.$
(iii) $m^{[a+b]}=m^{a} m^{[b]}+m^{[a]}$.
(iv) $m^{[a b]}=\left(m^{b}\right)^{[a]} m^{[b]}$.

Lemma 6. There is a unique $t \in N$ such that for all $a, b \in N$, $m^{[a]} \equiv m^{[b]}(\bmod M)$ if and only if $a \equiv b(\bmod t)$. In fact,

$$
t=\left\{\begin{array}{cl}
0 & \text { if } M=0, m=1 \\
2 & \text { if } M=0, m=-1 \\
\frac{s|M|}{\operatorname{gcd}\left(M, m^{[s]}\right)} & \text { if } M \neq 0,
\end{array}\right.
$$

where s is the order of m modulo M. Thus s divides t; and $t=0$ if and only if $M=0, m=1$. Also, if $t \neq 0, m^{[t-1]} \equiv-m^{s-1}(\bmod M)$.

Proof. We can assume $M \neq 0$. Let $a, b \in N$, with $a \leqq b$; let $t=s|M| / \operatorname{gcd}\left(M, m^{[s]}\right)$. Then $m^{[b]}-m^{[a]}=m^{a} m^{[b-a]}$, so $m^{[a]} \equiv m^{[b]}(\bmod M)$ if and only if $m^{[b-a]} \equiv 0(\bmod M)$.

If $m^{[b-a]} \equiv 0(\bmod M)$, then $m^{b-a} \equiv(m-1) m^{[b-a]}+1 \equiv 1(\bmod M)$, so $b-a=k s$ for some $k \in N$. Then

$$
0 \equiv m^{[b-a]} \equiv m^{[k s]} \equiv\left(m^{s}\right)^{[k]} m^{[s]} \equiv k m^{[s]}(\bmod M)
$$

so $k \equiv 0\left(\bmod M / \operatorname{gcd}\left(M, m^{[s]}\right)\right)$, so $a \equiv b(\bmod t)$.
Conversely, if $b-a=k t$ for some $k \in N$, then

$$
\begin{aligned}
m^{[b-a]} & =m^{[k t]}=m^{\left[s k|M| / \operatorname{ged}\left(M, m^{[s]}\right]\right]}=\left(m^{s}\right)^{[k|M| / \operatorname{ged}(M, m \mid s]]]} m^{[s]} \\
& =k|M| \frac{m^{[s]}}{\operatorname{gcd}\left(M, m^{[s]}\right)} \equiv 0(\bmod M) .
\end{aligned}
$$

Finally, $m \cdot m^{[t-1]}+1 \equiv 0(\bmod M)$, thus $m^{[t-1]} \equiv-m^{s-1}(\bmod M)$, since the $\operatorname{map} x \rightarrow m x+1$ is a bijection on Z_{M}.

Let $T=\left\{m^{[n]} \mid 0 \leqq n<t\right\}$.
Lemma 7. T contains t elements, all distinct modulo M. For each $a \in N, m^{a} T \equiv T-m^{[a]}(\bmod M)$.

Proof. The first statement is a direct consequence of Lemma 6. Also, $m^{a} T=\left\{m^{a} m^{[n]} \mid 0 \leqq n<t\right\}=\left\{m^{[n+a]} \mid 0 \leqq n<t\right\}-m^{[a]} \equiv T-m^{[a]}$ (modulo M) by Lemma 6.

Theorem 7. $\quad T \equiv\langle m x+1 \mid 0\rangle(\bmod M)$.
Proof. By Lemma $7, m T+1 \equiv T(\bmod M)$, so T is closed under $m x+1,(\bmod M)$. A simple induction on n shows $m^{[n]} \in\langle m x+1 \mid 0\rangle$ for each $0 \leqq n<t$.

Corollary 2. For each $a, c \in \boldsymbol{Z}$,

$$
\langle m x+c \mid a\rangle \equiv((m-1) a+c) T+a(\bmod M) .
$$

Proof. $\langle m x+c \mid a\rangle=((m-1) a+c)\langle m x+1 \mid 0\rangle+a$.

Corollary 3. For each $c \in \boldsymbol{Z}$, and $A \subseteq \boldsymbol{Z}$,

$$
\langle m x+c \mid A\rangle \equiv \bigcup_{a \in A}[((m-1) a+c) T+a](\bmod M)
$$

Proof. If f is any unary operator, $\langle f \mid A\rangle=\bigcup_{a \in A}\langle f \mid a\rangle$.
We now turn our attention to r-ary operators on \boldsymbol{Z}_{d}.
Let $r \in N+2$, let $R=[1, r]$. Let $m_{1}, \cdots, m_{r} \in \boldsymbol{Z} \backslash\{0\}$, with $\operatorname{gcd}\left(m_{1}, \cdots, m_{r}\right)=1$. Let f be the operator $m_{1} x_{1}+\cdots+m_{r} x_{r}$, let $\theta=\theta_{2}(f)$. For each $i \in R$, let

$$
M_{i}=\operatorname{gcd}\left\{m_{j} \mid j \in R, j \neq i\right\}
$$

The proof of the following lemma is straightforward.
Lemma 8. For each $i \in R, \operatorname{gcd}\left(m_{i}, M_{i}\right)=1$, and $\theta=\operatorname{gcd}\left(\theta, m_{i}\right) M_{i}$. For each $i, j \in R$, with $i \neq j, M_{i}$ divides m_{j}, but $\operatorname{gcd}\left(M_{i}, M_{j}\right)=1$. Finally, θ is the product of the $M_{i}^{\prime} s$.

For each $i \in R$, let s_{i} be the order of m_{i} modulo M_{i}, let $t_{i}=$ $s_{i} M_{i} / \operatorname{gcd}\left(M_{i}, m_{i}^{[s]}\right)$.

Lemma 9. Let $x, k_{1}, \cdots, k_{r} \in \boldsymbol{Z}$, let $a_{1}, \cdots, a_{r} \in \boldsymbol{P}$. Then $k_{1} m_{1}^{a_{1}}+$ $\cdots+k_{r} m_{r}^{a_{r}} \equiv x(\bmod \theta)$ if and only if, for all $i \in R, k_{i} \equiv x m^{a_{i}\left(s_{i}-1\right)}(\bmod$ $\left.M_{i}\right)$.

Proof. This is a chain of equivalent statements:

$$
\begin{aligned}
& k_{1} m_{1}^{a_{1}}+\cdots+k_{r} m_{r}^{a_{r}} \equiv x(\bmod \theta) \\
& k_{1} m_{1}^{a_{1}}+\cdots+k_{r} m_{r}^{a_{r}} \equiv x\left(\bmod M_{i}\right) \quad \text { for all } i \in R \\
& k_{\imath} m_{i}^{a_{i}} \equiv x\left(\bmod M_{i}\right) \quad \text { for all } i \in R \\
& \quad k_{i} \equiv x m_{i}^{\left.a_{i} s_{i}-1\right)}\left(\bmod M_{i}\right) \quad \text { for all } i \in R .
\end{aligned}
$$

Corollary 4. Let $k_{1}, \cdots, k_{r} \in \boldsymbol{Z}$, let $a_{1}, \cdots, a_{r} \in \boldsymbol{P}$. Then $k_{1} m_{1}^{a_{1}}+$ $\cdots+k_{r} m_{r}^{a_{r}} \equiv 0(\bmod \theta)$ if and only if $k_{i}=0\left(\bmod M_{i}\right)$ for all $i \in R$.

Corollary 5. $\quad m_{1}^{s_{1}}+\cdots+m_{r}^{s_{r}} \equiv 1(\bmod \theta)$.

Corollary 6. Let $a_{1}, \cdots, a_{r}, b_{1}, \cdots, b_{r} \in N$. Then $m_{1} m_{1}^{\left[a_{1}\right]}+\cdots+$ $m_{r} m_{r}^{\left[a_{r}\right]} \equiv m_{1} m_{1}^{\left[b_{1}\right]}+\cdots+m_{r} m_{r}^{\left[b_{r}\right]} \equiv(\bmod \theta)$ if and only if $a_{i} \equiv b_{i}$ $\left(\bmod t_{i}\right)$ for each $i \in R$.

Proof. Note that $m_{1} m_{1}^{\left[a_{1}\right]}+\cdots+m_{r} m_{r}^{\left[a_{r}\right]} \equiv m_{1} m_{1}^{\left[b_{1}\right]}+\cdots+m_{r} m_{r}^{\left[b_{r}\right]}$
$(\bmod \theta)$ if and only if $m_{i}^{\left[\left|b_{i}-a_{i}\right|\right]} \equiv 0\left(\bmod M_{i}\right)$ for each $i \in R$, and the rest follows from Lemma 6.

For each $i \in R$, let $T_{i}=\left\{m_{i}^{[n]} \mid 0 \leqq n<t_{i}\right\}$. Let $T=m_{1} T_{1}+\cdots+$ $m_{r} T_{r}+1$. Note that T contains $\Pi_{i \in R} t_{i}$ elements, all distinct modulo θ.

Theorem 8. $\quad T \equiv\langle f+1 \mid 0\rangle(\bmod \theta)$.
Proof. By Theorem 4,

$$
\langle f+1 \mid 0\rangle \equiv m_{1}\langle f+1 \mid 0\rangle+\cdots+m_{r}\langle f+1 \mid 0\rangle+1(\bmod \theta) .
$$

But for each $i \in R$,

$$
m_{\imath}\langle f+1 \mid 0\rangle \equiv m_{i}\left\langle m_{i} x+1 \mid 0\right\rangle \equiv m_{i} T(\bmod \theta)
$$

Corollary 7. Let $a, c \in \boldsymbol{Z}$. Then, modulo θ,

$$
\begin{aligned}
\langle f+c \mid a\rangle & \equiv((\sigma(f)-1) a+c) T+a \\
& \equiv c+\sum_{i \in R}\left[\left(\left(m_{i}-1\right) a+c\right) T_{i}+a\right]
\end{aligned}
$$

Theorem 9. Let $c \in \boldsymbol{Z}$, let $A \subseteq \boldsymbol{Z}$. Then

$$
\langle f+c \mid A\rangle \equiv c+\sum_{i \in R} m_{i} \bigcup_{a \in A}\left[\left(\left(m_{i}-1\right) a+c\right) T_{i}+a\right](\bmod \theta) .
$$

Proof. This is a consequence of Corollary 3.
This concludes our investigation of sets of residue classes closed under a prime operator. We now apply these results to closed sets of integers.

Definition 6. A set $A \subseteq \boldsymbol{Z}$ is doubly periodic, with a double period $d \in \boldsymbol{P}$ if A is a union of residue classes modulo d. The following analogue of Theorem 2 of [1] is proved in an analogous fashion:

Theorem 10. Let f be a prime operator, let A be a doubly periodic set with double period d. Then $\langle f \mid A\rangle$ has double period d.

Theorem 11. Let A and B nonempty periodic sets with eventual period d, let f be a positive, prime operator. Then $T=\langle f \mid A \cup(-B)\rangle$ is a doubly periodic set with double period d.

Proof. We may assume $f \in P$. Further we may assume $A, B \subseteq$ \boldsymbol{P}; for if that special base be true, it can be applied, for general A,
B, to the set $T^{\prime}=\langle f \mid(A \cap \boldsymbol{P}) \cup(-(B \cap \boldsymbol{P}))\rangle$, thus $A, B \subseteq T^{\prime}$, so $T=T^{\prime}$.

Let $D=\left\{t \in \boldsymbol{Z}_{d} \mid t \cap T \neq \phi\right\}$,
let $D^{+}=\left\{t \in \boldsymbol{Z}_{d} \mid t \cap \boldsymbol{P} \stackrel{\underline{\underline{~}}}{ } T\right\}$,
let $D^{-}=\left\{t \in \boldsymbol{Z}_{d} \mid t \cap(-\boldsymbol{P}) \stackrel{\cong}{\cong} T\right.$,
let $D^{0}=\left\{t \in Z_{d} \mid t \subseteq T\right\}$.
Thus $D^{0} \cong D^{+} \cap D^{-}$, and $D=D^{+} \cup D^{-}$. Moreover, if T is closed under any positive operator h, then D, D^{+}, D^{-}and D^{0} are all closed under h. In particular, $f\left(D^{+} \cap D^{-}\right) \subseteq D^{0}$, thus $D^{+} \cap D^{-}=f\left(D^{+} \cap D^{-}\right) \subseteq D^{0} \subseteq$ $D^{+} \cap D^{-}$, so $D^{0}=D^{+} \cap D^{-}$. By hypothesis, $D^{+} \neq \phi \neq D^{-}$; let $s \in D^{+}$, let $t \in D^{-}$. Note that $\langle[f, s] \mid t\rangle \cong D^{-}(\bmod d)$. But $\langle[f, s] \mid t\rangle \equiv\langle f \mid s, t\rangle$ $(\bmod d)$ by Theorem 5, thus $s \in D^{-}$, and $D^{+} \cong D^{-}$. Similarly, $D^{-} \subseteq$ D^{+}, thus $D=D^{0}=D^{+}=D^{-}$.

Theorem 12. Let $f \in P$, let $c \in \boldsymbol{Z}$, let $A \subseteq \boldsymbol{Z}$, with $((\sigma(f)-1) A+c)$ $\cap \boldsymbol{P} \neq \dot{\phi} \neq((\sigma(f)-1) A+c) \cap(-\boldsymbol{P})$. Then $T=\langle f+c \mid A\rangle$ is a doubly periodic set.

Proof. We may assume $c=0$. Since both $T \cap P$ and $(-T) \cap N$ are nonempty periodic sets, $T=\langle f \mid(T \cap \boldsymbol{P}) \cup(T \cap(-N))\rangle$ is a doubly periodic set by Theorem 11.

Corollary 8. Let $f \in \mathscr{C}$, let $c \in \boldsymbol{Z}$, let $A \subseteq \boldsymbol{Z}$, with $((\sigma(f)-1) A+$ $c) \nsubseteq\{0\}$. Then $T=\langle f+c \mid A\rangle$ is a doubly periodic set.

Proof. By Lemma 2, T is a closed under a positive, prime operator g. Clearly, T is neither bounded below, nor bounded above; thus $T=\langle g \mid T\rangle$ is doubly periodic by Theorem 12.

Definition 7. Let $A \subset \boldsymbol{Z}$, let $d \in \boldsymbol{P}$. We say that A is a regular set, with regular period d, if either

Type 1. A is a periodic set with eventual period d, or
Type 2. $-A$ is a set of type 1 , or
Type 3. A is a doubly periodic set with double period d.

Theorem 13. Let $T \subseteq Z$, let f be a prime operator, with $f(T) \subseteq$ T. Then either $|T| \leqq 1$, or T is a regular set with regular period $\theta_{2}(f) \gamma(T)$.

Proof. If $|T|>1$, then T is a regular set by Theorem 2, Theorem 12, or Corollary 8. By Theorem 6, T has a regular period $\theta_{2}(f) \gamma(T)$.

With Theorem 13, we have achieved goal (2).

Now let f be the prime operator $f\left(x_{1}, \cdots, x_{r}\right)=m_{1} x_{1}+\cdots+m_{r} x_{r}+$ c, and let $A \subseteq \boldsymbol{Z}$. How can we calculate $\langle f \mid A\rangle=T$?

Fisrt, let the reader show that for any $a \in A, \gamma(T)=\operatorname{gcd}(A-f(\alpha))$. Hence we may use Theorem 1 of [1] to reduce to the case $\gamma(T)=1$; we simply replace T by $1 / \gamma(T)(T-a) \subseteq Z$. (Note $\gamma(T)=0$ if and only if $((\sigma(f)-1) A+c) \leqq\{0\}$, if and only if $|T| \leqq 1$; in this case $T=A$. Thus we assume $\gamma(G) \neq 0$.) By Theorem $13, T$ has a regular period $\theta=\theta_{2}(f)$. The next step is to calculate the set $T_{\theta}=$ $\left\{t \in \boldsymbol{Z}_{\theta} \mid t \cap T \neq \phi\right\}$; this finite calculation can be readily carried out with the aid of Theorem 9.

The type of T can be found as follows. If f is not positive, T is of type 3. If f is positive, then, $\sigma(f)>1$; let $\alpha=c / 1-\sigma(f)$, let $J=\{u \in A \mid u<\alpha\}$, let $K=\{u \in A \mid u>\alpha\}$. If $J \neq \phi \neq K$, then f is again of type 3. If $J=\phi, f$ is of type 1 , and if $K=\phi, f$ is of type 2.

If T is of type 3 , our troubles are over, as $T=\bigcup_{t \in T_{\theta}} t$. If T is not of type 3 , we may assume, (by replacing T with $-T$ if necessary), that T is of type 1 . In this case, let

$$
S=\left\{u \in Z \mid u>\alpha, u \in t \text { for some } t \in T_{\theta}\right\} \cup\left\{\begin{array}{cc}
\{\alpha\} & \text { if } \alpha \in A \\
\dot{\phi} & \text { if } \alpha \notin A
\end{array},\right.
$$

then clearly S is a periodic set with $A \cup f(s) \subseteq S$, and $T \subseteq S \subset T$. Thus S is only a "little bit too big"; for many applications, this is sufficient information.

We have a method for producing T from S, details will appear elsewhere.

References

1. D. G. Hoffman and D. A. Klarner, Sets of integers closed under affine operatorsthe closure of finite sets, to appear.
2. D. G. Hoffman, Sets of integers closed under affine operators, Ph. D. thesis, University of Waterloo, 1976.
3. D. A. Klarner and R. Rado, Arithmetic properties of certain recursively defined sets, Pacific J. Math., 53 (1974), 445-463.
4. D. A. Klarner, Sets generated by interation of a linear operation, Starr-CS-72275, Computer Science Department, Stanford University, March 1972.

Received October 12, 1977 and in revised form November 1, 1978.

Auburn University

Auburn, AL 36830
AND
Suny
Binghamton, NY 13901

