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SETS OF INTEGERS CLOSED UNDER AFFINE
OPERATORS-THE FINITE BASIS THEOREMS

D. G. HOFFMAN AND D. A. KLARNER

This paper is a continuation of investigations of sets T of
integers closed under operations / of the form f(xlf , xr)=
miXx + + mrxr -f c, where r, mlf , mr, c are integers
satisfying r Ξ> 2, 0 0 {mlf , mr}, and gcd(mlf , mr) = 1. We
have two goals here:

(1) to prove that T=</1 A> for some finite set A, where
</1 A> denotes the "smallest" set containing A and closed
under /, and

(2) to show that unless | T | = 1, T is a finite union of
infinite arithmetic progressions, either all bounded below,
or all bounded above, or all doubly infinite.

We shall lean heavily on the notation, definitions, and results of

[1].

DEFINITION 1. Let r e P. An r-ary affine operator / on Z is an
operator of the form

f(xlf , xr) = m.x, + + mrxr + c ,

w h e r e mίf •••, m r e Z \ { 0 } , a n d ceZ. L e t σ(f) = m1 + ••• + mr9 l e t

We call / a positive operator if each mteP, a prime operator
if r ^ 2 and gcd(m2, mr) = 1, and a linear operator if c = 0. De-
note by ^ the set of all positive, prime, linear operators, and by
3ίf the set of all prime linear operators that are not positive. For
e a c h / 6 ^ , < / + l | 0 > is a periodic set by Theorem 12 of [1]; let
δ(f) be its smallest eventual period.

LEMMA 1. Letfe^*, let a, s, teZ, with (σ(f) — l)a + seN, and
{σ{f) — l)a + te P. Then T = </ + {s, t) \ a) has an eventual period
δ(/)gcd(t - s, (*(/)-l)α + t) = δ(/)gcd((σ(/)-l)α + s, (σ(/)-l)α + t).

Proof. Define a sequence ( Γ J ^ e P ) of subsets of Z as follows:
let 2\ = </+ ί|α>, and for fceP, let Γ2fc = </+ s\T2k_xy and Γ2fc+1 =
</+ί |T 2 f c >. Then certainly each Tn has an eventual period
d(f)((σ(f)-l)a + t), and further T = U^eP 2V Thus T has an eventual
period δ(f)((σ(f)-l)a + ί). If (σ(/)-l)α + s = 0, we are done. Other-
wise, we may interchange the roles of s and t in the argument above
to conclude that T also has an eventual period of δ(f)((σ(f) — ΐ)a + s).

135



136 D. G. HOFFMAN AND D. A. KLARNER

THEOREM 1. Let f e ^ . Then there exists veP such that for

all aeN, b e P, T — (f\a,b) has an eventual period ^ gcd(α, 6).

Proof. We may assume gcd(α, b) = 1. If f(xί9 , xr) = mγxγ +
• + mrxr, then T is closed under the two operators g + k{a, b},
where g(xu •••,&,.) = m\xx + m2x2 + + mrxr, and k = m1(m2 +
• + mr). Let v = δ(g)k(σ(g) - 1 + fc). By Lemma 1, the set Γα =
<flf + fc{α, 6} 1 α> has an eventual period δ(g)gcά(k(b — α), (cτ(gr) — 1 + fc)α),
which divides v. Similarly, Tb — (g + k{a, b} \ b) has an eventual
period v, thus T = (f\Ta\J Tb) does also.

DEFINITION 2. For e a c h / 6 ^ , we denote by v(/) the smallest
positive integer such that for all a e N, b e P, </| α, δ> has an eventual
period v(f)(σ(f) - l)gcd(α, b).

Theorem 12 of [1] considered sets </+c|A>, where (σ(f)-ΐ)A +
c £ P. We remark that Theorem 1 above can be used to extend
Theorem 12 of [1] to the case {0} Φ (σ(f)-l)A + cQN.

THEOREM 2. Letfe^*, let ceZ, let A^Z, with {0}Φ(σ(f)-l)A +
cQN. Then (f + c| A} is a periodic set with an eventual period

Proof. By Theorem 1 of [1], we may assume c — 0. Let
a e A Π P. For each b e JV, T6 = </1 α, b) has an eventual period
v(f)(σ(f) — l)gcd(α, 6), thus Γ = \JbeA Th has an eventual period
v(f)(σ(f)-l)a, and so does </ + c | A) = </ + c | Γ>.

LEMMA 2. Lβί f be a prime operator, Z#£ £ e Z. Tfeê  ίΛerβ is
α positive, prime operator g such that for any TQZ with teT, if
T is closed under f, then T is closed under g.

Proof. If / is the operator m^ + + mrxr + c, then let g =
mix, + + m\xr + 2ί Σi<j ™ Λ + (σ(f) + ΐ)c.

THEOREM 3. Let AξZZ, let f be a prime operator. Then
(f\A) = (f\B) for some finite subset BζZA.

Proof. Let t e A, produce g as in Lemma 2. Let a = g(0)/(l — σ(
let P = {n e Z \ n ^ a}. By Theorem 12 of [1], and its extension noted
above, there are finite sets Bx and B2 such that </1 A) Π P - (g \ Bx)
and ( - < / | A » n P = < < / | 5 2 > . But then </| A) = (g | B, U (-52)>,
and clearly </| J5X U (-5 2) U {t}) = </| A>. Finally, we need only
choose a finite JS£ A so that £ x U (-J52) U {t} £ </| J5>.
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With Theorem 3, we have achieved goal (1).
We now turn our attention to sets of residue classes in the ring

Zd. We make the convention that any integer divides 0; hence a =
b (mod 0) if and only if a = b, and gcd^ = gcd{0} = 0. Further, if
deN, and A, BQZ, define AQB (modd) if for all α e i , there is
some b e B with a = b (mod d), and A = B (mod d) if A £ B £ A (mod d).
Finally, define Ί{A) = gcd(A — A); and if C is a set of residue classes,
define 7(C) = 7(UteCA).

The following theorem is essentially Theorem 10 of [1].

THEOREM 4. Let de P, let fbe a prime operator, let AQZ with
f(A) £ A(mod d). Then f(A) Ξ A (mod d).

DEFINITION 3. Let R be a family of finitary operators on a set
X, let A £ X. We denote by [R, A] the following family of operators:
let feR be an r-ary operator, let K, L be a partition of [1, r] with
K Φ φ, let τ: L ~> (R\A); define a | iΓ|-ary operator g on X as follows:

g ( x t \ i e K ) = f ( y 1 9 •••, y r ) ,

where

, if i e K
Vι (τ(i) if i e L .

Let [R, A] be the set of all such operators g. Thus T = <[i2, A]
is the smallest set containing B, and with the property that if / is
an r-ary operator in R, and xlf x2, , xr e (R \ A) U T, and at least
one x, e T, then f(xlf , xr) e T. In particular, (R\A) U ([R, A]\B) =

THEOREM 5. Let fe^U <%* let ceZ, let deP, let A, BQZ.

Then, if B -φ φ,

<[/ + c, A] I B> = </ + c I A U J5> (mod d) .

Proof. We need only show, for all a, beZ, that a == αx (mod d)
for some a xe <[/ + c, a] \ 6). We may further assume / G ^ , and
(σ(f) - l)α + c, (<7(/)-l)δ + c e P . Let s = dv(f)gcd((σ(f) - l)α + c,
(σ(f) -1)6 + c), let ί = δ(/)((σ(/) - l)α + c), and suppose first s < ί.
By Theorem 2, α + siVgΞ </+ c | α, δ>. (Recall that for sets X and
Y, X% Y means X\Y is finite, and X = Γmeans X ^ Γ ^ X.) Thus
we need only show

a + sNΓ\([f+ c,a]\b) Φ φ .

But if the above intersection is empty, then a + sNξk(f +
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c\a)= T and so T has an eventual period s by Theorem 4 of [3]. But
T has smallest eventual period t, so t divides s, contradicting s < t.

In the general case, let a' = a + kd((σ(f) — ϊ)b + c), where i e P
is chosen so large that δ(f)((σ(f) — ϊ)a' + c) > s. Since

a - dv(f)gcά((σ(f)-l)a' + c, (σ(f)-l)b + e) ,

the special case above shows α' = αL (mod d) for some α̂  6 <[/+ c, α'] | 6).
But α' = ̂ (mod d).

The innocent Lemma 3 lead to the fundamental Theorem 3 on
closed subsets of Z. The following lemma, with analogous hypotheses,
will lead to the fundamental Theorem 6 below on closed subsets of
Zd, deP.

LEMMA 3. Let de P, let a,beZ, let AQ z, let f be a prime
operator with

f(A) + {a,b}QA(modd) .

Then A + (a - 6) Ξ A (mod d).

Proof. By Theorem 4, A - a = f(A) = A -b (mod d).

COROLLARY 1. Let de P, let f be a prime operator, let A, BQZ.
If f(A) + BQA (mod d), then A + 7(5) Ξ A (mod d).

DEFINITION 4. If / is the r-ary aίϊine operator mγxγ + +
mrxr + c, let

#i(/) = gcd(mlf •• , m r ) ,

and let

# 2(/) = gccKm,™,-11 <; i < j ^ r ) .

LEMMA 4. Lei f be a linear operator, let AξZZ. Then i(f(A))~

Proof. Certainly #X(/)7(A) divides each element of f{A) - f{A) =
f(A - A); thus ^(/)7(A) divides 7(/(A)).

For the converse, let / be the operator m ^ + + mrxr; let α,
6 6 A, as we may suppose AΦ φ.

Then, for each 1 ̂  ΐ ^ r,

m€(a — 6) = (mxα + + mrα)

— (m^ + + m^a + mfi + mi+1a + + mra) ,

so m,{a - b) e /(A) -/(A). Thus 7(/(A)) divides each m,(α - 6), and
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hence divides ^(/)(α - 6). This holds for all α, be A, thus 7(/(A))
divides

THEOREM 6. Let f be a prime operator, let Ag=Z, let de P. If
f{A) S A (mod d), then A + ΘJJ)Ί(A) = A (mod d).

Proof. Let / be the r-ray operator m ^ + + xrxr + cf let
R = [1, r] . For each KQR, with K Φ φ, define an r-ary, linear
prime operator fK9 a\K\ (r — l)-ary linear operator gκ, and an integer
cκ as follows:

fκ(xί9 , xr) = Σ wfo + Σ ™A ,
ie.fi: i e i?\ϋ:

^(Xi.i I ί 6 if, i 6 R, i Φ j) = Σ mim&ij ,

cκ = c(l + Σ ^ i )
ϊeϋΓ

Thus any set closed under / is closed under the r + | K \ (r — 1)-
ary operator /* + #* + c^, so A £ (fκ + ^(A) + c x | A) £ </ + c \ A).
By Lemmas 3 and 4, and by Theorem 2 of [1], (we may assume the
hypotheses there apply), A + θ1(gκ)y(A) = A (mod d). As this holds for
all K Φ φ, the theorem is proved, since gcd(^(^) | φ Φ KQ R) = ^2(/)

By virtue of the above theorem, and Theorem 1 of [1], the
calculation of </| A) (modd), where / is a prime operator, and de P
can be reduced to the special case d = #2(/) We are thus lead to
considering sets closed (mod#2(/)); before we do so, we briefly in-
vestigate unary operators in the residue class rings.

Let m, MeZ, with gcd(m, M) — 1.

DEFINITION 5. For each a e iV let mw = Σ;=d m\ Thus m[01 = 0,
and m[1] = 1.

LEMMA 5. Let a,beN. Then
( i ) ma = (m - l)m [ α ] + 1.

a
( i i ) m [ α ] =
1 j ^ ~ x ifmΦl.m — 1
(iii) m [ α + δ ] = mam^ + m [ α J.
(iv) m [ α δ ] = (m6)[α]m[&].

L E M M A 6. There is a unique teN such that for all α, b eN,

m [ α ] = m m (mod M) if and only if a = b (mod ί) . In fact,
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0 if M = 0, m = 1

t _ 2 i/ M = 0, m = - 1

gcd(Af, m w )

where s is the order of m modulo M. Thus s divides t; and t = 0
if and only if M = 0, m = 1. Aίso, iftΦO, mCί~1] == - m 8 ' 1 (mod Af).

Proof. We can assume Af Φ 0. Let α, 6 6 iSΓ, with α <̂  b; let
ί = s |Af|/gcd(Af, m [ s ]). Then m m - m [ α ] = mam[b~a\ so m [ α ] = m[δJ (modM)
if and only if m[6~α] =Ξ 0 (mod Af).

If m[&-α] = 0 (mod Af), then mb~a = (m - l)mίb~a^ + 1 = 1 (mod Af),
so b — a = fes for some keN. Then

0 = mίb-a] = m[ fcs] Ξ= (ms)Lfc]m[s] == &m[s] (mod Af) ,

so k = 0 (mod ikf/gcd(ilί, mΓs])), so α == 6 (mod t).
Conversely, if b — α = ftί for some keN, then

gcd(Af, m [ s ])

Finally, m mιt-ι] + 1 = O(modΛf), thus m [ ί" 1 ] = - m8"1 (mod Af),
since the map cc —> mx + 1 is a Injection on Z^.

Let T = {mw I 0 ^ n < ί}.

LEMMA 7. Γ contains t elements, all distinct modulo M. For
each aeN, maT = Γ - m [ α ] (mod Af).

Proof. The first statement is a direct consequence of Lemma 6.
Also, maT = {mαraw | 0 ̂  ^ < «} = {m[w+αJ \0^n <t} - m [ α ] == Γ - mw

(modulo Af) by Lemma 6.

THEOREM 7. T = (mx + 11 0> (mod Af).

Proof. By Lemma 7, mT + 1 == T (mod Af), so T is closed under
mx + 1, (mod Af). A simple induction on n shows m[n] e (mx + 11 0)
for each 0 <£ n < t.

COROLLARY 2. For each a, ceZ,

(mx + c I α> = ((m - ΐ)a + c)T + a (mod Af) .

Proof, (mx + c | α> = ((m — l)α + c)(mx + 1
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COROLLARY 3. For each ceZ, and AζZZ,

(mx + c I A) = U [((m - ΐ)a + c)T + α] (mod Λf) .

Proo/. If / is any unary operator, (f\ A) = \JaeA(f\a).

We now turn our attention to r-ary operators on Zd.
Let r 6 N + 2, let i2 = [1, r ] . Let mlf , mr e Z\{0}, with

gcd(mx, •••, mr) = 1. Let / be the operator m ^ + . . . + mrxr, let
0 = Θ2{f). For each ίei2, let

Mi = gcd{m, I i 6 R, j Φ i) .

The proof of the following lemma is straightforward.

LEMMA 8. For each ieR, gcd(m^ M%) = 1, and θ = gcd(^, m^Mi.
For each i, j e iϋ, ii ίίΛ i Φ j , Mt divides mh but gcd(Mif M/) = 1.
Finally, θ is the product of the Mis.

For each i e R, let st be the order of mt modulo Mi9 let ti =

LEMMA 9. Let x,ku , fcr 6 Z, let a17 , ar e P.

• + &rm;r Ξ x (mod 0) ί/ α^d only if, for all ie R, ki = χmaiiSi~1} (mod
Mt).

Proof. This is a chain of equivalent statements:

k{mlι + + krmrr Ξ x (mod 0)

Λ̂ m?1 + + krm
a

rr = x (mod Λf<) for all i e R

kxm%i Ξ= x (mod Λf<) for all i e R

kt = xmϊ*8*-" (mod M%) for all i e R .

COROLLARY 4. Lei fcx, --,kreZ, let a19 , ar e P. Then kxm
a^ +

• + krmV Ξ 0 (mod θ) if and only if kt = 0 (mod M%) for all ieR.

COROLLARY 5. mss + + m8/ = 1 (mod θ).

COROLLARY 6. Let aί9 , ar, bly , br e N. Then m^mY^ -\ h
mrm\a^ = m^mΫ^ + + mrm^^ = (mod θ) if and only if aύ = δ̂
(mod ίt) for each ieR.

Proof. Note that mjKi^ + + mrm^^ = mimp13 + + m ^ ί ^1
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(mod#) if and only if m^~α* l] = 0(modikQ for each ieR, and the
rest follows from Lemma 6.

For each i e R, let Tt = [m^ | 0 ̂  n < ί j . Let T = mxTx + +
mrTr + 1. Note that T contains ILe^ί* elements, all distinct
modulo Θ.

THEOREM 8. T = </ + 11 0> (mod θ).

Proof. By Theorem 4,

</ + 11 0> = m,{f + 11 0> + + mr</ + 11 0> + 1 (mod θ) .

But for each ieR,

mt(f + 1 I 0> = m^m.x + 11 0> = m.T (mod θ) .

COROLLARY 7. Let a, ceZ. Then, modulo θ,

(f+c\a) = {{σ{f)-l)a + c)T + a
i ~ l)α + e)Tt + α] .

THEOREM 9. Let ceZ, let AQZ. Then

</ + c I A) = c + Σ ^ U [ ( ( ^ - 1> + c)Γ€ + a] (mod ί) .
ΐ e i 2 aeA

Proof. This is a consequence of Corollary 3.

This concludes our investigation of sets of residue classes closed
under a prime operator. We now apply these results to closed sets
of integers.

DEFINITION 6. A set 4 £ Z is doubly periodic, with a double
period d e P if A is a union of residue classes modulo d. The following
analogue of Theorem 2 of [1] is proved in an analogous fashion:

THEOREM 10. Let f be a prime operator, let A be a doubly
periodic set with double period d. Then </| A) has double period d.

THEOREM 11. Let A and B nonempty periodic sets with eventual
period d, let f be a positive, prime operator. Then T=(f\ i U ( - 5 ) )
is a doubly periodic set with double period d.

Proof. We may assume feP. Further we may assumed, β £
P; for if that special base be true, it can be applied, for general A,
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B, to the set Γ = (/|(AnP)U(-(BnP))), thus A, BQT, so
Γ= r.

Let Z> = { t e Z d | t Π T φ φ},
let D+ = { ί e Z r f | ί Π P ^ T } ,
let D- = { t e Z d | t n ( - P ) f i T } ,
let Z>° - {ίeZ, | ί £ Γ } .

Thus D°QD+ Π D~, and D = D+ U D~. Moreover, if ϊ7 is closed under
any positive operator h, then D, D+, D~ and D° are all closed under
h. In particular, /(D+ Π D~) £D°, thus D+ Π -D" = /(D+ Π -D") S ΰ ° £
Z>+ n JO", so D° = JD+ n D~. By hypothesis, D+ Φ φ Φ D~; let s e D+,
let teD~. Note that <[/, s]\t}Q D~ (mod d). But <[/, s] \ t) = </1 s, ί>
(modd) by Theorem 5, thus seD~, and D+ζZD~. Similarly, D~£
D+, thus D = D° = D+ = D~.

THEOREM 12. Let feP,letce Z, let AQZ, with ((σ(/)-l)A + c)
^PΦφΦ ((σ(f)-±)A + c) (Ί ( - P ) . Tfeew Γ = </ + c | A> is a doubly
periodic set.

Proof. We may assume c = 0. Since both Γ f l P and (— T) Π JV
are nonempty periodic sets, T = (f\(T Π P) Ό (T Π (-N))) is a doubly
periodic set by Theorem 11.

COROLLARY 8. Let fejsέ% let ceZ, let AςzZ, with ((σ(f) — l)A +
c) §£ {0}. Then T — </ + c | A) is a doubly periodic set.

Proof. By Lemma 2, T is a closed under a positive, prime
operator g. Clearly, T is neither bounded below, nor bounded above;
thus T = (g\T) is doubly periodic by Theorem 12.

DEFINITION 7. Let AaZ, let d e P. We say that A is a regular
set, with regular period d, if either

Type 1. A is a periodic set with eventual period d, or
Type 2. —A is a set of type 1, or
Type 3. A is a doubly periodic set with double period d.

THEOREM 13. Let TQZ, let f be a prime operator, with /(Γ)C
T. Then either \T \ ̂  1, or T is a regular set with regular period

Proof. If ITI > 1, then Γ is a regular set by Theorem 2,
Theorem 12, or Corollary 8. By Theorem 6, T has a regular period

With Theorem 13, we have achieved goal (2).
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N o w l e t / b e t h e p r i m e o p e r a t o r f(xί9 ---, xr) = mγxγΛ \-mrxr +
c, and let AQZ. How can we calculate </| A) = Γ?

Fisrt, let the reader show that for any aeA, %T) — gcd(A ~/(α)).
Hence we may use Theorem 1 of [1] to reduce to the case 7(Γ) = 1;
we simply replace T by l /7(Γ)(Γ-α)CZ. (Note 7(Γ) = 0 if and
only if ((σ(f) -1) A + c) £ {0}, if and only if | Γ | ^ 1 ; in this case
T = A. Thus we assume 7(G) Φ 0.) By Theorem 13, T has a re-
gular period Θ = Θ2(f). The next step is to calculate the set Tθ =
{teZθ\tf]Tφφ}; this finite calculation can be readily carried out
with the aid of Theorem 9.

The type of T can be found as follows. If / is not positive, T
is of type 3. If / is positive, then, σ(f) > 1; let a = c/1 — o(f), let
J = {u e A I u < a}, let K = {u e A | u > a}. If J Φ ψ Φ K, then / is
again of type 3. If J = φ, f is of type 1, and if K = φ, / i s of
type 2.

If T is of type 3, our troubles are over, as T = \Jtzτθt- If T
is not of type 3, we may assume, (by replacing T with — T if
necessary), that T is of type 1. In this case, let

({a} if aeA
S = {u e Z I u > a, u e t f or some ί e T ^ U

( φ if α ? 4

then clearly S is a periodic set with A(J/(s)CS, and
Thus S is only a "little bit too big"; for many applications, this is
sufficient information.

We have a method for producing T from S, details will appear
elsewhere.
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