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A TREE-LIKE TSIRELSON SPACE

GIDEON SCHECHTMAN

An example is given of a reflexive Banach space X such
that ( I ® I ® ® X\n, n = 1,2, , are uniformly isomor-
phic to X. Some related examples are also given.

1* Introduction* In [4] Lindenstrauss observed that a Banach
space X such that ( X φ X φ φ X ) ^ is isometric to a subspace
of X for every n must contain an isometric copy of lt. This gives
a very simple proof to the fact that there exists no separable
reflexive Banach space which is isometrically universal for all the
separable reflexive Banach spaces. Lindenstrauss asked whether the
isomorphic version of this result is true; i.e., does the fact that X
contains uniformly isomorphic images of ( I φ l φ φ l ) ^ ,
n = 1, 2, , imply that X contains lx isomorphically? An affirmative
answer would give an alternative proof to the nonexistence of an
isomorphically universal space in the family of all separable reflexive
spaces as well as in the family of all spaces with a separable dual.
(The nonexistence of these spaces was proved by W. Szlenk [8] by
a completely different method.) Unfortunately the answer to
Lindenstrauss' question is negative in a very strong sense.

THEOREM. Let 1 :g p :g oo and λ > 1. There exists a Banach
space X with a 1-unconditional basis {e£}Γ=i with the following pro-
perties:

(a) X is reflexive.
(b) X does not contain a subspace isomorphic to lp (c0 in the

case p = oo).

For every n = 1, 2, there exist n disjoint subsequences of
the natural numbers Nlf N2, , Nn such that

(c) {^iϊteNjΊ is isometrically equivalent to {eJΓ=i,
(d) If xj e [e<]<e^ ; 3 = 1, 2, , n then

l/p

Σ«y MΣI
i/p

( λ ~ 1 m a x \\Xj\\ ^ *ΣiXj ^ λ m a x \\xs\\ if p = oo ) .

(e) There exists a K < oo such that X is K-isomorphic to
( I φ l φ 0 X)ς for every n.

The construction uses ideas from [9] and [1] as well as the basic
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idea of James to construct Banach spaces on trees. The notations
are standard and can be found in [5] or [6].

Proof of the theorem. We first deal with the case p = oo. Let
(Γ, ^) be the set

T = {(ny i); n = 0, 1, , i = 1, . , 2n} .

With the partial order

(n, i) £ (m, j) if and only if n ^ m and (i - l)2m~% < j £ i2m~n .

Let L be the linear space of all the functions on T which differ
from zero only on a finite number of points of T. For n — 0, 1,
and i — 1, , 2n define en>i e L by

1 (n, i) = (m, j)

0 otherwise .

And define the operators Pn>i, Sn,i9 and Pw from L to L by

(x(m, j) (n, i) ^ (m, i) , α? 6 L
(Pntix)(m, j) = ,

0 otherwise

(Sntix)(m, j) = α?(m + %, (i — l)2m + i) , a? 6 L

and

Now, we define on L a sequence of norms || ||Λ by induction

I kilo = IN|Iχ - Σ Hn, i)\

ί K

\\x\\m = inf JIWL-! + λ Σ max:

where the inf is taken over all finite sequence xOf , xκ in L which
satisfy

K

= x and Pfcxλ = xk , & = 0, , K .

It is easy to prove by induction that for every x e L and every m

So that we can define

I N | = l i m N U .
m->oo



A TREE-LIKE TSIRELSON SPACE 525

[| || is a norm. Let Ym be the completion of L with respect to || | |m

and let Y be the completion of L with respect to || | |.

LEMMA 1. (a) {βn,J»=o,i=i is a ^-unconditional basis for Ym and
for Y.

(b) // R is a norm one projection on k(T) such that Pk)iR —
RPk,i> for all k — 0, 1, and i — 1, , 2k, then R is a norm one
projection on Ym and on Y.

(c) Sntί is an isometry from Pn,3 Ym (resp. Pn,3 Y) onto Ym(resp. Y)
for all n — 0, 1, , j — 1, , 2n.

(d) For every xeL the infimum in the definition of \\x\\m is
attained.

(e) For every x e L

I K K \

= min \\\x*\\h + λ Σ max \\Pk>ixk\\; x = Σ %k, •?*«& = #*f

Proof, (a) and (b) are proven by induction and passing to the
limit, (d) is a simple consequence of (b) (for R — I — Pn). We prove
now (e). For every {xk}k=0 such that x = Σf=oχk &nd Pkxk — xkf

Jc = 0, , K and for all m

INI ^ INU ̂  INU-i + λ Σ max \\Pk,ML-ιΣ
* = 1

So, passing to the limit and using (b) to prove that the infimum is
attained, we get

K K

min ]||cc||z + λ Σ m a 3 f 11^,^11; x = Σ %kt

In order to prove the other side inequality it is enough to prove that
for all m and all x e L

K K

min jH&olk + ^ Σ max H P ^ ^ H ; x = Σ

We prove this by induction on m. This is obvious for m = 0, assume
it is true for m — 1 and assume that

INL = IWL-i + λ Σ max llPfc^lU^

where a? = Σ*=o % a n ( i Pi&k — χk, h — 0, , K.
By the induction hypothesis

^ + λ Σ max'Λ\PKΛyh\\
h=ll£i^2h
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for some {yh}h=o such that x0 = Σί=o V% and PhVh = Vκ> h = 0, , H.
We assume as we may that H = K, then x — y0 + Σί=i G&* + #*)>
P*G»* + ί/fc) = xk + 2/*, fc = 1, , K and

+ λ Σ max \\Phti(xh

To prove (c) it is clearly enough to show that for every x such
that Pnjx = a? and for every m

ί κ )
\\x\\m = min IKIL-! + λ Σ max \\PkΛxk\\m-Λ

K k=n + l l^i^2k )

where the minimum is over all the sequences {xk}k=n such that
x = Σf=* % and Pn,3 Pkxk = xk, k = n, n + 1, , K.

Let x satisfy Pn,3 x = a; and let {yh}h=0 be such that

IML = II2/0IL-1 + λ Σ max IIP/^/JL-1 ,
h=ll^i^2Λ

% — Σ ί/* and Pfc74 = i/Λ , Λ = 0, , fl".
fe=0

We can assume that H > n and by (a), we can also assume that

PnjVh = Vh, h = 0, • • - , H.

NL = Hl/olL-i + λΣmaxllP^^IU^ + λ Σ max
h i ^ h=n+ί ^i^h

\\Vk\L-ι + λ Σ maxi Σ
Λ = l

If Σϊ=i Hl/*IL-i > 0 then since λ > 1

INL > Ill/o + l/i + + y»||*-i + λ Σ max ||PA><2/Λ||
A + 1 l^i^2«

in contradiction to the fact that the minimum is attained at
Vo, — y VH- This concludes the proof of Lemma 1.

PROPOSITION 2. (a) For every n = 0,1, and {yι)T=1 such
that Pn>iy, = yiy i = 1, « ,2W,

max ^ λ max

(b) F does not contain an ίsomorphic image of c0.

Proof, (a) The left hand side follows from the 1-unconditionality

of K,J~=<J=i For the right hand side put

2n

ΈiVt and xh = 0 for hΦ n
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<^ X max IIP^&JI = X max

then, by Lemma l.e,

(b) Assume that Y contains an isomorph of c0. Since the unit
vector basis of c0 tends weakly to zero, we can assume that there
exist a sequence {ttn}ϊ=i of norm one elements in Y, an increasing
sequence {mj~=1 of positive integers and a constant K such that

and

(P- -

max |α

= un
= 1, 2,

. max \an
lgίKoo

for every sequence {α J ϊ = 1 such that α% -^ 0 as
let 1 ^ iΛ ^ 2W% be such that

\\Pmn,inun\\ = m&xmn\\Pmntiun

. For every n

and put

vn = Pw%,

By part (a) and Lemma l.a.

1 = \\un\\ SX\\vn\\

and

λ"1 max an IIΛ

oo

Σ«Λ

VII

oo

< K max \am

for every sequence {an}n=i such t h a t an -> 0 as w —> c>o. We also have
Pmn,in

v% = vn n = 1,2, ••*. By passing to a subsequence we can also
assume t h a t

Pmn>inVr = ^r fθΓ al l T ^ ^ .

This last property (with other mn's) remains true for every block
basis of the un's. Thus, by a theorem of James [3], we may assume
that there exist an -n, a 1 ^ j ^ 2n and two normalized vectors wί9

w2 in Y such that

(I — Pn)wί = wι , Pn,jW2 = and t02|| < λ, — e where

ε > 0 sat i s f ies l < λ — ε < l + ε/λ. L e t {xk}k=o b e s u c h t h a t w1 + w2 =

Σ f - o «*, P * B * = a?*, fc = 0, , JS: a n d

(*) + + max.\\Pk)ixk\
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(such xk's exist by Lemma l.e). We can also assume that K^n
and that supp xk £ supp (wt + w2), k = 0, , K. We first prove that

(**)
\ 1 II

V P <r
lfc=i li

If this were not true then, since Pn}jPnxk = Pnxk for k — 0, •••, K,

n-l

k=ll^i^2k

n-l n-l

—: x V1 ||_p ^ II >• \ ^ P x !>AJ ε
fc=l fc=l

From (**), we get that

(***") I\p <r +- V -

Indeed,

λ

Pn%0 + Σ nXo ~Γ

Σ

Σ P.

Now, by Lemma l.e, the equalities

λ — ε _ ε

and

= xk , & = 0, w, ^ + 1, , K ,
k=n

(*) and (***) we get

λ - ε > | | W l + w2\\ ^ ||(J - PJίColli! + λ 2 max | |P t f i (/ - P J % | |

+ | | P A I I + λ Σ m a χ \\Pk,i%k\\
k=n " '"

^ llwill H

which contradicts the choice of ε. This concludes the proof of
Proposition 2.

The space Y satisfies (b), (c) and (d) of the theorem for p = co
this follows from 2.b, l.e and 2.a, respectively it is also not hard to
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see that Y satisfies (e), however (a) is not satisfied, indeed, if
{(Wit, i*)}?=i is a totally ordered sequence in T then it is not difficult
to see (using I.e.) that [enktik]t=ί is isometric to llf so some additional
work is needed.

Proof of theorem for p = oo. Define on L a new norm by

\\\x\\\ = \ \ \ x \ ψ 2 x e L

(for x == Σ«,i αn>ieHi< |x|α is defined to be Σn,< l^.ilX,*), and let X be
the completion of L with respect to this norm. It is easy to check
that {eΛ>J»=<J=i constitutes a 1-unconditional basis for X. Now, if
{#m}m=i is a block basis of {eΛ>d?=<J=i then

if

a

a max K

and only if

1/2 max α .

VII

IIΛ

II

M

Άam*
VII

1/2

b m âx \am\

δ1/2 max

for all

am\ for all alf

This proves that (b), (c) and (d) of the Theorem remain valid for X
(with λ1/2 instead of λ). In order to prove (a) it is enough, by James
theorem [2] to prove that X does contain an isomorph of <. This
in turn is a consequence of the following simple fact: if {xm}^i are
disjointly supported with respect to {ew,J?=0,i=i then

^ ( Σ nielli2)172

\m=l /

To prove (e) it is enough, in view of (c), (d) and Pelczynski's
decomposition method [7], to prove that X is isomorphic to X 0 X .
Now, as we mentioned above for any totally ordered sequence
{(nk, ik)}ΐ=i in T {enktik}ΐ=1 in Y is equivalent to the unit vector basis
in lγ thus, {enktik}ΐ=1 in X is equivalent to the unit vector basis in Z2.
So, X contains a copy of 4 and therefore is isomorphic to each of
its one co-dimensional subspaces. In particular to [enίi]n=ltίLι which,
in turn is isomorphic to X 0 X.

Proof of the theorem for 1 <: p < 00. Let X and {eJΓ=i be the
space and the basis which satisfy the theorem for p = 00 and let
{f}ΐ=i be the biorthogonal basis of {et}T=1 then clearly X* and {/JΓ=i
satisfy the theorem for p = 1.

For p > 1 define, for every eventually zero sequence {αJΓ=i,

Σ NV;
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Considerations similar to those in the proof of the p = oo case show-
that the completion of the space of finite sequences under || | |p

satisfies the theorem.

REMARK. It may be useful to know what is the dual norm to
|| | |. Define on L a sequence of norms as follows

Mo = IMIco
ί 2n

\x\m = max jMm-i, λ,-1 max Σ \Pk,M»-i
K k

and define

x\ = lim \x\m .

It can be shown that for every x e L

\x\ = max \\\x\\eo, λ"1 max Σ \Pk,M\
K l^fe<oo ί = l )

and that {[<UίUSU I'll is the dual of {[en,<]U£i, INI}-

Once this duality is proved it can be used to simplify the proof
of the theorem, in particular the proof of Proposition 2.b. We
prefered, however, to give a proof which avoids the routine proof
of the duality.
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