PEIRCE IDEALS IN JORDAN TRIPLE SYSTEMS

Kevin McCrimmon

Abstract

We show that an ideal in a Peirce space $J_{i}(i=1,1 / 2,0)$ of a Jordan triple system J is the Peirce i-component of a global ideal precisely when it is invariant under the multiplications $L\left(J_{1 / 2}, J_{1 / 2}\right), P\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right)$ (for $i=1$); under $L\left(J_{1 / 2}, J_{1 / 2}\right)$, $P\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right), P\left(J_{1 / 2}\right) P(e) P\left(J_{1 / 2}\right), L\left(J_{1 / 2}, e\right) P\left(J_{0}, J_{1 / 2}\right) \quad$ (for $i=0$); under $L\left(J_{1}\right), L\left(J_{0}\right), L\left(J_{1 / 2}, e\right) L\left(e, J_{1 / 2}\right), L\left(J_{1 / 2}, e\right) P\left(e, J_{1 / 2}\right) \quad$ (for $i=1 / 2)$. We use this to show that the sub triple systems J_{1} and J_{0} are simple when J is. The method of proof closely follows that for Jordan algebras, but requires a detailed development of Peirce relations in Jordan triple systems.

Throughout we consider Jordan triple systems (henceforth abbreviated JTS) with basic product $P(x) y$ linear in y and quadratic in x, with derived trilinear product $\{x y z\}=P(x, z) y=L(x, y) z$, over an arbitrary ring Φ of scalars. Because we are already overburdened with subscripts and indices, we prefer not to treat the general case of Jordan pairs directly, but rather derive it via hermitian JTS. For basic facts about JTS and Jordan pairs we refer to [1], [3], [6]. Our analysis of Peirce ideals will closely follow that for Jordan algebras; although the basic lines of our treatment are the same as in [4], the triple system case requires such horrible computations that we do not carry out so fine an analysis, but concentrate just on the main simplicity theorem.

1. Peirce relations in Jordan triple systems. Any Jordan triple system satisfies the general identities

$$
\begin{array}{ll}
\text { (JT1) } & L(x, y) P(x)=P(x) L(y, x) \\
\text { (JT2) } & L(x, P(y) x)=L(P(x) y, y) \\
\text { (JT3) } & P(P(x) y)=P(x) P(y) P(x)
\end{array}
$$

and the linearization

$$
\begin{aligned}
\left(\mathrm{JT} 3^{\prime}\right) \quad P(\{x y z\})+P(P(x) y, P(z) y)= & P(x) P(y) P(z)+P(z) P(y) P(x) \\
& +P(x, z) P(y) P(x, z)
\end{aligned}
$$

A more useful version of this is the identity

$$
\begin{align*}
P(\{x y z\})= & P(x) P(y) P(z)+P(z) P(y) P(x)+L(x, y) P(z) L(y, x) \tag{JT4}\\
& -P(P(x) P(y) z, z)
\end{align*}
$$

Other basic identities we require are
(JT5) $\quad L(x, y) P(z)+P(z) L(y, x)=P(L(x, y) z, z)$
(JT6) $\quad P(x) P(y, z)=L(x, y) L(x, z)-L(P(x) y, z)$
(JT7) $\quad P(y, z) P(x)=L(z, x) L(y, x)-L(z, P(x) y)$
(JT8) $\quad 2 P(x) P(y)=L(x, y)^{2}-L(P(x) y, y)$
(JT9) $\quad[L(x, y), L(z, w)]=L(L(x, y) z, w)-L(z, L(y, x) w)$.
(See for example JP1-3, 20, 21, 12-13, 9 in [1, pp. 13, 14, 19, 20].)

Peirce Decompositions. Now let e be a tripotent, $P(e) e=e$. Then J decomposes into a direct sum of Peirce spaces

$$
J=J_{1} \oplus J_{1 / 2} \oplus J_{0}
$$

relative to e, where the Peirce projections are

$$
\begin{align*}
& E_{1}=P(e) P(e), \quad E_{1 / 2}=L(e, e)-2 P(e) P(e) \tag{1.1}\\
& E_{0}=B(e, e)=I-L(e, e)+P(e) P(e)
\end{align*}
$$

We have

$$
\begin{equation*}
L(e, e)=2 i I \quad \text { on } \quad J_{i}, \quad P(e)=0 \quad \text { on } \quad J_{1 / 2}+J_{0} . \tag{1.2}
\end{equation*}
$$

Note that $P(e)$ is not the identity on J_{1}, though $J_{1}=P(e) J$: it induces a map of period 2 which is an involution of the triple structure and is denoted by $x \rightarrow x^{*}\left(x \in J_{1}\right)$. For reasons of symmetry we introduce a trivial involution $x \rightarrow x$ on J_{0}, so ${ }^{*}$ is defined on $J_{1}+J_{0}$:

$$
\begin{equation*}
x_{1}^{*}=P(e) x_{1}, \quad x_{0}^{*}=x_{0} . \tag{1.3}
\end{equation*}
$$

Note that if J is a Jordan algebra and e is actually an idempotent, then $x_{1}^{*}=x_{1}$ too.

The Peirce relations describe how the Peirce spaces multiply. Let i be either 1 or 0 , and $j=1-i$ its complement. Then just as in Jordan algebras we have

$$
\begin{array}{ll}
\text { (PD1) } & P\left(J_{i}\right) J_{i} \subset J_{i}, \quad P\left(J_{i}\right) J_{j}=P\left(J_{i}\right) J_{1 / 2}=0 \\
\text { (PD2) } & P\left(J_{1 / 2}\right) J_{1 / 2} \subset J_{1 / 2}, \quad P\left(J_{1 / 2}\right) J_{i} \subset J_{j} \\
\text { (PD3) } & \left\{J_{i} J_{i} J_{1 / 2}\right\} \subset J_{1 / 2}, \quad\left\{J_{1 / 2} J_{1 / 2} J_{i}\right\} \subset J_{i} \tag{1.4}\\
\text { (PD4) } & \left\{J_{i} J_{1 / 2} J_{j}\right\} \subset J_{1 / 2} \\
\text { (PD5) } & \left\{J_{i} J_{j} J\right\}=0 .
\end{array}
$$

(For all this see [6] and [1, p. 44].) These show that the Peirce spaces are invariant under the multiplications mentioned in the introduction.

Peirce Identities. For a finer description of multiplication
between Peirce spaces it is useful to reduce Jordan triple products to bilinear products whenever possible. We introduce a dot operation $x \cdot y$ (corresponding to $x \circ y$ in Jordan algebras) for elements a_{k} in Peirce spaces J_{k}, and a component product $E_{i}\left(x_{1 / 2}, y_{1 / 2}\right)$ (corresponding to the J_{i}-component of $x_{1 / 2} \circ y_{1 / 2}$) as follows:
(B1) $\quad x_{1} \cdot y_{1 / 2}=y_{1 / 2} \cdot x_{1}=\left\{x_{1} e y_{1 / 2}\right\} \quad L\left(x_{1}\right)=L\left(x_{1}, e\right): J_{1 / 2} \longrightarrow J_{1 / 2}$
(B2) $\quad x_{0} \cdot y_{1 / 2}=y_{1 / 2} \cdot x_{0}=\left\{x_{0} y_{1 / 2} e\right\} \quad L\left(x_{0}\right)=P\left(x_{0}, e\right): J_{1 / 2} \longrightarrow J_{1 / 2}$
(B3) $x_{1}^{2}=P\left(x_{1}\right) e, x_{1} \cdot y_{1}=\left\{x_{1} e y_{1}\right\} \quad L\left(x_{1}\right)=L\left(x_{1}, e\right): J_{1} \longrightarrow J_{1}$
(B4) $\quad E_{1}\left(x_{1 / 2}, y_{1 / 2}\right)=\left\{x_{1 / 2} y_{1 / 2} e\right\} \quad J_{1 / 2} \times J_{1 / 2} \longrightarrow J_{1}$
(B5) $\quad E_{0}\left(x_{1 / 2}, y_{1 / 2}\right)=\left\{x_{1 / 2} e y_{1 / 2}\right\}, E_{0}\left(x_{1 / 2}\right)=P\left(x_{1 / 2}\right) e: J_{1 / 2} \times J_{1 / 2} \longrightarrow J_{0}$
(B6) $\quad L_{1}\left(x_{1 / 2}\right)=L\left(x_{1 / 2}, e\right), L_{0}\left(x_{1 / 2}\right)=L\left(e, x_{1 / 2}\right)$ so that

$$
L_{i}\left(x_{1 / 2}\right) a_{i}=a_{i} \cdot x_{1 / 2}, L_{\imath}\left(x_{1 / 2}\right) a_{j}=0, L_{i}\left(x_{1 / 2}\right) y_{1 / 2}=E_{j}\left(y_{1 / 2}, x_{1 / 2}\right) .
$$

It turns out that the only Jordan products x^{2} or $x \circ y$ which are not expressible in triple terms are

$$
x_{0}^{2}, x_{0} \circ y_{0}, E_{1}\left(x_{1 / 2}\right) .
$$

The need to avoid these products causes many complications when passing from Jordan algebra results to triple system results.

For example, let e be an ordinary symmetric idempotent in an associative algebra A with involution, made into a triple system $J=J T\left(A,{ }^{*}\right)$ via $P(x) y=x y^{*} x$. Then the Peirce spaces are the usual ones, $J_{1}=A_{11}, J_{1 / 2}=A_{10}+A_{01}, J_{0}=A_{00}$. The bilinear products we have introduced take the form

$$
\begin{aligned}
x_{1} \cdot y_{1 / 2} & =x_{1} y_{1 / 2}+y_{1 / 2} x_{1} \\
x_{0} \cdot y_{1 / 2} & =x_{0} y_{1 / 2}^{*}+y_{1 / 2}^{*} x_{1} \\
E_{1}\left(x_{1 / 2}, y_{1 / 2}\right) & =E_{1}\left(x_{1 / 2} y_{1 / 2}^{*}+y_{1 / 2}^{*} x_{1 / 2}\right) \\
E_{0}\left(x_{1 / 2}, y_{1 / 2}\right) & =E_{0}\left(x_{1 / 2} y_{1 / 2}+y_{1 / 2} x_{1 / 2}\right) .
\end{aligned}
$$

This suggests that because of the * the products $x_{0} \cdot y_{1 / 2}$ and $E_{1}\left(x_{1 / 2}, y_{1 / 2}\right)$ are going to behave anomalously.
1.6. Proposition. The triple products of Peirce elements are expressed in terms of bilinear products by
(P2) $\left\{x_{1 / 2} y_{1 / 2} z_{1 / 2}\right\}=x_{1 / 2} \cdot E_{1}\left(z_{1 / 2}, y_{1 / 2}\right)+z_{1 / 2} \cdot E_{1}\left(x_{1 / 2}, y_{1 / 2}\right)$
$-y_{1 / 2} \cdot E_{0}\left(x_{1 / 2}, z_{1 / 2}\right)$
(P3) $\left\{x_{1 / 2} a_{i} y_{1 / 2}\right\}=E_{j}\left(x_{1 / 2}, a_{i}^{*} \cdot y_{1 / 2}\right)=E_{j}\left(y_{1 / 2}, a_{i}^{*} \cdot x_{1 / 2}\right)$
(P4) $\left\{x_{1 / 2} y_{1 / 2} a_{\imath}\right\}=E_{i}\left(x_{1 / 2}, a_{i}^{*} \cdot y_{1 / 2}\right)$
(P5) $\quad\left\{a_{i} b_{i} z_{1 / 2}\right\}=a_{i} \cdot\left(b_{i}^{*} \cdot z_{1 / 2}\right)$
(P6) $\quad\left\{a_{i} z_{1 / 2} b_{j}\right\}=a_{i} \cdot\left(z_{1 / 2} \cdot b_{j}^{*}\right)=\left(a_{i}^{*} \cdot z_{1 / 2}\right) \cdot b_{j}$
(P7) $e \cdot z_{1 / 2}=z_{1 / 2}$
(P8) $\quad E_{i}\left(x_{1 / 2}, y_{1 / 2}\right)^{*}=E_{i}\left(y_{1 / 2}, x_{1 / 2}\right)$
and we can write

$$
\text { (P9) } L\left(x_{1 / 2}, a_{i}\right)=L_{i}\left(x_{1 / 2} \cdot a_{i}^{*}\right), L\left(a_{i}, x_{1 / 2}\right)=L_{j}\left(a_{i}^{*} \cdot x_{1 / 2}\right) .
$$

The triple product of elements $x=x_{1}+x_{1 / 2}+x_{0}, y=y_{1}+y_{1 / 2}+y_{0}$ may be written as

$$
\begin{align*}
P(x) y= & P\left(x_{1}\right) y_{1}+P\left(x_{0}\right) y_{0}+P\left(x_{1 / 2}\right) y_{1 / 2}+P\left(x_{1 / 2}\right)\left(y_{1}+y_{0}\right)+\left\{x_{1} y_{1 / 2} x_{0}\right\} \\
& +\left\{x_{1} y_{1} x_{1 / 2}\right\}+\left\{x_{0} y_{0} x_{1 / 2}\right\}+\left\{x_{1} y_{1 / 2} x_{1 / 2}\right\}+\left\{x_{0} y_{1 / 2} x_{1 / 2}\right\} \\
= & P\left(x_{1}\right) y_{1}+P\left(x_{0}\right) y_{0}+\left\{x_{1 / 2} \cdot E_{1}\left(x_{1 / 2}, y_{1 / 2}\right)-y_{1 / 2} \cdot E_{0}\left(x_{1 / 2}\right)\right\} \tag{1.7}\\
& +P\left(x_{1 / 2}\right)\left(y_{1}+y_{0}\right)+x_{1} \cdot\left(x_{0} \cdot y_{1 / 2}\right)+x_{1} \cdot\left(y_{1}^{*} \cdot x_{1 / 2}\right)+x_{0} \cdot\left(y_{0} \cdot x_{1 / 2}\right) \\
& +E_{1}\left(x_{1 / 2}, x_{1}^{*} \cdot y_{1 / 2}\right)+E_{0}\left(x_{1 / 2}, x_{0} \cdot y_{1 / 2}\right) .
\end{align*}
$$

Proof. Most of these product rules can be established either by using JT5 to move $L(x, y)$ inside a triple product $P(z) w$, or by using the linearization of JT2 to interchange x and z in a product $\{x(P(y) z) w\}$. Thus (P1) is $P(x) y=P(x)\{y e e\}$ (by 1.2)) $=\{\{e y x\} e x\}-\{e y(P(x) e)\}$ (by $\mathrm{JT} 5)=E_{1}(x, y) \cdot x-y \cdot E_{0}(x)$, and (P2) is its linearization. (P7) follows from PD2, $\left\{e e z_{1 / 2}\right\}=z_{1 / 2}$, and (P8) is vacuous for $i=0$ by triviality of * and symmetry of E_{0}, while for $i=1 P(e)\{x y e\}=P(e) L(e, y) x=$ $-L(y, e) P(e) x+P(\{y e e\}, e) x=-0+\{y x e\}$ by JT5. For (P3)-(P6) we will need (P9),

$$
\begin{array}{ll}
L\left(x_{1 / 2}, a_{1}\right)=L\left(x_{1 / 2} \cdot a_{1}^{*}, e\right) & L\left(a_{1}, x_{1 / 2}\right)=L\left(e, a_{1}^{*} \cdot x_{1 / 2}\right) \\
L\left(x_{1 / 2}, a_{0}\right)=L\left(e, x_{1 / 2} \cdot a_{0}\right) & L\left(a_{0}, x_{1 / 2}\right)=L\left(a_{0} \cdot x_{1 / 2}, e\right) .
\end{array}
$$

To establish this for a_{1} we note $L\left(x_{1 / 2}, a_{1}\right)=L\left(x_{1 / 2}, P(e) a_{1}^{*}\right)=$ $-L\left(a_{1}^{*}, P(e) x_{12}\right)+L\left(\left\{x_{1 / 2} e a_{1}^{*}\right\}, e\right)$ (linearized JT2) $=L\left(x_{1 / 2} \cdot a_{1}^{*}, e\right)$ and dually for $L\left(a_{1}, x_{1 / 2}\right)$; for a_{0} we have $L\left(x_{1 / 2}, a_{0}\right)=L\left(\left\{x_{1 / 2} e e\right\}, a_{0}\right)=-L\left(\left\{x_{1 / 2} a_{0} e\right\}, e\right)+$ $L\left(x_{1 / 2},\left\{e e a_{0}\right\}\right)+L\left(e,\left\{e x_{1 / 2} a_{0}\right\}\right)=-0+0+L\left(e, x_{1 / 2} \cdot a_{0}\right)$ and dually for $L\left(a_{0}, x_{1 / 2}\right)$. By B6 we can write these in the uniform manner (P9). Applying these to $x_{1 / 2}$ yields (P3) and (P4) respectively, and applying them to a_{i}, b_{j} respectively yields (P5) and (P6).

Even in a Jordan algebra the products $P\left(x_{i}\right) y_{i}$ and $P\left(x_{1 / 2}\right) y_{i}$ cannot be reduced to bilinear products if there is no scalar $1 / 2 \in \Phi$ (though $2 P\left(x_{1 / 2}\right) y_{i}$, and more generally $P\left(x_{1 / 2}, y_{1 / 2}\right) a_{i}$, can be reduced by (P3)).

It will be convenient to introduce the abbreviation

$$
\begin{gather*}
P^{*}\left(x_{1 / 2}\right)={ }^{*} \circ P\left(x_{1 / 2}\right) \circ^{*} \quad \text { i.e., } P^{*}\left(x_{1 / 2}\right) a_{1}=P\left(x_{1 / 2}\right) a_{1}^{*}, \tag{1.8}\\
\left.P^{*}\left(x_{1 / 2}\right) a_{0}=\left(P\left(x_{1 / 2}\right) a_{0}\right)^{*}, \text { so } P\left(P^{*}\left(x_{1 / 2}\right) a_{i}\right)=P^{*}\left(x_{1 / 2}\right) P\left(a_{i}\right) P^{*}\left(x_{1 / 2}\right)\right) .
\end{gather*}
$$

We now list the basic Peirce identities. Many of these have appeared in [6], or in [1], [2] disguised as alternative triple identities.
1.9. Peirce Identities. The following identities hold for elements $a_{i}, b_{i}, c_{i} \in J_{i}(i=1,0, j=1-i)$ and $x, y, z \in J_{1 / 2}$:
(PI1) we have a Peirce specialization $a_{i} \rightarrow L\left(a_{i}\right)$ of J_{\imath} in $\operatorname{End}\left(J_{1 / 2}\right)$:
(i) $P\left(a_{i}\right) b_{i} \cdot z=a_{i} \cdot\left(b_{i}^{*} \cdot\left(\alpha_{i} \cdot z\right)\right) \quad L\left(P\left(a_{i}\right) b_{i}^{*}\right)=L\left(a_{\imath}\right) L\left(b_{i}\right) L\left(a_{i}\right)$
(ii) $e \cdot z=z \quad L(e)=I d$
(iii) $a_{1}^{2} \cdot z=a_{1} \cdot\left(a_{1} \cdot z\right) \quad L\left(a_{1}^{2}\right)=L\left(a_{1}\right)^{2}$
(iv) $\left(a_{1} \cdot b_{1}\right) \cdot z=a_{1} \cdot\left(b_{1} \cdot z\right)+b_{1} \cdot\left(a_{1} \cdot z\right)$

$$
L\left(a_{1} \cdot b_{1}\right)=L\left(a_{1}\right) L\left(b_{1}\right)+L\left(b_{1}\right) L\left(a_{1}\right)
$$

(PI2) $\quad P\left(a_{i}\right) E_{i}(x, y)^{*}=E_{i}\left(\dot{a}_{i} \cdot x, a_{i}^{*} \cdot y\right)$
(PI3) $L\left(a_{i}, b_{i}\right) E_{i}(x, y)=E_{i}\left(a_{i} \cdot\left(b_{i}^{*} \cdot x\right), y\right)+E_{i}\left(x, a_{i}^{*} \cdot\left(b_{i} \cdot y\right)\right)$
(PI4) $a_{1} \cdot E_{1}(x, y)=E_{1}\left(a_{1} \cdot x, y\right)+E_{1}\left(x, a_{1}^{*} \cdot y\right)$
(PI5) $\quad P(z) E_{i}(x, y)=E_{j}\left(z, E_{j}(y, z) \cdot x\right)-E_{j}(P(z) x, y)$
(PI6) $\quad P\left(E_{i}(x, y)\right) a_{i}=P(x) P^{*}(y) a_{i}+P^{*}(y) P(x) a_{i}+E_{i}\left(x, P(y)\left(a_{\imath}^{*} \cdot x\right)\right)$
(PI7) $\quad\left\{P(x) a_{i}\right\} \cdot y+P(x)\left(a_{i} \cdot y\right)=E_{i}(x, y) \cdot\left(a_{i}^{*} \cdot x\right)$
(PI8) $\left\{P^{*}(x) a_{i}\right\} \cdot y+a_{i} \cdot P(x) y=E_{i}\left(a_{i} \cdot x, y\right) \cdot x$
(PI9) $\quad P(x)\left\{a_{1} x b_{0}\right\}=P(x) a_{1} \cdot\left(b_{0} \cdot x\right)=P(x) b_{0} \cdot\left(a_{1}^{*} \cdot x\right)$
(PI10) $P\left(a_{i} \cdot x\right) b_{j}=P\left(a_{i}\right) P^{*}(x) b_{j}, P\left(a_{i} \cdot x\right) b_{i}=P^{*}(x) P\left(a_{i}\right) b_{i}$
(PI11) $P\left(a_{i}\right) P(x) b_{j}=P^{*}\left(a_{i}^{*} \cdot x\right) b_{j}, P(x) P\left(a_{i}\right) b_{i}=P^{*}\left(a_{i}^{*} \cdot x\right) b_{i}$
(PI12) $L\left(a_{i}, b_{i}\right) P(x) c_{j}=P\left(a_{i} \cdot\left(b_{i}^{*} \cdot x\right), x\right) c_{j}=E_{i}\left(a_{i} \cdot\left(b_{i}^{*} \cdot x\right), c_{j}^{*} \cdot x\right)$
(PI13) $L\left(a_{i}, b_{i}\right) P^{*}(x) c_{j}=P^{*}\left(a_{i}^{*} \cdot\left(b_{i} \cdot x\right), x\right) c_{j}=E_{i}\left(c_{j} \cdot x, a_{i} \cdot\left(b_{i}^{*} \cdot x\right)\right)$
(PI14) $\quad P(x)\left\{a_{i} b_{i} c_{i}\right\}=P\left(x, b_{i} \cdot\left(a_{i}^{*} \cdot x\right)\right) c_{i}=E_{j}\left(x, c_{i}^{*} \cdot\left(b_{i} \cdot\left(a_{i}^{*} \cdot x\right)\right)\right)$
(PI15) $\quad E_{0}\left(a_{0} \cdot x\right)=P\left(a_{0}\right) E_{0}(x), E_{0}\left(a_{1} \cdot x\right)=P^{*}(x) a_{1}^{2}$
(PI16) $\quad P\left(a_{i} \cdot x\right) y=a_{i} \cdot P(x)\left(a_{i}^{*} \cdot y\right)$
(PI17) $\quad P\left(a_{1} \cdot x, x\right) y=a_{1} \cdot P(x) y+P(x)\left(a_{1}^{*} \cdot y\right)$.
Proof. The Peirce specialization relation PI1(i) follows from JT5, using B6: $P\left(a_{i}\right) b_{i} \cdot z=L_{i}(z) P\left(a_{i}\right) b_{i}=\left\{-P\left(a_{i}\right) L_{j}(z)+P\left(L_{i}(z) a_{i}, a_{i}\right)\right\} b_{i}=$ $-0+\left\{\left(z \cdot a_{i}\right) b_{i} a_{i}\right\}($ by PD1 $)=a_{i} \cdot\left(b_{i}^{*} \cdot\left(a_{i} \cdot z\right)\right)$ by P5. We have already noted $e \cdot z_{1 / 2}=z_{1 / 2}$, whence (ii). Setting $b_{1}=e$ in (i) yields (iii), and linearization yields (iv).

The identities involving the E_{i} follow from JT5 and JT4. For PI2 and PI5 we have B6 $P(u) E_{i}(x, y)=P(u) L_{j}(y) x=-L_{i}(y) P(u) x+$ $\left\{\left(L_{i}(y) u\right) x u\right\}$ (by JT5); when $u=a_{i}$ we get $-0+\left\{\left(a_{i} \cdot y\right) x a_{i}\right\}=$ $E_{i}\left(a_{i} \cdot y, a_{i}^{*} \cdot x\right)$ (by P4) as in PI2, and when $u=z$ we get $-E_{j}(P(z) x, y)+$ $E_{j}\left(z, x \cdot E_{j}(z, y)^{*}\right)($ by P4 $)=E_{j}\left(z, E_{j}(y, z) \cdot x\right)-E_{j}(P(z) x, y)(b y P 8)$ as in PI5. For PI3, $L\left(a_{i}, b_{i}\right) E_{i}(x, y)=L\left(a_{i}, b_{i}\right) L_{j}(y) x=L_{j}(y) L\left(a_{i}, b_{i}\right) x-$
$\left[L_{j}(y), L\left(a_{i}, b_{i}\right)\right] x=E_{\imath}\left(L\left(a_{i}, b_{i}\right) x, y\right)-L\left(L_{j}(y) a_{i}, b_{i}\right) x+L\left(a_{i}, L_{i}(y) b_{i}\right) x$ (by $\mathrm{JT} 9)=E_{i}\left(a_{i} \cdot\left(b_{i}^{*} \cdot x\right), y\right)-0+\left\{a_{i}\left(b_{i} \cdot y\right) x\right\}=E_{i}\left(a_{i} \cdot\left(b_{i}^{*} \cdot x\right), y\right)+E_{i}\left(x, a_{i}^{*} \cdot\left(b_{i} \cdot y\right)\right)$ (by P4). PI4 is the special case $b_{1}=e$ of PI3. For PI6 we use JT3' for $i=1$: $P(\{x y e\}) a_{1}=\{P(x) P(y) P(e)+P(e) P(y) P(x)-P(P(x) y, P(e) y)+$ $P(e, x) P(y) P(e, x)\} a_{1}=P(x) P(y) a_{1}^{*}+\left(P(y) P(x) a_{1}\right)^{*}-0+E_{1}\left(x, P(y)\left(a_{1}^{*} \cdot x\right)\right)$, while for $i=0$ we use JT4: $P(\{x e y\}) a_{0}=\{P(x) P(e) P(y)+P(y) P(e) P(x)+$ $L(x, e) P(y) L(e, x)-P(P(x) P(e) y, y)\} a_{0}=P(x)\left(P(y) a_{0}\right)^{*}+P(y)\left(P(x) a_{0}\right)^{*}+$ $E_{0}\left(x, P(y)\left(a_{0} \cdot x\right)\right)-0$.

The identities involving $P(x) a_{i}$ are established in the same ways. For (PI7), $P(x) a_{i} \cdot y+P(x)\left(a_{i} \cdot y\right)=\left\{L_{j}(y) P(x)+P(x) L_{i}(y)\right\} a_{i}=$ $P\left(L_{j}(y) x, x\right) a_{i}=P\left(E_{i}(x, y), x\right) a_{i}$ (by JT5) $=E_{i}(x, y) \cdot\left(a_{i}^{*} \cdot x\right)$ (by P5). For (PI8) we use linearized JT1: for $i=1,\left\{\left(P(x) a_{1}^{*}\right) y e\right\}+\left\{(P(x) y) a_{1}^{*} e\right\}=$ $\left\{x\left\{a_{1}^{*} x y\right\} e\right\}$, for $i=0\left\{\left(y P(x) a_{0}\right) e\right\}+\left\{a_{0}(P(x) y) e\right\}=\left\{\left\{a_{0} x y\right\} x e\right\}$, and we use P8. For (PI9), $P(x)\left\{a_{i} x a_{j}\right\}=P(x) L\left(a_{i}, x\right) a_{j}=L\left(x, a_{i}\right) P(x) a_{j}$ (by JT1) $=$ $\left\{x a_{i} P(x) a_{j}\right\}=P(x) a_{j} \cdot\left(a_{i}^{*} \cdot x\right)$. For (PI10) with $i=1$ we have by JT4 that $P\left(\left\{a_{1} e x\right\}\right) b_{k}=\left\{P\left(a_{1}\right) P(e) P(x)+P(x) P(e) P\left(a_{1}\right)-P\left(P\left(a_{1}\right) P(e) x, x\right)+\right.$ $\left.L\left(a_{1}, e\right) P(x) L\left(e, a_{1}\right)\right\} b_{k}=\left\{P\left(a_{1}\right) P(e) P(x)+P(x) P(e) P\left(a_{1}\right)\right\} b_{k}$. If $k=0$ this becomes $P\left(a_{1}\right) P(e) P(x) b_{0}=P\left(a_{1}\right)\left(P(x) b_{0}\right)^{*}=P\left(a_{1}\right) P^{*}(x) b_{0}$, while for $k=1$ becomes $P(x) P(e) P\left(a_{1}\right) b_{1}=P(x)\left(P\left(a_{1}\right) b_{1}\right)^{*}=P^{*}(x) P\left(a_{1}\right) b_{1} \quad$ by (1.8). Similarly if $i=0$ we have $P\left(\left\{a_{0} x e\right\}\right) b_{b}=\left\{P\left(a_{0}\right) P(x) P(e)+P(e) P(x) P\left(a_{0}\right)-\right.$ $\left.P\left(P\left(a_{0}\right) P(x) e, e\right)+L\left(a_{0}, x\right) P(e) L\left(x, a_{0}\right)\right\} b_{k}=\left\{P\left(a_{0}\right) P(x) P(e)+P(e) P(x) P\left(a_{0}\right)\right\} b_{k}$, reducing if $k=0$ to $P(e) P(x) P\left(a_{0}\right) b_{0}=P^{*}(x) P\left(a_{0}\right) b_{0}$ and if $k=1$ to $P\left(a_{0}\right) P(x) P(e) b_{1}=P\left(a_{0}\right) P^{*}(x) b_{1}$. Since ${ }^{*}$ is an involution on J_{i}, J_{j}, (PI11) follows by applying * to (PI10) (with a_{i}, b_{k} replaced by a_{i}^{*}, b_{k}^{*}). Similarly (PI13) follows by applying * to (PI12) (with a_{i}, b_{i} replaced by a_{i}^{*}, b_{i}^{*}), where (PI12) follows from JT5: $L\left(a_{i}, b_{i}\right) P(x) c_{j}=\left\{-P(x) L\left(b_{i}, a_{i}\right)+\right.$ $\left.P\left(\left\{a_{i} b_{i} x\right\}, x\right)\right\} c_{j}=P\left(a_{i} \cdot\left(b_{i}^{*} \cdot x\right), x\right) c_{j}$ (by P5) $=E_{i}\left(a_{i} \cdot\left(b_{i}^{*} \cdot x\right), c_{j}^{*} \cdot x\right)$ (by P3). For (PI14), $P(x)\left\{a_{i} b_{i} c_{i}\right\}=-L\left(b_{i}, a_{i}\right) P(x) c_{i}+P\left(\left\{b_{i} a_{i} x\right\}, x\right) c_{i}$ (by JT5) $=$ $-0+\left\{\left(b_{i} \cdot\left(a_{i}^{*} \cdot x\right)\right) c_{i} x\right\}=E_{j}\left(x, c_{i}^{*} \cdot\left(b_{i} \cdot\left(a_{i}^{*} \cdot x\right)\right)\right)$ (by P3). (PI15) is just the particular case $b=e$ of (PI10). For (PI16) with $i=0, P\left(a_{0} \cdot x\right) y=$ $E_{1}\left(a_{0} \cdot x \cdot y\right) \cdot\left(a_{0} \cdot x\right)-E_{0}\left(a_{0} \cdot x\right) \cdot y=a_{0} \cdot\left\{E_{1}\left(a_{0} \cdot x, y\right)^{*} \cdot x\right\}-P\left(a_{0}\right) E_{0}(x) \cdot y$ (by PI15) $=a_{0} \cdot\left\{E_{1}\left(y, a_{0} \cdot x\right) \cdot x\right\}-a_{0} \cdot\left\{E_{0}(x) \cdot\left(a_{0} \cdot y\right)\right\}(\mathrm{byPI1i})=a_{0} \cdot\left\{E_{1}\left(x, a_{0} \cdot y\right) \cdot x-\right.$ $\left.E_{0}(x) \cdot\left(a_{0} \cdot y\right)\right\} \quad$ (by symmetry of P 3$)=a_{0} \cdot\left\{P(x)\left(a_{0} \cdot y\right)\right\}$. For $i=1$, $P\left(a_{1} \cdot x\right) y=E_{1}\left(a_{1} \cdot x, y\right) \cdot\left(a_{1} \cdot x\right)-E_{0}\left(a_{1} \cdot x\right) \cdot y=\left\{-a_{1} \cdot\left(E_{1}\left(a_{1} \cdot x, y\right) \cdot x\right)\right\}+$ $\left\{E_{1}\left(a_{1}^{2} \cdot x, y\right)+E_{1}\left(a_{1} \cdot x, a_{1}^{*} \cdot y\right)\right\} \cdot x-P^{*}(x) a_{1}^{2} \cdot y$ (by (PI1iv), (PI4), (PI15)) $=$ $-a_{1} \cdot\left(E_{1}\left(a_{1} \cdot x, y\right) \cdot x\right)+P\left(a_{1}\right) E_{1}(x, y)^{*} \cdot x+E_{1}\left(a_{1}^{2} \cdot x, y\right) \cdot x+\left\{a_{1}^{2} \cdot P(x) y-\right.$ $\left.E_{1}\left(a_{1}^{2} \cdot x, y\right) \cdot x\right\}$ (by (PI2), (PI8)) $=a_{1} \cdot\left\{-E_{1}\left(a_{1} \cdot x, y\right) \cdot x+E_{1}(x, y) \cdot\left(a_{1} \cdot x\right)+\right.$ $\left.a_{1} \cdot\left[E_{1}(x, y) \cdot x-E_{0}(x) \cdot y\right]\right\}$ (by PI1i, iii) $=a_{1} \cdot\left\{E_{1}\left(x, a_{1}^{*} \cdot y\right)-E_{0}(x) \cdot\left(a_{1}^{*} \cdot y\right)\right\}$ (by (PI4), (P6)) $=a_{1} \cdot \mathrm{P}(x)\left(a_{1}^{*} \cdot y\right) . \quad$ (PI17) is just the linearization $a_{1} \rightarrow$ a_{1}, e of PI16, or it follows from JT5.

Observe that the proof of PI16 depended only on PI1, 2, 4, 8, 15. Note also that there is no analogue of PIliv for J_{0}, so we cannot commute an $L\left(a_{0}\right)$ past an $L\left(b_{0}\right)$ at the expense of an $L\left(a_{0} \cdot b_{0}\right)$, which
means that if K_{0} is an ideal in J_{0} we do not have $L\left(J_{0}\right) L\left(K_{0}\right) \subset$ $L\left(K_{0}\right) N\left(J_{0}\right)$ as we do for an ideal K_{1} in J_{1}. Similarly there is no analogue of PI4 or PI17 for $i=0$.

The Bracket Product on $J_{1 / 2}$. Even more basic than the inherited triple product $P(x) y$ on $J_{1 / 2}$ are the bracket products

$$
\begin{equation*}
\langle x y z\rangle_{i}=E_{i}(x, y) \cdot z,\langle x ; z\rangle_{0}=E_{0}(x) \cdot z \tag{1.10}
\end{equation*}
$$

This gives two trilinear compositions on $J_{1 / 2}$, the one for $i=0$ being symmetric in the first two variables

$$
\langle x y z\rangle_{0}=\langle y x z\rangle_{0} .
$$

Formulas P1, P2 show

$$
\begin{align*}
P(x) y & =\langle x y x\rangle_{1}-\langle x ; y\rangle_{0} \tag{1.11}\\
\{x y z\} & =\langle x y z\rangle_{1}+\langle z y x\rangle_{1}-\langle x z y\rangle_{0} .
\end{align*}
$$

In the special case of a maximal idempotent where $J_{0}=0$ we see $P(x) y=\langle x y x\rangle_{1}$, so the bracket product coincides with the triple product; Loos [1, 2] has abstractly characterized such products 〈, ,〉 on such $J_{1 / 2}$ as alternative triple systems. We will show that in general even if $J_{0} \neq 0$ the product $\langle x y z\rangle_{1}$ still behaves somewhat like an alternative triple product.

The interaction of the bracket with multiplications from the diagonal Peirce spaces is given by

$$
\begin{gather*}
L\left(a_{i}, b_{i}\right)\langle x y z\rangle_{i}=\left\langle L\left(a_{i}, b_{i}\right) x, y, z\right\rangle_{i}+\left\langle x, L\left(a_{i}^{*}, b_{i}^{*}\right) y, z\right\rangle_{i} \tag{1.12}\\
\quad-\left\langle x, y, L\left(b_{i}^{*}, a_{i}^{*}\right)\right\rangle_{i} \\
a_{1} \cdot\langle x y z\rangle_{1}=\left\langle a_{1} \cdot x, y, z\right\rangle_{1}+\left\langle x, a_{1}^{*} \cdot y, z\right\rangle_{1}-\left\langle x, y, a_{1} \cdot z\right\rangle_{1} \tag{1.13}\\
L\left(a_{i}, b_{i}\right)\langle x y z\rangle_{j}=\left\langle x, y, L\left(a_{i}^{*}, b_{i}^{*}\right) z\right\rangle_{j} \tag{1.14}\\
L\left(a_{i}\right)\langle x y z\rangle_{j}=\left\langle y, x, L\left(a_{i}^{*}\right) z\right\rangle_{j} \tag{1.15}\\
a_{1} \cdot\langle x y x\rangle_{1}-\left\langle a_{1} \cdot x, y, x\right\rangle_{1}=E_{0}(x) \cdot\left(a_{1}^{*} \cdot y\right)-P(x) a_{1}^{*} \cdot y . \tag{1.16}
\end{gather*}
$$

Unfortunately (1.13) with 1 replaced by 0 is false (even in triple systems $J T\left(A,{ }^{*}\right)$ derived from associative algebras), and there does not seem to be any analogous identity for the interaction of $\langle,,\rangle_{0}$ with J_{0}.

To verify these identities, note for (1.12) $L\left(a_{i}, b_{i}\right) E_{i}(x, y) \cdot z=$ $a_{i} \cdot\left(b_{i}^{*} \cdot\left(E_{i}(x, y) \cdot z\right)\right.$) (by P5) $=\left\{a_{i} b_{i} E_{i}(x, y)\right\} \cdot z-E_{i}(x, y) \cdot\left(b_{i}^{*} \cdot\left(a_{i} \cdot z\right)\right.$) (by linearized PI1i) $=\left\{E_{i}\left(a_{i} \cdot\left(b_{i}^{*} \cdot x\right), y\right)+E_{i}\left(x, a_{i}^{*} \cdot\left(b_{i} \cdot y\right)\right)\right\} \cdot z-E_{i}(x, y) \cdot\left\{b_{i}^{*} a_{i}^{*} z\right\}$ (by PI3, P5) $=\left\langle L\left(a_{i}, b_{i}\right) x, y, z\right\rangle_{i}+\left\langle x, L\left(a_{i}^{*}, b_{i}^{*}\right) y, z\right\rangle_{i}-\left\langle x, y, L\left(b_{i}^{*}, a_{i}^{*}\right) z\right\rangle_{i}$ (by P5). We obtain (1.13) by setting $b_{1}=e$ in (1.12). For (1.14),
$L\left(a_{i}, b_{i}\right) E_{j}(x, y) \cdot z=L\left(a_{i}\right) L\left(b_{i}^{*}\right) L\left(E_{j}(x, y)\right) z=L\left(E_{j}(x, y)\right) L\left(a_{i}^{*}\right) L\left(b_{i}\right) z$ (using P6 twice) $=\left\langle x, y, L\left(a_{i}^{*}, b_{i}^{*}\right) z\right\rangle_{j}$ (using P8). When $i=1$ (1.15) follows from (1.14) by setting $b_{i}=e$; in general we argue as before $L\left(a_{i}\right) L\left(E_{j}(x, y)\right) z=L\left(E_{j}(x, y)^{*}\right) L\left(a_{i}^{*}\right) z=\left\langle y, x, a_{i}^{*} \cdot z\right\rangle_{j}$. For (1.16), $a_{1} \cdot\langle x y x\rangle=a_{1} \cdot\left\{P(x) y+E_{0}(x) \cdot y\right\} \quad(b y \quad(1.10), \mathrm{P} 1)=\left\{-P^{*}(x) a_{1} \cdot y+\right.$ $\left.E_{1}\left(a_{1} \cdot x, y\right) \cdot x\right\}+E_{0}(x) \cdot\left(a_{1}^{*} \cdot y\right)($ by PI8, P6 $)=E_{0}(x) \cdot\left(a_{1}^{*} \cdot y\right)-P(x) a_{1}^{*} \cdot y+$ $\left\langle a_{1} \cdot x, y, x\right\rangle_{1}$.

Next we have some intrinsic bracket relations for the more important bracket $\langle x, y, z\rangle=\langle x, y, z\rangle_{1}$:

$$
\begin{gather*}
\langle u v\langle x y z\rangle+\langle x y\langle u v z\rangle=\langle\langle u v x\rangle y z\rangle+\langle x\langle v u y\rangle z\rangle \tag{1.17}\\
\langle u v\langle x y x\rangle-\langle\langle u v x\rangle y x\rangle=\langle x\langle v u y\rangle x\rangle-\langle x y\langle u v x\rangle \\
=E_{0}(x) \cdot\langle v u y\rangle-E_{0}\left(E_{0}(x) \cdot v, u\right) \cdot y \tag{1.18}\\
\quad+E_{0}\left(x,\left[E_{1}(x, v) \cdot u-E_{0}(x, u) \cdot v\right]\right) \cdot y
\end{gather*}
$$

$$
\begin{equation*}
\langle x y x\rangle y w\rangle-\langle x y\langle x y w\rangle=\{P(e) P(y) P(x)-P(x) P(y)\} e \cdot w \tag{1.19}
\end{equation*}
$$

(1.20) $\langle x\langle y x y\rangle w\rangle-\langle x y\langle x y w\rangle=\{P(x) P(y)-P(e) P(y) P(x)\} e \cdot w$
(1.21) $\langle\langle x y x\rangle v w\rangle-\langle x\langle v x y\rangle w\rangle=\{P(e) P(y, v) P(x)-P(x) P(y, v)\} e \cdot w$
(1.22) $\langle\langle x y z\rangle y w\rangle-\langle x\langle y z y\rangle w\rangle=\{P(e) P(y) P(x, z)-P(x, z) P(y)\} e \cdot w$
(1.23) $\quad\langle u v x\rangle y w\rangle+\langle x\langle v u y\rangle w\rangle=\langle\langle x y u\rangle v w\rangle+\langle u\langle y x v\rangle w\rangle$.

Here (1.17) is just (1.13) for $a_{1}=E_{1}(u, v), a_{1}^{*}=E_{1}(v, u)$, while (1.23) is a consequence of the symmetry in $u v, x y$ on the left side of (1.17). Setting $a_{1}=E_{1}(u, v)$ in (1.16) yields $\langle u v\langle x y x\rangle-\langle\langle u v x\rangle y x\rangle(=\langle x\langle v u y\rangle x\rangle-$ $\langle x y\langle u v x\rangle$ by $(1.17))=E_{0}(x) \cdot\left(E_{1}(v, u) \cdot y\right)-P(x) E_{1}(v, u) \cdot y=E_{0}(x)$. $\left(E_{1}(v, u) \cdot y\right)-E_{0}\left(x, E_{0}(u, x) \cdot v\right) \cdot y+E_{0}(P(x) v, u) \cdot y$ (by PI5) $=E_{0}(x)$. $\left(E_{1}(v, u) \cdot y\right)-E_{0}\left(x, E_{0}(u, x) \cdot v\right) \cdot y+E_{0}\left(E_{1}(x, v) \cdot x, u\right) \cdot y-E_{0}\left(E_{0}(x) \cdot v, u\right) \cdot y$ (by P1) $=E_{0}(x) \cdot\left(E_{1}(v, u) \cdot y\right)-E_{0}\left(E_{0}(x) \cdot v, u\right) \cdot y+E_{0}\left(x,\left[E_{1}(x, v) \cdot u-\right.\right.$ $\left.\left.E_{0}(x, u) \cdot v\right]\right) \cdot y$ (by P3 and symmetry of E_{0}), which is (1.18). The formulas (1.19), (1.20), (1.21), (1.22) are respectively
(1.19') $\quad E_{1}(\langle x y x\rangle, y)-E_{1}(x, y)^{2}=\{P(e) P(y) P(x)-P(x) P(y)\} e$
(1.20') $\quad E_{1}(x,\langle y x y\rangle)-E_{1}(x, y)^{2}=\{P(x) P(y)-P(e) P(y) P(x)\} e$
(1.21') $\quad E_{1}(\langle x y x\rangle, v)-E_{1}(x,\langle v x y\rangle)=\{P(e) P(y, v) P(x)-P(x) P(y, v)\} e$
$\left(1.22^{\prime}\right) \quad E_{1}(\langle x y z\rangle, y)-E_{1}(x,\langle y z y\rangle)=\{P(e) P(y) P(x, z)-P(x, z) P(y)\} e$.
Here (1.19') will follow by setting $v=y$ in (1.21') (or $z=x$ in (1.22')) and using $\left(1.20^{\prime}\right)$. For $\left(1.20^{\prime}\right)$ note $E_{1}(x, y)^{2}=P\left(E_{1}(x, y)\right) e=P(x) P^{*}(y) e+$ $P^{*}(y) P(x) e+E_{1}(x, P(y)(x \cdot e)) \quad($ by PI6 $)=P(x) P(y) e+(P(y) P(x) e)^{*}+$ $E_{1}(x, P(y) x)=E_{1}(x,\langle y x y\rangle-P(y) e \cdot x)+P(x) P(y) e+P(e) P(y) P(x) e=$
$E_{1}(x,\langle y x y\rangle)-\{x(P(y) e) x\}+P(x) P(y) e+P(e) P(y) P(x) e=E_{1}(x,\langle y x y\rangle)+$ $P(e) P(y) P(x) e-P(x) P(y) e$. For (1.21') note that $E_{1}\left(P(x) y+E_{0}(x) \cdot y, v\right)$ $E_{1}\left(x, E_{1}(v, x) \cdot y\right)=\{(P(x) y) v e\}+\left\{y E_{0}(x) v\right\}^{*}-\left\{x y E_{1}(v, x)^{*}\right\}$ (by P1, P3, P4)$\{L(P(x) y, v)+P(e) P(y, v) P(x)-L(x, y) L(x, v)\} e=\{P(e) P(y, v) P(x)-$ $P(x) P(y, v)\} e$ by JT6. Finally, for (1.22') we have $E_{1}\left(y, E_{1}(x, y) \cdot z\right)^{*}$ $E_{1}\left(x, E_{1}(y, z) \cdot y\right)=\left\{y z E_{1}(x, y)^{*}\right\}^{*}-\left\{x y E_{1}(y, z)^{*}\right\}=P(e) L(y, z) L(y, x) e-$ $L(x, y) L(z, y) e=P(e)\{L(P(y) z, x)+P(y) P(x, z)\} e-\{L(x, P(y) z)+P(x, z) P(y)\} e$ (by JT6, JT7) $=E_{1}(P(y) z, x)^{*}-E_{1}(x, P(y) z)+\{P(e) P(y) P(x, z)-$ $P(x, z) P(y)\} e=\{P(e) P(y) P(x, z)-P(x, z) P(y)\} e($ by P8).

In the special case that $J_{0}=0$ we obtain the easy half of Loos' characterization [1, p. 76] of alternative triple systems.
1.24. Proposition. If $K_{1 / 2} \subset J_{1 / 2}$ is a bracket subalgebra $\left(\left\langle K_{1 / 2} K_{1 / 2} K_{1 / 2}\right\rangle \subset K_{1 / 2}\right.$) with $E_{0}\left(K_{1 / 2}\right)=P\left(K_{1 / 2}\right) e=0$ (for example, $K_{1 / 2}=$ $J_{1 / 2}$ if $J_{0}=0$, or $K_{1 / 2}=P(x) J_{1 / 2}$ or $K_{1 / 2}=P(x) J_{1 / 2}+\Phi x$ principal inner ideals determined by an $x \in J_{1 / 2}$ with $\left.P(x) e=0\right)$, then $K_{1 / 2}$ becomes an alternative triple system under the bracket

$$
\langle x y z\rangle=E_{1}(x, y) \cdot z=\{\{x y e\} e z\} \quad\left(x, y, z \in K_{1 / 2}\right)
$$

The Jordan triple product on $K_{1 / 2}$ is then $P(x) y=\langle x y x\rangle$.
Proof. The axioms for an alternative triple system are

$$
\begin{aligned}
& \text { (AT1) }\langle u v\langle x y z\rangle+\langle x y\langle u v z\rangle=\langle\langle u v x\rangle y z\rangle+\langle x\langle v u y\rangle z\rangle \\
& \text { (AT2) }\langle u v\langle x y x\rangle\rangle=\langle\langle u v x\rangle y x\rangle \\
& \text { (AT3) }\langle x y\langle x y z\rangle=\langle\langle x y x\rangle y z\rangle .
\end{aligned}
$$

Here (AT1) follows from (1.17), and (AT2), (AT3) from (1.18), (1.19) since $E_{0}\left(K_{1 / 2}\right)=P\left(K_{1 / 2}\right) e=0$. By (P1) we have $P(x) y=E_{1}(x, y) \cdot x=$ $\langle x y x\rangle$ in this case.

If x has $P(x) e=0$ then the inner ideals $K_{1 / 2}=P(x) J_{1 / 2} \subset P(x) J_{1 / 2}+$ $\Phi x=K_{1 / 2}^{\prime}$ kill $e, P\left(K_{1 / 2}\right) e=P\left(K_{1 / 2}^{\prime}\right) e=0$. Indeed, by JT3 we have $P\left(K_{1 / 2}\right)=P(x) P\left(J_{1 / 2}\right) P(x)$, and by JT1 $P\left(K_{1 / 2}^{\prime}\right)=P\left(P(x) J_{1 / 2}\right)+P\left(P(x) J_{1 / 2}, x\right)+$ $\Phi P(x)=\left\{P(x) P\left(J_{1 / 2}\right)+L\left(x, J_{1 / 2}\right)+\Phi\right\} P(x)$. To see next that these inner ideals are bracket-closed subalgebras, first note that since $P\left(K_{1 / 2}^{\prime}\right) J_{1 / 2} \subset$ $K_{1 / 2} \subset K_{1 / 2}^{\prime}$ by innerness we have $\langle x y x\rangle=P(x) y \in K_{1 / 2}$, hence by linearization $\langle x y z\rangle+\langle z y x\rangle \in K_{1 / 2}$, for any $x, z \in K_{1 / 2}^{\prime}$ and any $y \in J_{1 / 2}$. Next we show $\left\langle K_{1 / 2} J_{1 / 2} x\right\rangle$ and $\left\langle x J_{1 / 2} K_{1 / 2}\right\rangle$ are contained in $K_{1 / 2}$; by skewness it suffices to prove the latter, where $\left\langle x J_{1 / 2} K_{1 / 2}\right\rangle=$ $E_{1}\left(x, J_{1 / 2}\right) \cdot P(x) J_{1 / 2} \subset-P(x)\left(E_{1}\left(x, J_{1 / 2}\right)^{*} \cdot J_{1 / 2}\right)+P\left(E_{1}\left(x, J_{1 / 2}\right) \cdot x, x\right) J_{1 / 2}$ (by PI17) $\subset P(x) J_{1 / 2}+P\left(\left\langle x J_{1 / 2} x\right\rangle, x\right) J_{1 / 2} \subset P\left(K_{1 / 2}^{\prime}\right) J_{1 / 2} \subset K_{1 / 2}$. Finally, $\left\langle K_{1 / 2} J_{1 / 2} K_{1 / 2}\right\rangle=E_{1}\left(K_{1 / 2}, J_{1 / 2}\right) \cdot K_{1 / 2} \quad \subset-P(x)\left(E_{1}\left(K_{1 / 2}, J_{1 / 2}\right)^{*} \cdot J_{1 / 2}\right)+$ $P\left(E_{1}\left(K_{1 / 2}, J_{1 / 2}\right) \cdot x, x\right) J_{1 / 2} \subset P(x) J_{1 / 2}+P\left(\left\langle K_{1 / 2} J_{1 / 2} x\right\rangle, x\right) J_{1 / 2} \subset P\left(K_{1 / 2}^{\prime}\right) J_{1 / 2}$ (by
the previous case) $\subset K_{1 / 2}$. Thus in fact we have the stronger closure $\left\langle K_{1 / 2}^{\prime} J_{1 / 2} K_{1 / 2}^{\prime}\right\rangle \subset K_{1 / 2}$.

In any alternative triple system we obtain an ordinary bilinear alternative multiplication by fixing the middle factor: the homotopes $A^{(u)}$ with products $x \cdot{ }_{u} y=\langle x u y\rangle$ are alternative.
1.25. Proposition. If $K_{1 / 2}$ is a bracket-closed subspace of $J_{1 / 2}$ with $P\left(K_{1 / 2}\right) e=0$, then for any $u \in K_{1 / 2}$ the homotope $K_{1 / 2}^{(u)}$ with product

$$
x \cdot{ }_{u} y=\langle x u y\rangle
$$

is an alternative algebra. If u is a tripotent with $P(u) e=0$ then we have an involutory map $x \rightarrow P(u) x=\bar{x}$ on $K_{1 / 2}=J_{1 / 2}(e) \cap$ $J_{1}(u)=P(u) J_{1 / 2}(e)$, and the bracket can be recovered as

$$
\begin{equation*}
\langle x y z\rangle=\left(x \cdot{ }_{u} \bar{y}\right) \cdot{ }_{u} z . \tag{1.26}
\end{equation*}
$$

If in addition $E_{1}(u, u)=\{u u e\}=e$ then u acts as unit for $P(u) J_{1 / 2}(e)$, and $x \rightarrow \bar{x}$ is an involution of the multiplicative structure.

Proof. By 1.24 we know $K_{1 / 2}$ is an alternative triple system under the bracket, hence the homotope $K_{1 / 2}^{(u)}$ is an alternative algebra [1, p. 64]. When u is tripotent $P(u)^{3}=P(u)$, so $P(u)$ is involutory on $P(u) J_{1}$, and furthermore for $x, y, z \in P(u) J_{1 / 2}$ we have $\left(x \cdot{ }_{u} y\right) \cdot{ }_{u} z-$ $\langle x \bar{y} z\rangle=\langle\langle x u y\rangle u z\rangle-\langle x\langle u y u\rangle z\rangle=\{P(e) P(u) P(x, y)-P(x, y) P(u)\} e \cdot z$ (by 1.22) $=0$ since $P\left(K_{1 / 2}\right) e=P(u) P\left(J_{1 / 2}\right) P(u) e=0$. Thus we recover the bracket on $P(u) J_{1 / 2}$ from the bilinear product and the involution.

When $\{u u e\}=E_{1}(u, u)=e$ in addition then u is a left unit, $u \cdot{ }_{u} y=E_{1}(u, u) \cdot y=e \cdot y=y$. If we knew $x \rightarrow \bar{x}$ reversed multiplication this would imply $\bar{u}=u$ was also a right unit; we can also argue directly, $x \cdot{ }_{u} u=\langle x u u\rangle=E_{1}(x, u) \cdot u=\{x u u\}-E_{1}(u, u) \cdot x+E_{0}(x, u) \cdot u=$ $L(u, u)\left(P(u)^{2} x\right)-e \cdot x+0$ (since $\left.E_{0}\left(K_{1 / 2}\right)=0\right)=P(P(u) u, u) P(u) x-$ x (using JT1) $=2 P(u)^{2} x-x=x$.

To see $x \rightarrow \bar{x}$ is indeed an involution, first use the right unit to see $x \cdot{ }_{u} y=\left(x \cdot{ }_{u} y\right) \cdot{ }_{u} u=\langle x \bar{y} u\rangle$,

$$
\begin{equation*}
x \cdot{ }_{u} y=\langle x u y\rangle=\langle x \bar{y} u\rangle \quad(\text { when } \quad\{u u e\}=e) . \tag{1.27}
\end{equation*}
$$

Then

$$
\begin{array}{rlr}
\overline{x \cdot{ }_{u} y} & =\langle u\langle x u y\rangle u\rangle \\
& =\langle u x u\rangle y u\rangle-\{P(e) P(x, y) P(u)-P(u) P(x, y)\} e \cdot u(\text { by } 1.27) \\
& \left.=\langle\bar{x} y u\rangle-0 \quad \text { (again } P\left(K_{1 / 2}\right) e=0\right) \\
& =\bar{x} \cdot{ }_{u} \bar{y} \quad \text { (above). }
\end{array}
$$

Thus the involution condition is precisely (1.27).
The condition $E_{1}(u, u) \cdot y=y$ is necessary well as sufficient for (1.27) to hold. Indeed, using (1.21), (1.18) and $P\left(K_{1 / 2}\right) e=0$ one can show in general that $P(u)\{\langle x u y\rangle-\langle x \bar{y} u\rangle\}=\langle u\langle x u y\rangle u\rangle-$ $\langle u\langle x \bar{y} u\rangle u\rangle=\langle\langle u y u\rangle x u\rangle-\left\langle u u\langle\bar{y} x u\rangle=\left\{\operatorname{Id}-L\left(E_{1}(u, u)\right)\right\}\langle\bar{y} x u\rangle\right.$, which again establishes sufficiency; for necessity set $x=u$, so 〈uuy〉$\langle u \bar{y} u\rangle=E_{1}(u, u) \cdot y-P(u) \bar{y}=E_{1}(u, u) \cdot y-y$.

These alternative structures on the subsystems $P(u) J_{1 / 2}$ are important for the study of collinear idempotents [5]. These are families of tripotents $\left\{e_{1}, \cdots, e_{n}\right\}$ with $P\left(e_{2}\right) e_{j}=0,\left\{e_{i} e_{2} e_{j}\right\}=e_{j}$ for $i \neq j$, and the $P\left(e_{j}\right) J_{1 / 2}\left(e_{i}\right)=J_{1 / 2}\left(e_{i}\right) \cap J_{1}\left(e_{j}\right)$ carry isomorphic alternative structures. (The motivating example is the collinear matrix units $\left\{e_{11}, e_{12}, \cdots, e_{1 n}\right\}$ in $M_{n}(\Phi)$ under $x y^{t} x$.)
2. Ideal-building. A subspace $K \subset J$ is an ideal if it is both an outer ideal

$$
\begin{gather*}
P(J) K \subset K \tag{2.1}\\
L(J, J) K \subset K \tag{2.2}
\end{gather*}
$$

and an inner ideal

$$
\begin{equation*}
P(K) J \subset K \tag{2.3}
\end{equation*}
$$

If K is already an outer ideal, the inner condition (2.3) reduces to

$$
P\left(k_{i}\right) J \subset K \text { for some spanning set }\left\{k_{i}\right\} \text { for } K
$$

Note that the operators $L(y, z)$ cannot be derived from the $P(x)$'s.
From now on we fix a tripotent e with corresponding Peirce decomposition

$$
J=J_{1} \oplus J_{1 / 2} \oplus J_{0}
$$

Since the Peirce projections (1.1) are multiplication operators, any ideal $K \triangleleft J$ breaks into Peirce pieces

$$
K=K_{1} \oplus K_{1 / 2} \oplus K_{0} \quad\left(K_{i}=K \cap J_{i}\right)
$$

Using the expression (1.7) for the product $P(x) y$ in terms of bilinear products, we obtain a componentwise criterion for K to be an ideal (exactly like that in Jordan algebras).
2.4. Ideal Criterion. A subspace $K=K_{1} \oplus K_{1 / 2} \oplus K_{0}$ is an ideal in the JTS $J=J_{1} \oplus J_{1 / 2} \oplus J_{0}$ iff for $i=1,0$ and $j=1-i$ we have
(C1) K_{i} is an ideal in J_{i}
(C2) $E_{i}\left(J_{1 / 2}, K_{1 / 2}\right) \subset K_{i}$
(C3) $J_{i} \cdot K_{1 / 2} \subset K_{1 / 2}$
(C4) $K_{i} \cdot J_{1 / 2} \subset K_{1 / 2}$
(C5) $\quad P\left(J_{1 / 2}\right) K_{i} \subset K_{j}$
(C6) $P\left(k_{1 / 2}\right) J_{i} \subset K_{j}$ for some spanning set $\left\{k_{1 / 2}\right\}$ for $K_{1 / 2}$.
If $1 / 2 \in \Phi$ then (C5) and (C6) are superfluous.
Proof. Clearly the conditions are necessary, since any product with a factor in K must fall back in K. Just as in the Jordan algebra case, they also suffice. Outerness (2.1) $P(J) K \subset K$ follows by (1.7) since $P\left(J_{i}\right) K_{i} \supset K_{i}($ by $(\mathrm{C} 1)), P\left(J_{1 / 2}\right) K_{i} \subset K_{j}($ by $(\mathrm{C} 5)), J_{1 / 2} \cdot E_{1}\left(J_{1 / 2}, K_{1 / 2}\right) \subset$ $K_{1 / 2}$ (by (C2), (C4)), $K_{1 / 2} \cdot J_{0} \subset K_{1 / 2}$ (by (C3)), $J_{1} \cdot\left(J_{0} \cdot K_{1 / 2}\right) \subset K_{1 / 2}$ (by (C3)), $J_{i} \cdot\left(K_{i}^{*} \cdot J_{1 / 2}\right) \subset K_{1 / 2}$ (by (C4), (C3) - note that $K_{i}^{*}=K_{i}$ for any ideal $K_{i} \triangleleft J_{i}$ since the involution is given by a multiplication), and $E_{i}\left(J_{1 / 2}, J_{i}^{*} \cdot K_{1 / 2}\right) \subset K_{\imath}$ (by (C3), (C2)).

Outerness (2.2) $L(J, J) K=P(J, K) J \subset K$ follows by the linearization of (1.7). First note

$$
\left(\mathrm{C} 2^{\prime}\right) \quad E_{i}\left(K_{1 / 2}, J_{1 / i}\right) \subset K_{i}
$$

since $E_{i}\left(K_{1 / 2}, J_{1 / 2}\right)=E_{i}\left(J_{1 / 2}, K_{1 / 2}\right)^{*} \subset K_{i}^{*} \subset K_{i}$. We have $\left\{J_{i} J_{i} K_{i}\right\} \subset K_{i}$ (by (C1)), $\left\{J_{1 / 2} J_{i} K_{1 / 2}\right\} \subset E_{j}\left(J_{1 / 2}, J_{i}^{*} \cdot K_{1 / 2}\right) \subset K_{j} \quad$ (by $\quad \mathrm{P} 3$, (C3), (C2)), $K_{1 / 2} \cdot E_{1}\left(J_{1 / 2}, J_{1 / 2}\right) \subset K_{1 / 2}(\mathrm{by}(\mathrm{C} 3)), J_{1 / 2} \cdot E_{1}\left(K_{1 / 2}, J_{1 / 2}\right)+J_{1 / 2} \cdot E_{1}\left(J_{1 / 2}, K_{1 / 2}\right) \subset K_{1 / 2}(\mathrm{by}$ (C2'), (C2), (C4)), $J_{1 / 2} \cdot P\left(J_{1 / 2}, K_{1 / 2}\right) e=J_{1 / 2} \cdot E_{0}\left(J_{1 / 2}, K_{1 / 2}\right) \subset K_{1 / 2}$ (by (C2), (C4)), $J_{i} \cdot\left(K_{i}^{*} \cdot J_{12}\right)+K_{i} \cdot\left(J_{i}^{*} \cdot J_{1 / 2}\right) \subset K_{1 / 2} \quad\left(\right.$ by (C4), (C3)), $E_{i}\left(K_{1 / 2}, J_{i}^{*} \cdot J_{1 / 2}\right) \subset$ $E_{i}\left(K_{1 / 2}, J_{1 / 2}\right) \subset K_{i}\left(\right.$ by $\left.\left(\mathrm{C} 2^{\prime}\right)\right)$, and $E_{i}\left(J_{1 / 2}, K_{i}{ }^{*} \cdot J_{1 / 2}\right)=E_{i}\left(J_{1 / 2} \cdot K_{i} \cdot J_{1 / 2}\right) \subset K_{i}$ (by (C4), (C2)).

Once K is outer we can apply (2.3) to obtain innerness: for the spanning elements $k_{r} \in K_{r}$ we have $P\left(k_{i}\right) J=P\left(k_{i}\right) J_{i} \subset K_{i}$ by (C1) if $i=1,0$, while $P\left(k_{1 / 2}\right) J_{i} \subset K_{j}$ by (C6) and $P\left(k_{1 / 2}\right) J_{1 / 2}=k_{1 / 2} \cdot E_{1}\left(k_{1 / 2}, J_{1 / 2}\right)-$ $J_{1 / 2} \cdot P\left(k_{1 / 2}\right) e \subset K_{1 / 2} \cdot J_{1}-J_{1 / 2} \cdot K_{0} \subset K_{1 / 2}$ by P1, (C5), (C3), (C4). Thus K is an ideal.

When $1 / 2 \in \Phi$, (C5) and (C6) follow from (C2-C4) since $P(x)=$ $1 / 2 P(x, x)$ where $P\left(J_{1 / 2}, J_{1 / 2}\right) K_{i}=E_{j}\left(J_{1 / 2}, K_{i}^{*} \cdot J_{1 / 2}\right) \subset K_{j}$ by (C4), (C2), and $P\left(J_{1 / 2}, K_{1 / 2}\right) J_{i} \subset E_{j}\left(J_{1 / 2}, J_{i}^{*} \cdot K_{1 / 2}\right)+E_{j}\left(K_{1 / 2}, J_{i}^{*} \cdot J_{1 / 2}\right) \subset K_{j}$ by (C3), (C2), (C2').

An ideal K_{i} in a diagonal Peirce space J_{i} is invariant if it is both L-invariant

$$
\begin{equation*}
L\left(J_{1 / 2}, J_{1 / 2}\right) K_{i}=E_{i}\left(J_{1 / 2}, K_{i}^{*} \cdot J_{1 / 2}\right) \subset K_{i} \tag{2.5}
\end{equation*}
$$

and if $i=0$, also

$$
\begin{equation*}
L\left(J_{1 / 2}, e\right) P\left(J_{0}, J_{1 / 2}\right) K_{0}=E_{0}\left(J_{1 / 2}, J_{0} \cdot\left(K_{0} \cdot J_{1 / 2}\right)\right) \subset K_{0} \tag{2.6}
\end{equation*}
$$

and P-invariant

$$
\begin{equation*}
P\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right) K_{i} \subset K_{i} \tag{2.7}
\end{equation*}
$$

and again if $i=0$ also

$$
\begin{equation*}
P^{*}\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right) K_{0}=P\left(J_{1 / 2}\right) P^{*}\left(J_{1 / 2}\right) K_{0}=P\left(J_{1 / 2}\right) P(e) P\left(J_{1 / 2}\right) K_{0} \subset K_{0} . \tag{2.8}
\end{equation*}
$$

Note that the maps $L\left(J_{1 / 2}, J_{1 / 2}\right)$ and $P\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right)$ automatically send J_{i} into itself (and $L\left(J_{1 / 2}, e\right) P\left(J_{0}, J_{1 / 2}\right)$ and $P\left(J_{1 / 2}\right) P(e) P\left(J_{1 / 2}\right)$ send J_{0} into itself).

An ideal $K_{1 / 2} \triangleleft J_{1 / 2}$ in the off-diagonal Peirce space is invariant if

$$
\begin{equation*}
L\left(J_{i}\right) K_{1 / 2}=J_{i} \cdot K_{1 / 2} \subset K_{1 / 2} \tag{2.9}
\end{equation*}
$$

$$
\begin{align*}
& L_{1}\left(J_{1 / 2}\right) L_{0}\left(J_{1 / 2}\right) K_{1 / 2}=L\left(J_{1 / 2}, e\right) L\left(e, J_{1 / 2}\right) K_{1 / 2}=\left\langle K_{1 / 2} J_{1 / 2} J_{1 / 2}\right\rangle \subset K_{1 / 2} \tag{2.10}\\
& L_{1}\left(J_{1 / 2}\right) L_{0}\left(K_{1 / 2}\right) J_{1 / 2}=L\left(J_{1 / 2}, e\right) P\left(e, J_{1 / 2}\right) K_{1 / 2}=\left\langle J_{1 / 2} K_{1 / 2} J_{1 / 2}\right\rangle \subset K_{1 / 2}
\end{align*}
$$

Note that these maps do send $J_{1 / 2}$ back into itself.
An alternate characterization of invariance in terms of the bracket products is that $K_{1 / 2}$ be a subspace satisfying

$$
J_{i} \cdot K_{1 / 2} \subset K_{1 / 2}
$$

$$
\begin{gather*}
\left\langle J_{1 / 2} J_{1 / 2} K_{1 / 2}\right\rangle_{1}+\left\langle J_{1 / 2} K_{1 / 2} J_{1 / 2}\right\rangle_{1}+\left\langle K_{1 / 2} J_{1 / 2} J_{1 / 2}\right\rangle_{1} \subset K_{1 / 2} \\
\left\langle J_{1 / 2} K_{1 / 2} J_{1 / 2}\right\rangle_{0}+\left\langle K_{1 / 2} ; J_{1 / 2}\right\rangle_{0} \subset K_{1 / 2},
\end{gather*}
$$

i.e., that $K_{1 / 2}$ be an ideal of the bracket algebra $J_{1 / 2}$. Clearly any invariant bracket ideal $\left(2.9^{\prime}\right)-\left(2.10^{\prime \prime}\right)$ is invariant in the sense of (2.9)-(2.10) and is an ordinary ideal by (1.11). Conversely, if $K_{1 / 2}$ is an invariant ordinary ideal it must be a bracket ideal: $\left\langle K_{1 / 2} J_{1 / 2} J_{1 / 2}\right\rangle_{1}+$ $\left\langle J_{1 / 2} K_{12} J_{1 / 2}\right\rangle_{1}$ is contained in $K_{1 / 2}$ by invariance (2.10), $\left\langle J_{1 / 2} J_{1 / 2} K_{1 / 2}\right\rangle_{1} \subset$ $J_{1} \cdot K_{1 / 2} \subset K_{1 / 2}$ by invariance (2.9), similarly $\left\langle J_{1 / 2} J_{J_{1 / 2}} K_{1 / 2}\right\rangle_{0} \subset J_{0} \cdot K_{1 / 2} \subset K_{1 / 2}$ by (2.9), while $\left\langle J_{1 / 2} K_{1 / 2} J_{1 / 2}\right\rangle_{0}=\left\langle K_{1 / 2} J_{1 / 2} J_{1 / 2}\right\rangle_{0} \subset-\left\{J_{1 / 2} J_{1 / 2} K_{1 / 2}\right\}+\left\langle J_{1 / 2} J_{1 / 2} K_{1 / 2}\right\rangle_{1}+$ $\left\langle K_{1 / 2} J_{1 / 2} J_{1 / 2}\right\rangle_{1} \subset K_{1 / 2}$ by ordinary idealness and closure under $\langle\text {, , }\rangle_{1}$, also $\left\langle K_{1 / 2} ; J_{1 / 2}\right\rangle_{0}=\left\langle K_{1 / 2} J_{1 / 2} K_{1 / 2}\right\rangle_{2}-P\left(K_{1 / 2}\right) J_{1 / 2} \subset K_{1 / 2}$ for the same reason, with $\left\langle J_{1 / 2} ; K_{1 / 2}\right\rangle_{0} \subset J_{0} \cdot K_{1 / 2} \subset K_{1 / 2}$ by (2.9).

If $1 / 2 \in \Phi$ then L-invariance (2.5) of $K_{i} \triangleleft J_{i}$ implies P-invariance (2.7) in view of JT8. It is not clear whether (2.5), (2.6) imply (2.8) when $1 / 2 \in \Phi$.

An important tool is the ability to flip an ideal from one diagonal Peirce space to another.
2.11. Flipping Lemma. If K_{1} is an ideal in J_{1} then

$$
K_{0}=P\left(J_{1 / 2}\right) K_{1}
$$

is an ideal in J_{0}, which is invariant if K_{1} is. If K_{0} is an ideal in J_{0} then

$$
K_{1}=P\left(J_{1 / 2}\right) K_{0}+P^{*}\left(J_{1 / 2}\right) K_{0}
$$

is an ideal in J_{1}, which again is invariant if K_{0} is.

Proof. We handle both cases at once by proving

$$
K_{j}=P\left(J_{1 / 2}\right) K_{i}+P^{*}\left(J_{1 / 2}\right) K_{i}
$$

is an ideal inheriting invariance from K_{i}. Note again that $K_{i}^{*}=K_{i}$ for any ideal $K_{i} \triangleleft J_{i}$.

Outerness (2.1) follows from (PI11, 10):

$$
\begin{aligned}
& P\left(a_{j}\right) P\left(x_{1 / 2}\right) k_{\imath}=P^{*}\left(a_{j}^{*} \cdot x_{1 / 2}\right) k_{i} \in P^{*}\left(J_{1 / 2}\right) K_{i} \\
& P\left(a_{j}\right) P^{*}\left(x_{1 / 2}\right) k_{i}=P\left(a_{j} \cdot x_{1 / 2}\right) k_{i} \in P\left(J_{1 / 2}\right) K_{i} .
\end{aligned}
$$

Outerness (2.2) follows from (PI12, 13):

$$
\begin{aligned}
& L\left(a_{j}, b_{j}\right) P\left(x_{1 / 2}\right) k_{i}=P\left(a_{j} \cdot\left(b_{j}^{*} \cdot x_{1 / 2}\right), x_{1 / 2}\right) k_{i} \in P\left(J_{1 / 2}\right) K_{i} \\
& L\left(a_{j}, b_{j}\right) P^{*}\left(x_{1 / 2}\right) k_{i}=P\left(a_{j}^{*} \cdot\left(b_{j} \cdot x_{1 / 2}\right), x_{1 / 2}\right) k_{i} \in P^{*}\left(J_{1 / 2}\right) K_{i}
\end{aligned}
$$

To see that K_{j} is inner (2.3'), for the spanning elements $P\left(x_{1 / 2}\right) k_{i}$ and $P^{*}\left(x_{1 / 2}\right) k_{\imath}$ we have

$$
\begin{aligned}
& P\left(P\left(x_{1 / 2}\right) k_{i}\right) J_{j}=P\left(x_{1 / 2}\right) P\left(k_{i}\right) P\left(x_{1 / 2}\right) J_{j} \subset P\left(x_{1 / 2}\right) P\left(k_{i}\right) J_{i} \subset P\left(x_{1 / 2}\right) K_{i} \\
& P\left(P^{*}\left(x_{1 / 2}\right) k_{i}\right) J_{j}=P^{*}\left(x_{1 / 2}\right) P\left(k_{i}\right) P^{*}\left(x_{1 / 2}\right) J_{j} \subset P^{*}\left(x_{1 / 2}\right) P\left(k_{i}\right) J_{i} \subset P^{*}\left(x_{1 / 2}\right) K_{i}
\end{aligned}
$$

using (1.8) and innerness of K_{i} in J_{i}. Thus K_{j} is inner as well as outer, hence is an ideal in J_{j}.

If K_{i} is L-invariant (2.5) to begin with, then K_{j} will be L invariant too:

$$
\begin{aligned}
L\left(x_{1 / 2}, y_{1 / 2}\right) P\left(z_{1 / 2}\right) k_{i}= & \left\{P\left(\left\{x_{1 / 2} y_{1 / 2} z_{1 / 2}\right\}, z_{1 / 2}\right)-P\left(z_{1 / 2}\right) L\left(y_{1 / 2}, x_{1 / 2}\right)\right\} k_{i} \quad \text { (by JT5) } \\
& \in P\left(J_{1 / 2}\right) K_{i}+P\left(J_{1 / 2}\right) L\left(J_{1 / 2}, J_{1 / 2}\right) K_{i} \subset P\left(J_{1 / 2}\right) K_{i} \\
& (\text { by } L \text {-invariance }) \\
L\left(x_{1 / 2}, y_{1 / 2}\right) P^{*}\left(z_{1 / 2}\right) k_{0}= & L\left(x_{1 / 2}, y_{1 / 2}\right) P(e) P\left(z_{1 / 2}\right) k_{0} \\
= & \left\{P\left(\left\{x_{1 / 2} y_{1 / 2} e\right\}, e\right)-P(e) L\left(y_{1 / 2}, x_{1 / 2}\right)\right\} P\left(z_{1 / 2}\right) k_{0} \quad \text { (by JT5) } \\
& \in P\left(J_{1}\right) P\left(J_{1 / 2}\right) K_{0}-\left(L\left(J_{1 / 2}, J_{1 / 2}\right) P\left(J_{1 / 2}\right) K_{0}\right)^{*} \\
& \subset P^{*}\left(J_{1 / 2}\right) K_{0} \quad \text { (by PI11, above, and } L \text {-invariance). }
\end{aligned}
$$

L-invariance (2.6) only applies when $i=1$. In this case it follows from L-invariance (2.5) of K_{1} : we have $E_{0}\left(J_{1 / 2}, K_{1} \cdot J_{1 / 2}\right)=\left\{J_{1 / 2} K_{1} J_{1 / 2}\right\} \subset K_{0}$ by definition, and $J_{0} \cdot\left(K_{0} \cdot J_{1 / 2}\right) \subset K_{1} \cdot J_{1 / 2}$ because $\left\{J_{0}\left(P\left(J_{1 / 2}\right) K_{1}\right) J_{1 / 2}\right\}=$ $-\left\{J_{0}\left(P\left(J_{1 / 2}\right) J_{1 / 2}\right) K_{1}\right\}+\left\{J_{0} J_{1 / 2}\left\{K_{1} J_{1 / 2} J_{1 / 2}\right\}\right\}$ (by JT2) $\subset\left\{J_{0} J_{1 / 2} K_{1}\right\}$ (by L-invari-
ance of $\left.K_{1}\right)=K_{1} \cdot\left(J_{0} \cdot J_{1 / 2}\right) \subset K_{1} \cdot J_{1 / 2}$.
If in addition K_{i} is P-invariant (2.7) the same is true of K_{j} :

$$
\begin{aligned}
& P\left(x_{1 / 2}\right) P\left(y_{1 / 2}\right)\left(P\left(z_{1 / 2}\right) k_{i}\right)=P\left(x_{1 / 2}\right)\left(P\left(y_{1 / 2}\right) P\left(z_{1 / 2}\right) k_{i}\right) \in P\left(J_{1 / 2}\right) K_{i} \\
& P\left(x_{1 / 2}\right) P\left(y_{1 / 2}\right)\left(P^{*}\left(z_{1 / 2}\right) k_{0}\right)=P\left(x_{1 / 2}\right) P\left(y_{1 / 2}\right) P(e) P\left(z_{1 / 2}\right) k_{0} \\
& =\left\{P\left(\left\{x_{1 / 2} y_{1 / 2} e\right\}\right)+P\left(P\left(x_{1 / 2}\right) P\left(y_{1 / 2}\right) e, e\right)-P(e) P\left(y_{1 / 2}\right) P\left(x_{1 / 2}\right)\right. \\
& \left.\quad-L\left(x_{1 / 2}, y_{1 / 2}\right) P(e) L\left(y_{1 / 2}, x_{1 / 2}\right)\right\} P\left(z_{1 / 2}\right) k_{0} \quad(\text { by JT4) } \\
& \quad \subset\left\{P\left(J_{1}\right)-P(e) P\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right)-L\left(J_{1 / 2}, J_{1 / 2}\right) P(e) L\left(J_{1 / 2}, J_{1 / 2}\right)\right\} P\left(J_{1 / 2}\right) K_{0} \\
& \left.\quad \subset P^{*}\left(J_{1 / 2}\right) K_{0}-L\left(J_{1 / 2}, J_{1 / 2}\right) P^{*}\left(J_{1 / 2}\right) K_{0} \quad \text { (by } P, L \text {-invariance of } K_{0}\right) \\
& \left.\quad \subset P^{*}\left(J_{1 / 2}\right) K_{0} \quad \text { (by above } L \text {-invariance of } K_{1}\right) .
\end{aligned}
$$

P-invariance (2.8) applies only when $i=1$. In this case it follows from P-invariance (2.7) for $K_{1}: P^{*}\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right) K_{0}=P\left(J_{1 / 2}\right) P(e) P\left(J_{1 / 2}\right)\left\{P\left(J_{1 / 2}\right) K_{1}\right\} \subset$ $P\left(J_{1 / 2}\right) P(e) K_{1}$ (by P-invariance of $\left.K_{1}\right)=P\left(J_{1 / 2}\right) K_{1}=K_{0}$.

It is not clear whether $P\left(J_{1 / 2}\right) K_{0}$ inherits P-invariance when K_{0} is merely P-invariant (not also L-invariant).

We can now obtain the main result on Peirce ideals. Notice how much messier the formulation becomes for triple systems.
2.12. Proposition Theorem. An ideal K_{i} in a Peirce subsystem J_{i} is the projection of a global ideal K in J iff K_{i} is invariant. In this case the ideal generated by K_{i} takes the form

$$
\begin{aligned}
(i=1) \quad K= & K_{1} \oplus K_{1} \cdot J_{1 / 2} \oplus P\left(J_{1 / 2}\right) K_{1} \\
(i=0) \quad K= & K_{0} \oplus\left\{K_{0} \cdot J_{1 / 2}+J_{0} \cdot\left(K_{0} \cdot J_{1 / 2}\right)+P\left(J_{1 / 2}\right) K_{0} \cdot J_{1 / 2}\right\} \\
& \oplus\left\{P\left(J_{1 / 2}\right) K_{0}+P^{*}\left(J_{1 / 2}\right) K_{0}\right\} \\
\left(i=\frac{1}{2}\right) K= & \left\{E_{0}\left(J_{1 / 2}, K_{1 / 2}\right)+P\left(K_{1 / 2}\right) J_{1}+P\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{0}+P^{*}\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{0}\right\} \\
& \oplus K_{1 / 2} \oplus\left\{E_{1}\left(J_{1 / 2}, K_{1 / 2}\right)+E_{1}\left(K_{1 / 2}, J_{1 / 2}\right)+P\left(K_{1 / 2}\right) J_{0}+P^{*}\left(K_{1 / 2}\right) J_{0}\right. \\
& \left.+P\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{1}+P^{*}\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{1}\right\}
\end{aligned}
$$

If $1 / 2 \in \Phi$ we have $P\left(J_{1 / 2}\right) K_{i}=E_{j}\left(J_{1 / 2}, K_{i} \cdot J_{1 / 2}\right), P\left(K_{1 / 2}\right) J_{j}+P^{*}\left(K_{1 / 2}\right) J_{j} \subset$ $E_{i}\left(K_{1 / 2}, K_{1 / 2}\right), P\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{i}+P^{*}\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{i} \subset E_{i}\left(J_{1 / 2}, K_{1 / 2}\right)+E_{i}\left(J_{1 / 2}, K_{1 / 2}\right)^{*}$ so the expressions for K reduce to

$$
\begin{aligned}
(i=1) \quad K= & K_{1} \oplus K_{1} \cdot J_{1 / 2} \oplus E_{0}\left(J_{1 / 2}, K_{1} \cdot J_{1 / 2}\right) \\
(i=0) \quad K= & K_{0} \oplus\left\{K_{0} \cdot J_{1 / 2}+J_{0} \cdot\left(K_{0} \cdot J_{1 / 2}+E_{1}\left(J_{1 / 2}, K_{0} \cdot J_{1 / 2}\right) \cdot J_{1 / 2}\right)\right\} \\
& \oplus\left\{E_{1}\left(J_{1 / 2}, K_{0} \cdot J_{1 / 2}\right)+E_{1}\left(K_{0} \cdot J_{1 / 2}, J_{1 / 2}\right)\right\} \\
\left(i=\frac{1}{2}\right) \quad K= & E_{0}\left(J_{1 / 2}, K_{1 / 2}\right) \oplus K_{1 / 2} \oplus\left\{E_{1}\left(J_{1 / 2}, K_{1 / 2}\right)+E_{1}\left(K_{1 / 2}, J_{1 / 2}\right)\right\} .
\end{aligned}
$$

Proof. We have already noted that a Peirce component K_{i} must
be invariant under global multiplications sending J_{i} into itself. Certainly the ideal generated by K_{i} contains all the above products; it remains only to show in each case K forms an ideal.

We begin with the easier diagonal cases $i=1,0$, where $K=$ $K_{i} \oplus K_{1 / 2} \oplus K_{j}=K_{i} \oplus\left\{K_{i} \cdot J_{1 / 2}+J_{i} \cdot\left(K_{i} \cdot J_{1 / 2}\right)+P\left(J_{1 / 2}\right) K_{i} \cdot J_{1 / 2}\right\} \oplus\left\{P\left(J_{1 / 2}\right) K_{i}+\right.$ $P^{*}\left(J_{1 / 2}\right) K_{i}$ \} (note for $i=1$ that some of these products simplify: $J_{1} \cdot\left(K_{1} \cdot J_{1 / 2}\right) \subset\left(J_{1} \cdot K_{1}\right) \cdot J_{1 / 2}-K_{1} \cdot\left(J_{1} \cdot J_{1 / 2}\right) \subset K_{1} \cdot J_{1 / 2}$ by PIiv, $P^{*}\left(J_{1 / 2}\right) K_{1}=$ $P\left(J_{1 / 2}\right) K_{1}$ since $K_{1}^{*}=K_{1}, \quad$ and $\quad P\left(J_{1 / 2}\right) K_{1} \cdot J_{1 / 2} \subset J_{1 / 2} \cdot L\left(J_{1 / 2}, J_{1 / 2}\right) K_{1}-$ $K_{1}^{*} \cdot P\left(J_{1 / 2}\right) J_{1 / 2} \subset J_{1 / 2} \cdot K_{1}$ by JT2).

We verify that the K_{r} satisfy the conditions (C1)-(C6) of (1.4). For (C1), K_{i} is an invariant ideal in J_{i} by hypothesis and $K_{j}=$ $P\left(J_{1 / 2}\right) K_{i}+P^{*}\left(J_{1 / 2}\right) K_{i}$ is an invariant ideal in J_{j} by the Flipping Lemma 2.11. For (C5) we have $P\left(J_{1 / 2}\right) K_{i} \subset K_{j}$ by construction, and $P\left(J_{1 / 2}\right) K_{j}=P\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right) K_{i}+P\left(J_{1 / 2}\right) P^{*}\left(J_{1 / 2}\right) K_{i} \subset K_{i}$ by P-invariance (2.7), (2.8). For (C2) we have $E_{i}\left(J_{1 / 2}, K_{1 / 2}\right)$ the sum of $E_{i}\left(J_{1 / 2}, K_{i} \cdot J_{1 / 2}\right)$ and $E_{i}\left(J_{1 / 2}, J_{i} \cdot\left(K_{i} \cdot J_{1 / 2}\right)\right)$ and $E_{i}\left(J_{1 / 2}, P\left(J_{1 / 2}\right) K_{i} \cdot J_{1 / 2}\right)$ (the latter two only when $i=0)$. The first of these has $E_{i}\left(J_{1 / 2}, K_{i} \cdot J_{1 / 2}\right)=L\left(J_{1 / 2}, J_{1 / 2}\right) K_{i}^{*} \subset K_{i}$ by (P4) and the L-invariance (2.5) of $K_{i}=K_{i}^{*}$. For $i=0$ the second term $E_{0}\left(J_{1 / 2}, J_{0} \cdot\left(K_{0} \cdot J_{1 / 2}\right)\right)$ falls in K_{0} by the hypothesis of L-invariance (2.6). For $i=0$ the third term becomes $E_{0}\left(J_{1 / 2}, P\left(J_{1 / 2}\right) K_{0} \cdot J_{1 / 2}\right)=$ $\left\{J_{1 / 2}\left(P\left(J_{1 / 2}\right) K_{0}\right)^{*} J_{1 / 2}\right\}$ (by P3) $\subset P\left(J_{1 / 2}\right) P^{*}\left(J_{1 / 2}\right) K_{0}$, which falls in K_{0} by the hypothesis of P-invariance (2.8). Continuing with (C2), we examine $E_{j}\left(J_{1 / 2}, K_{1 / 2}\right) . \quad$ By (P3) $E_{j}\left(J_{1 / 2}, K_{i} \cdot J_{1 / 2}\right)=\left\{J_{1 / 2} K_{i}^{*} J_{1 / 2}\right\} \subset P\left(J_{1 / 2}\right) K_{i} \subset K_{j}$ by (C5). When $i=0$ we must examine two other terms: $E_{1}\left(J_{1 / 2}, J_{0}\right.$. $\left.\left(K_{0} \cdot J_{1 / 2}\right)\right)=E_{1}\left(K_{0} \cdot J_{1 / 2}, J_{0} \cdot J_{1 / 2}\right) \subset E_{1}\left(K_{0} \cdot J_{1 / 2}, J_{1 / 2}\right)=E_{1}\left(J_{1 / 2}, K_{0} \cdot J_{1 / 2}\right)^{*} \subset K_{1}^{*}=K_{1}$ as above, and $E_{1}\left(J_{1 / 2}, P\left(J_{1 / 2}\right) K_{0} \cdot J_{1 / 2}\right)=L\left(J_{1 / 2}, J_{1 / 2}\right)\left(P\left(J_{1 / 2}\right) K_{0}\right)^{*}=$ $L\left(J_{1 / 2}, J_{1 / 2}\right) P(e) P\left(J_{1 / 2}\right) K_{0} \quad$ where $L(x, y) P(e) P(z) k_{0}=P(e) P(z) L(x, y) k_{0}+$ $P(\{x y e\}, \quad e) P(z) k_{0}-P(e) P(\{y x z\}, \quad z) k_{0} \in P(e) P\left(J_{1 / 2}\right) L\left(J_{1 / 2}, \quad J_{1 / 2}\right) K_{0}+$ $P\left(J_{1}\right) P\left(J_{1 / 2}\right) K_{0}-P(e) P\left(J_{1 / 2}\right) K_{0} \subset P(e) P\left(J_{1 / 2}\right) K_{0}+P^{*}\left(J_{1 / 2}\right) K_{0}$ (by PI11 and L-invariance (2.5)) $\subset K_{1}$. This completes the verification of (C2). We have (C4) because $K_{i} \cdot J_{1 / 2} \subset K_{1 / 2}$ by construction and $K_{j} \cdot J_{1 / 2}=$ $\left(P\left(J_{1 / 2}\right) K_{i}\right) \cdot J_{1 / 2}+\left(P\left(J_{1 / 2}\right) K_{i}\right)^{*} \cdot J_{1 / 2}$ (the two differing only when $i=0)$ where the latter is by PI8 contained in $E_{i}\left(J_{1 / 2}, K_{i}^{*} \cdot J_{1 / 2}\right)^{*} \cdot J_{1 / 2}$ $K_{i}^{*} \cdot P\left(J_{1 / 2}\right) J_{1 / 2} \subset K_{i}^{*} \cdot J_{1 / 2}-K_{i}^{*} \cdot J_{1 / 2}$ (by L-invariance (2.5)) $\subset K_{i} \cdot J_{1 / 2} \subset K_{1 / 2}$ and when $i=0$ the former $\left(P\left(J_{1 / 2}\right) K_{0}\right) \cdot J_{1 / 2}$ is contained in $K_{1 / 2}$ by construction. (There does not seem to be any way to show it falls into $K_{0} \cdot J_{1 / 2}+J_{0} \cdot\left(K_{0} \cdot J_{1 / 2}\right)$.) For (C3) note that $J_{i} \cdot\left(K_{i} \cdot J_{1 / 2}\right) \subset K_{1 / 2}$ by construction, $J_{j} \cdot\left(K_{i} \cdot J_{1 / 2}\right)=K_{i}^{*} \cdot\left(J_{j}^{*} \cdot J_{1 / 2}\right) \subset K_{1 / 2}$ by P6, and for $i=0$ $J_{1} \cdot\left[J_{0} \cdot\left(K_{0} \cdot J_{1 / 2}\right)\right] \subset J_{0} \cdot\left(K_{0} \cdot\left(J_{1} \cdot J_{1 / 2}\right)\right) \subset K_{1 / 2}$ using P6 twice, and $J_{0} \cdot\left[J_{0} \cdot\right.$ $\left.\left(K_{0} \cdot J_{1 / 2}\right)\right] \subset\left\{J_{0} J_{0} K_{0}\right\} \cdot J_{1 / 2}-K_{0} \cdot\left(J_{0} \cdot\left(J_{0} \cdot J_{1 / 2}\right)\right)($ by PI1i $) \subset K_{0} \cdot J_{1 / 2} \subset K_{1 / 2}$, and finally $J_{r} \cdot\left(P\left(J_{1 / 2}\right) K_{0} \cdot J_{1 / 2}\right) \subset J_{r} \cdot\left(K_{1} \cdot J_{1 / 2}\right) \subset K_{1 / 2}$ by the above. For the last criterion (C6) we consider the spanning elements $k_{i} \cdot x_{1 / 2}$ (and, when $i=0, a_{0} \cdot\left(k_{0} \cdot x_{1 / 2}\right)$ and $P\left(x_{1 / 2}\right) k_{0} \cdot y_{1 / 2}$ as well). We observe by PI10, (C5), (C1) that $P\left(k_{i} \cdot x_{1 / 2}\right)\left(J_{i}+J_{j}\right)=P^{*}\left(x_{1 / 2}\right) P\left(k_{i}\right) J_{i}+P\left(k_{i}\right) P^{*}\left(x_{1 / 2}\right) J_{j} \subset$
$P^{*}\left(J_{1 / 2}\right) K_{i}+P\left(K_{i}\right) J_{i} \subset K_{j}+K_{i}$, also $P\left(a_{0} \cdot\left(k_{0} \cdot x_{1 / 2}\right)\right)\left(J_{1}+J_{0}\right)=P\left(a_{0}\right) P^{*}\left(k_{0}\right.$. $\left.x_{1 / 2}\right) J_{1}+P^{*}\left(k_{0} \cdot x_{1 / 2}\right) P\left(a_{0}\right) J_{0}=P\left(a_{0}\right) P\left(k_{0}\right) P\left(x_{1 / 2}\right) J_{1}+P\left(x_{1 / 2}\right) P\left(k_{0}\right) P\left(a_{0}\right) J_{0} \subset$ $P\left(J_{0}\right) K_{0}+P\left(J_{1 / 2}\right) K_{0} \subset K_{0}+K_{1}, \quad$ and also $P\left(P\left(x_{1 / 2}\right) k_{0} \cdot y_{1 / 2}\right)\left(J_{1}+J_{0}\right)=$ $P^{*}\left(y_{1 / 2}\right) P\left(P\left(x_{1 / 2}\right) k_{0}\right) J_{1}+P\left(P\left(x_{1 / 2}\right) k_{0}\right) P^{*}\left(y_{1 / 2}\right) J_{0}=P^{*}\left(y_{1 / 2}\right) P\left(x_{1 / 2}\right) P\left(k_{0}\right) P\left(x_{1 / 2}\right) J_{1}+$ $P\left(x_{1 / 2}\right) P\left(k_{0}\right) P\left(x_{1 / 2}\right) P^{*}\left(y_{1 / 2}\right) J_{0} \subset P^{*}\left(J_{1 / 2}\right) K_{1}+P\left(J_{1 / 2}\right) K_{0} \subset K_{0}+K_{1}$. Thus (C1)-(C6) hold, and K is an ideal.

The case $i=1 / 2$ is even more tiresome. We must again verify (C1)-(C6). (C3) follows from invariance (2.9), and (C2) and (C6) follow by our construction of K_{1}, K_{0}. For the sake of symmetry we write the diagonal Peirce pieces as

$$
\begin{aligned}
K_{i}= & E_{i}\left(J_{1 / 2}, K_{1 / 2}\right)+E_{i}\left(J_{1 / 2}, K_{1 / 2}\right)^{*}+P\left(K_{1 / 2}\right) J_{j}+P^{*}\left(K_{1 / 2}\right) J_{j} \\
& +P\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{i}+P^{*}\left(J_{1 / 2}\right) P\left(K_{12}\right) J_{i} .
\end{aligned}
$$

As we remarked after (2.10), an invariant ideal is closed under all brackets:
(*)

$$
\left\{E_{i}\left(K_{1 / 2}, J_{1 / 2}\right)+E_{i}\left(J_{1 / 2}, K_{1 / 2}\right)\right\} \cdot J_{1 / 2} \subset K_{1 / 2}
$$

We can now establish the rest of (C4), $K_{i} \cdot J_{1 / 2} \subset K_{1 / 2}$. Since $E_{i}\left(J_{1 / 2}, K_{1 / 2}\right)^{*}=$ $E_{\imath}\left(K_{1 / 2}, J_{1 / 2}\right)$ by P8, we have so far that $\left\{E_{i}+E_{i}^{*}\right\} \cdot J_{1 / 2} \subset K_{1 / 2}$. Next, we observe $\left\{P\left(K_{1 / 2}\right) J_{j}+P^{*}\left(K_{1 / 2}\right) J_{j}\right\} \cdot J_{1 / 2} \subset E_{j}\left(K_{1 / 2}, J_{1 / 2}\right) \cdot\left(J_{j}^{*} \cdot K_{1 / 2}\right)-$ $P\left(K_{1 / 2}\right)\left(J_{j} \cdot J_{1 / 2}\right)+E_{j}\left(J_{1 / 2}, J_{j}^{*} \cdot K_{1 / 2}\right)^{*} \cdot K_{1 / 2}-J_{j}^{*} \cdot P\left(K_{1 / 2}\right) J_{1 / 2} \quad($ by PI7, 8$) \subset$ $J_{j} \cdot\left(J_{j} \cdot K_{1 / 2}\right)-P\left(K_{1 / 2}\right) J_{1 / 2}+J_{j}^{*} \cdot K_{1 / 2}-J_{j} \cdot P\left(K_{1 / 2}\right) J_{1 / 2} \subset K_{1 / 2}$ by invariance (2.9) and inner idealness $P\left(K_{1 / 2}\right) J_{1 / 2} \subset J_{1 / 2}$. Finally, $\left\{P\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{i}+\right.$ $\left.P^{*}\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{i}\right\} \cdot J_{1 / 2} \subset E_{j}\left(J_{1 / 2}, J_{1 / 2}\right) \cdot\left[\left(P\left(K_{1 / 2}\right) J_{i}\right)^{*} \cdot J_{1 / 2}\right]-P\left(J_{1 / 2}\right)\left[P\left(K_{1 / 2}\right) J_{i}\right.$. $\left.J_{1 / 2}\right]+E_{j}\left(P\left(K_{1 / 2}\right) J_{i} \cdot J_{1 / 2}, J_{1 / 2}\right) \cdot J_{1 / 2}-P\left(K_{1 / 2}\right) J_{i} \cdot P\left(J_{1 / 2}\right) J_{1 / 2} \quad$ (by PI7, 8 again) \subset $J_{j} \cdot K_{1 / 2}-P\left(J_{1 / 2}\right) K_{1 / 2}+E_{j}\left(K_{1 / 2}, J_{1 / 2}\right) \cdot J_{1 / 2}-K_{1 / 2}($ by the previous case $) \subset$ $K_{1 / 2}$ by invariance, outer idealness, and (*). Thus all 6 pieces of K_{i} send $J_{1 / 2}$ into $K_{1 / 2}$, completing (C4).

Next we check (C5), $P\left(J_{1 / 2}\right) K_{i} \subset K_{j}$. We have $P\left(J_{1 / 2}\right)\left\{E_{i}\left(J_{1 / 2}, K_{1 / 2}\right)+\right.$ $\left.E_{i}\left(J_{1 / 2}, K_{1 / 2}\right)^{*}\right\}=P\left(J_{1 / 2}\right)\left\{E_{i}\left(J_{1 / 2}, K_{1 / 2}\right)+E_{i}\left(K_{1 / 2}, J_{1 / 2}\right)\right\} \subset E_{j}\left(J_{1 / 2},\left\langle K_{1 / 2}, J_{1 / 2}\right.\right.$, $\left.\left.J_{1 / 2}\right\rangle_{j}\right)-E_{j}\left(P\left(J_{1 / 2}\right) J_{1 / 2}, K_{1 / 2}\right)+E_{j}\left(J_{1 / 2},\left\langle J_{1 / 2}, J_{1 / 2}, K_{1 / 2}\right\rangle_{j}\right)-E_{j}\left(P\left(J_{1 / 2}\right) K_{1 / 2}, J_{1 / 2}\right)$ (by PI5) $\subset E_{j}\left(J_{1 / 2}, K_{1 / 2}\right)+E_{j}\left(K_{1 / 2}, J_{1 / 2}\right) \subset K_{j}$ by invariance and outer idealness. We have $P\left(J_{1 / 2}\right)\left[P\left(K_{1 / 2}\right) J_{1}\right] \subset K_{1}$ and $P\left(J_{1 / 2}\right)\left[P\left(K_{1 / 2}\right) J_{0}+\right.$ $\left.\left(P\left(K_{1 / 2}\right) J_{0}\right)^{*}\right] \subset P\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{0}+P^{*}\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{0} \subset K_{0}$ by construction. For $P\left(J_{1 / 2}\right)\left[P\left(J_{1 / 2}\right)\left(P\left(K_{1 / 2}\right) J_{i}\right)+P^{*}\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{i}\right] \quad$ we first have $P\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{i}=\left\{P\left(\left\{J_{1 / 2} J_{1 / 2} K_{1 / 2}\right\}\right)-P\left(K_{1 / 2}\right) P\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right)+P\left(P\left(J_{1 / 2}\right)\right.\right.$ $\left.\left.P\left(J_{1 / 2}\right) K_{1 / 2}, K_{1 / 2}\right)-L\left(J_{1 / 2}, J_{1 / 2}\right) P\left(K_{1 / 2}\right) L\left(J_{1 / 2}, J_{1 / 2}\right)\right\} J_{i} \quad($ by JT 4$) \subset P\left(K_{1 / 2}\right) J_{i}-$ $L\left(J_{1 / 2}, J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{i} \subset P\left(K_{1 / 2}\right) J_{i}+\left\{P\left(K_{1 / 2}\right) L\left(J_{1 / 2}, J_{1 / 2}\right)-P\left(\left\{J_{1 / 2} J_{1 / 2} K_{1 / 2}\right\}, K_{1 / 2}\right)\right\} J_{i}$ (by JT5) $\subset P\left(K_{1 / 2}\right) J_{i} \subset K_{j}$. With the ${ }^{*}$'s we consider the cases $i=1$, $i=0$ separately. For $i=1, P\left(J_{1 / 2}\right) P^{*}\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{1}=P\left(J_{1 / 2}\right) P(e) P\left(J_{1 / 2}\right)$ $P\left(K_{1 / 2}\right) J_{1} \subset P\left(J_{1 / 2}\right)\left\{P\left(\left\{e J_{1 / 2} K_{1 / 2}\right\}\right)-P\left(K_{1 / 2}\right) P\left(J_{1 / 2}\right) P(e)+P\left(P(e) P\left(J_{1 / 2}\right) K_{1 / 2}, K_{1 / 2}\right)-\right.$ $\left.L\left(e, J_{1 / 2}\right) P\left(K_{1 / 2}\right) L\left(J_{1 / 2}, e\right)\right\} J_{1} \subset P\left(J_{1 / 2}\right) P\left(E_{1}\left(K_{1 / 2}, J_{1 / 2}\right) J_{1}+P\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{0}+\right.$ $0-P\left(J_{1 / 2}\right) L\left(e, J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{1 / 2} \subset P^{*}\left(J_{1 / 2} \cdot E_{1}\left(K_{1 / 2}, J_{1 / 2}\right)^{*}\right) J_{1}+P\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{0}-$
$P\left(J_{1 / 2}\right) E_{1}\left(K_{1 / 2}, J_{1 / 2}\right) \quad$ (by PI11, since $\left.\quad K_{1 / 2} \triangleleft J_{1 / 2}\right) \subset P^{*}\left(K_{1 / 2}\right) J_{1}+P\left(J_{1 / 2}\right)$ $P\left(K_{1 / 2}\right) J_{0}-P\left(J_{1 / 2}\right) E_{1}\left(K_{1 / 2}, J_{1 / 2}\right) \quad$ (by invariance (2.10)) $\subset K_{0} \quad$ (using the above relation $\left.P\left(J_{1 / 2}\right) E_{i} \subset E_{j}\right)$. For $i=0$ we have $P\left(J_{1 / 2}\right) P^{*}\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{0}=$ $P\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right) P(e) P\left(K_{1 / 2}\right) J_{0} \subset\left\{P\left(\left\{J_{1 / 2} J_{1 / 2}\right\}\right\}\right)-P(e) P\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right)+P\left(P(e) P\left(J_{1 / 2}\right)\right.$ $\left.\left.J_{1 / 2}, J_{1 / 2}\right)-L\left(e, J_{1 / 2}\right) P\left(J_{1 / 2}\right) L\left(J_{1 / 2}, e\right)\right\} P\left(K_{1 / 2}\right) J_{0} \quad($ by JT4 $) \subset P\left(J_{1}\right) P\left(K_{1 / 2}\right) J_{0}-$ $P(e)\left[P\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{0}\right]+0-L\left(e, J_{1 / 2}\right) P\left(J_{1 / 2}\right)\left(J_{1 / 2} \cdot P\left(K_{1 / 2}\right) J_{0}\right) \subset P^{*}\left(J_{1}^{*}\right.$. $\left.K_{1 / 2}\right) J_{0}-P(e) K_{1}-L\left(e, J_{1 / 2}\right) P\left(J_{1 / 2}\right) K_{1 / 2}$ (by PI11, the above, and (C4)) \subset $P^{*}\left(K_{1 / 2}\right) J_{0}-K_{1}^{*}-L\left(e, J_{1 / 2}\right) K_{1 / 2} \subset K_{1}^{*}-E_{1}\left(K_{1 / 2}, J_{1 / 2}\right) \subset K_{1}$. Finally, we check (C1): $K_{i} \triangleleft J_{i}$. By PI2, 3 and invariance (2.9) we have $E_{i}\left(J_{1 / 2}, K_{1 / 2}\right)+E_{i}\left(K_{1 / 2}, J_{1 / 2}\right)$ is an outer ideal in J_{i}. $P\left(K_{1 / 2}\right) J_{j}+$ $P^{*}\left(K_{1 / 2}\right) J_{j}$ is also an outer ideal by invariance and PI10, 11, 12, 13. In the same way $P\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{i}+P^{*}\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{2}$ is outer, since

$$
P\left(J_{i}\right)\left[P\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{2}\right] \subset P^{*}\left(J_{i}^{*} \cdot J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{2}(\text { by PI11 }) \subset P^{*}\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{i}
$$

and $P\left(J_{i}\right) P^{*}\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{i} \subset P\left(J_{i} \cdot J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{i}($ by PI10 $) \subset P\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{i}$, establishing P-outerness (2.1), while L-outerness (2.2) follows from $L\left(J_{i}, J_{i}\right)\left[P\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{i}\right] \subset P\left(J_{i} \cdot\left(J_{i}^{*} \cdot J_{1 / 2}\right), J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{i} \quad($ by $\quad \mathrm{PI} 12) \subset$ $P\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{i}$, and $L\left(J_{i}, J_{i}\right)\left[P^{*}\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{i}\right]=P^{*}\left(J_{i}^{*} \cdot\left(J_{i} \cdot J_{1 / 2}\right), J_{1 / 2}\right)$ $P\left(K_{1 / 2}\right) J_{i}$ (by PI13) $\subset P^{*}\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{i}$. Thus K_{i} is an outer ideal in J_{i}. For innerness (2.3') we need only check the generators $E_{i}\left(x_{1 / 2}, k_{1 / 2}\right)$, $E_{i}\left(x_{1 / 2}, k_{1 / 2}\right)^{*}, P\left(k_{1 / 2}\right) a_{j}, P^{*}\left(k_{1 / 2}\right) a_{j}, P\left(x_{1 / 2}\right) P\left(k_{1 / 2}\right) a_{i} \quad$ and $\quad P^{*}\left(x_{1 / 2}\right) P\left(k_{1 / 2}\right) a_{i}$. Using (1.8) we have $P\left(P\left(k_{1 / 2}\right) a_{j}\right) J_{i}=P\left(k_{1 / 2}\right) P\left(a_{j}\right) P\left(k_{1 / 2}\right) J_{i} \subset P\left(K_{1 / 2}\right) J_{j}$, $P\left(P^{*}\left(k_{1 / 2}\right) a_{j}\right) J_{i}=P^{*}\left(k_{1 / 2}\right) P\left(a_{j}\right) P^{*}\left(k_{1 / 2}\right) J_{i} \subset P^{*}\left(K_{1 / 2}\right) J_{j}, P\left(P\left(x_{1 / 2}\right) P\left(k_{1 / 2}\right) a_{i}\right) J_{i}=$ $P\left(x_{1 / 2}\right) P\left(k_{1 / 2}\right) P\left(\alpha_{i}\right) P\left(k_{1 / 2}\right) P\left(x_{1 / 2}\right) J_{i} \subset P\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{i}, P\left(P^{*}\left(x_{1 / 2}\right) P\left(k_{1 / 2}\right) a_{i}\right) J_{i}=$ $P^{*}\left(x_{1 / 2}\right) P\left(k_{1 / 2}\right) P\left(a_{i}\right) P\left(k_{1 / 2}\right) P^{*}\left(x_{1 / 2}\right) \subset P^{*}\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{i}, \quad$ while \quad by PI6, $P\left(E_{i}\left(K_{1 / 2}, J_{1 / 2}\right)\right) J_{i} \subset P\left(K_{1 / 2}\right) P^{*}\left(J_{1 / 2}\right) J_{i}+P^{*}\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{i}+E_{i}\left(K_{1 / 2}, K_{1 / 2}\right) \subset$ K_{i} and therefore $P\left(E_{i}\left(K_{1 / 2}, J_{1 / 2}\right)^{*}\right) J_{i}^{*}=\left\{P\left(E_{i}\left(K_{1 / 2}, J_{1 / 2}\right)\right) J_{i}\right\}^{*} \subset K_{i}^{*}=K_{i}$ as well. Thus $K_{i} \triangleleft J_{i}$, all conditions (C1)-(C6) are met, and $K \triangleleft J$.

If $1 / 2 \in \Phi$ the cases $i=1,0$ are simplified since $P\left(J_{1 / 2}\right) K_{i}=$ $2 \mathrm{P}\left(J_{1 / 2}\right) K_{i}=P\left(J_{1 / 2}, J_{1 / 2}\right) K_{i}=E_{j}\left(J_{1 / 2}, K_{i} \cdot J_{1 / 2}\right)$ (by P3 since $\left.K_{i}^{*}=K_{i}\right)$. The case $i=1 / 2$ is simplified by $P\left(K_{1 / 2}\right) J_{j}=P\left(K_{1 / 2}, K_{1 / 2}\right) J_{j}=E_{i}\left(K_{1 / 2}, J_{j}^{*} \cdot K_{1 / 2}\right) \subset$ $E_{i}\left(K_{1 / 2}, K_{1 / 2}\right)$ by invariance, hence by $\mathrm{P} 8\left(P\left(K_{1 / 2}\right) J_{j}\right) * \subset E_{i}\left(1 / 2, K_{1 / 2}\right)$ too, and so $P\left(J_{1 / 2}\right)\left(P\left(K_{1 / 2}\right) J_{i}\right)+P^{*}\left(J_{1 / 2}\right) P\left(K_{1 / 2}\right) J_{i} \subset P\left(J_{1 / 2}\right) E_{j}\left(K_{1 / 2}, K_{1 / 2}\right)+$ $\left(P\left(J_{1 / 2}\right) E_{j}\left(K_{1 / 2}, K_{1 / 2}\right)\right)^{*} \subset E_{i}\left(J_{1 / 2}, J_{j} \cdot K_{1 / 2}\right)-E_{i}\left(P\left(J_{1 / 2}\right) K_{1 / 2}, K_{1 / 2}\right)+\left\{E_{i}\left(J_{1 / 2}, J_{j}\right.\right.$. $\left.\left.K_{1 / 2}\right)-E_{i}\left(P\left(J_{1 / 2}\right) K_{1 / 2}, K_{1 / 2}\right)\right\}^{*}($ by PI5 $) \subset E_{i}\left(J_{1 / 2}, K_{1 / 2}\right)+E_{i}\left(J_{1 / 2}, K_{1 / 2}\right)^{*}$.

We can easily describe the global ideal generated by a Peirce space.
2.13. Corollary. The ideal in J generated by a Peirce $J_{\imath}(e)$ is

$$
\begin{array}{ll}
(i=1) & I\left(J_{1}\right)=J_{1} \oplus J_{1 / 2} \oplus P\left(J_{1 / 2}\right) J_{1} \\
(i=0) & I\left(J_{0}\right)=J_{0} \oplus\left\{J_{0} \cdot J_{1 / 2}+P\left(J_{1 / 2}\right) J_{0} \cdot J_{1 / 2}\right\} \oplus\left\{P\left(J_{1 / 2}\right) J_{0}+P^{*}\left(J_{1 / 2}\right) J_{0}\right\} \\
\left(i=\frac{1}{2}\right) & I\left(J_{1 / 2}\right)=P\left(J_{1 / 2}\right) J_{1} \oplus J_{1 / 2} \oplus\left\{E_{1}\left(J_{1 / 2}, J_{1 / 2}\right)+P\left(J_{1 / 2}\right) J_{0}+P^{*}\left(J_{1 / 2}\right) J_{0}\right\}
\end{array}
$$

Proof. In each case $K_{i}=J_{i}$ is trivially invariant, so we have the explicit expressions for K given by the Projection Theorem. In case $i=1$ the $J_{1 / 2}$-component simplifies by $K_{1} \cdot J_{1 / 2}=e \cdot J_{1 / 2}=J_{1 / 2}$. In case $i=0$ we have $J_{0} \cdot\left(J_{0} \cdot J_{1 / 2}\right) \subset J_{0} \cdot J_{1 / 2}$ for the $J_{1 / 2}$-component. In case $i=1 / 2$ we have for the J_{0}-component $E_{0}\left(J_{1 / 2}, J_{1 / 2}\right)=P\left(J_{1 / 2}, J_{1 / 2}\right) e \subset$ $P\left(J_{1 / 2}\right) J_{1}, P\left(J_{1 / 2}\right)\left[P\left(J_{1 / 2}\right) J_{0}+P^{*}\left(J_{1 / 2}\right) J_{0}\right] \subset P\left(J_{1 / 2}\right) J_{1}$ and for the J_{1}-component $P\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right) J_{1}+P^{*}\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right) J_{1} \subset P\left(J_{1 / 2}\right) J_{0}+P^{*}\left(J_{1 / 2}\right) J_{0}$.

When J is simple and $J_{\imath} \neq 0$ the ideal $I\left(J_{i}\right)$ must be all of J, leading to
2.14. Proposition. If J is simple and e a proper tripotent (nonzero and noninvertible) then
(i) $P\left(J_{1 / 2}\right) J_{1}=J_{0}$,
(ii) $P\left(J_{1 / 2}\right) J_{0}+P^{*}\left(J_{1 / 2}\right) J_{0}+E_{1}\left(J_{1 / 2}, J_{1 / 2}\right)=J_{1}$. If $J_{0} \neq 0$ then
(iii) $P\left(J_{1 / 2}\right) J_{0}+P^{*}\left(J_{1 / 2}\right) J_{0}=J_{1}$, (iv) $J_{0} \cdot J_{1 / 2}+P\left(J_{1 / 2}\right) J_{0} \cdot J_{1 / 2}=J_{1 / 2}$. In characteristic $\neq 2$ we have
(v) $J_{1}=E_{1}\left(J_{1 / 2}, J_{1 / 2}\right), J_{0}=E_{0}\left(J_{1 / 2}, J_{1 / 2}\right)$.
Proof. $\quad e \neq 0$ implies $J_{1} \neq 0$, so $I\left(J_{1}\right)=J$, yielding (i). If $J_{1 / 2}=0$ then $J=J_{1} \boxplus J_{0}$ forces either $J=J_{1}\left(e\right.$ invertible) or $J=J_{0}(e=0)$ by primeness, so we must have $J_{1 / 2} \neq 0$, and $I\left(J_{1 / 2}\right)=J$ yields (ii). We may well have $J_{0}=0$ with $J_{1}, J_{1 / 2} \neq 0$, but if $J_{0} \neq 0$ then $I\left(J_{0}\right)=$ J yields (iii), (iv). For characteristic $\neq 2$, note $2 P\left(J_{1 / 2}\right) J_{j}=P\left(J_{1 / 2}, J_{1 / 2}\right) J_{j}=$ $E_{i}\left(J_{1 / 2}, J_{j} \cdot J_{1 / 2}\right) \subset E_{i}\left(J_{1 / 2}, J_{1 / 2}\right)=E_{i}\left(J_{1 / 2}, J_{1 / 2}\right)^{*}$.

In case $J_{0}=0$ we can also recover some ideal-building lemmas of Loos.
2.15. Corollary [1, pp. 131-132]. Let e be a tripotent in a Jordan triple system with $J_{0}(e)=0$. (i) If $K_{1 / 2}$ is an invariant bracket ideal of $J_{1 / 2}$ such that

$$
J_{1} \cdot K_{1 / 2} \subset K_{1 / 2}\left\langle K_{1 / 2} J_{1 / 2} J_{1 / 2}\right\rangle_{1}+\left\langle J_{1 / 2} K_{1 / 2} J_{1 / 2}\right\rangle_{1} \subset K_{1 / 2}
$$

then the ideal in J generated by $K_{1 / 2}$ is $K=K_{1 / 2} \oplus\left\{E_{1}\left(K_{1 / 2}, J_{1 / 2}\right)+\right.$ $\left.E_{1}\left(J_{1 / 2}, K_{1 / 2}\right)\right\}$.
(ii) If K_{1} is an ideal of J_{1} such that $L\left(J_{1 / 2}, J_{1 / 2}\right) K_{1} \subset K_{1}$ then the ideal in J generated by K_{1} is $K_{1} \oplus K_{1} \cdot J_{1 / 2}$.

Proof. (i) Note that $K_{1 / 2}$ is an ideal in $J_{1 / 2}$: Since $P\left(x_{1 / 2}\right) y_{1 / 2}=$ $E_{1}\left(x_{1 / 2}, y_{1 / 2}\right) \cdot x_{1 / 2}=\left\langle x_{1 / 2} y_{1 / 2} x_{1 / 2}\right\rangle$ by P1 when $J_{0}=0$, the above conditions guarantees a bracket (hence a product $P\left(x_{1 / 2}\right) y_{1 / 2}$ or $P\left(x_{1 / 2}, z_{1 / 2}\right) y_{1 / 2}$) falls
in $K_{1 / 2}$ as soon as one factor does. This $K_{1 / 2}$ is invariant in the sense of (2.9), (2.10) by hypothesis, so by the Projection Theorem $K=$ $K_{1}+K_{1 / 2}$ where $P\left(K_{1 / 2}\right) J_{0}=P^{*}\left(J_{1 / 2}\right) J_{0}=P\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right) J_{1}=P^{*}\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right) J_{1}=$ 0 when $J_{0}=0$, so K_{1} reduces to $E_{1}\left(J_{1 / 2}, K_{1 / 2}\right)+E_{1}\left(K_{1 / 2}, J_{1 / 2}\right)$.
(ii) $\quad K_{1}$ is invariant since $P\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right) K_{1}=0$, so by the Projection Theorem $K=K_{1} \oplus K_{1} \cdot J_{1 / 2}$.

Since invariant Peirce ideals correspond to global ideals and simple JTS contain no proper global ideals, the Peirce subsystems contain no proper invariant ideals.
2.16. Proposition. If e is a tripotent in a simple Jordan triple system J, then then Peirce subsystems $J_{1}, J_{1 / 2}, J_{0}$ contain no proper invariant ideals.

We can also recover a result of Loos [1] on alternative triple systems.
2.17. Corollary. If e is an idempotent in a simple Jordan triple system J with $J_{0}(e)=0$, then $J_{1 / 2}(e)$ is simple as an alternative triple system under the bracket.

Proof. By (2.15) $J_{1 / 2}$ contains no proper invariant ideals $K_{1 / 2}$, where the invariant ideal conditions ($2.9^{\prime}-2.10^{\prime \prime}$) reduce to

$$
J_{1} \cdot K_{1 / 2} \subset K_{1 / 2}\left\langle J_{1 / 2} J_{1 / 2} K_{1 / 2}\right\rangle_{1}+\left\langle J_{1 / 2} K_{1 / 2} J_{1 / 2}\right\rangle_{1}+\left\langle K_{1 / 2} J_{1 / 2} J_{1 / 2}\right\rangle_{1} \subset K_{1 / 2}
$$

We may as well assume $J_{1 / 2} \neq 0$, so by (2.14) $J_{1}=E_{1}\left(J_{1 / 2}, J_{1 / 2}\right)$. Thus $J_{1} \cdot K_{1 / 2}=E_{1}\left(J_{1 / 2}, J_{1 / 2}\right) \cdot K_{1 / 2}=\left\langle J_{1 / 2} J_{1 / 2} K_{1 / 2}\right\rangle_{1}$, and invariance under J_{1} is a consequence of bracket-invariance. Therefore the nonexistence of proper invariant ideals means nonexistence of proper bracket ideals, that is, simplicity as an alternative triple system (note $J_{1 / 2}$ is not trivial under brackets since $0 \neq J_{1 / 2}=e \cdot J_{1 / 2} \subset E_{1}\left(J_{1 / 2}, J_{1 / 2}\right) \cdot J_{1 / 2}=$ $\left.\left\langle J_{1 / 2} J_{1 / 2} J_{1 / 2}\right\rangle_{1}\right)$.
3. Simplicity theorem. As in the Jordan algebra case, we will quickly find J_{1} inherits simplicity from J, then will use a flipping argument to establish simplicity of J_{0}. Before flipping we need to consider the case when the flipping process annihilates an ideal $K_{0} \triangleleft J_{0}$.
3.1. Kernel Lemma. The maximal ideal of J_{0} annihilated by $P\left(J_{1 / 2}\right)$ is $\operatorname{Ker} P\left(J_{1 / 2}\right)=\left\{z_{0} \in J_{0} \mid P\left(J_{1 / 2}\right) z_{0}=P\left(J_{1 / 2}\right) P\left(z_{0}\right) J_{0}=0\right\}$. It is an invariant ideal.

Proof. Clearly any ideal K_{0} annihilated by $P\left(J_{1 / 2}\right)$ lies in $\operatorname{Ker} P\left(J_{1 / 2}\right)$ since $P\left(K_{0}\right) J_{0} \subset K_{0}$. It remains to show $K_{0}=\operatorname{Ker} P\left(J_{1 / 2}\right)$ is actually an invariant ideal.
K_{0} is a linear subspace: it is clearly closed under scalars, and for sums $z_{0}+w_{0}$ note

$$
\begin{aligned}
P\left(J_{1 / 2}\right) P\left(z_{0}+w_{0}\right) J_{0} & =P\left(J_{1 / 2}\right) P\left(z_{0}, w_{0}\right) J_{0}=P\left(J_{1 / 2}\right) L\left(w_{0}, J_{0}\right) z_{0} \\
& =\left\{-L\left(J_{0}, w_{0}\right) P\left(J_{1 / 2}\right)+P\left(\left\{J_{0} w_{0} J_{1 / 2}\right\}, J_{1 / 2}\right)\right\} z_{0}(\text { by JT5 }) \\
& \subset-L\left(J_{0}, J_{0}\right) P\left(J_{1 / 2}\right) z_{0}+P\left(J_{1 / 2}\right) z_{0}=0
\end{aligned}
$$

K_{0} is P-outer, $P\left(J_{0}\right) K_{0} \subset K_{0}$, since $P\left(J_{1 / 2}\right)\left[P\left(a_{0}\right) z_{0}\right]=P^{*}\left(J_{1 / 2} \cdot a_{0}\right) z_{0}$ (by PI11) $\subset P^{*}\left(J_{1 / 2}\right) z_{0}=0$ and $P\left(J_{1 / 2}\right)\left[P\left(P\left(a_{0}\right) z_{0}\right) J_{0}\right]=P\left(J_{1 / 2}\right) P\left(a_{0}\right) P\left(z_{0}\right) P\left(a_{0}\right) J_{0} \subset$ $P^{*}\left(J_{1 / 2} \cdot a_{0}\right) P\left(z_{0}\right) J_{0} \subset P(e) P\left(J_{1 / 2}\right) P\left(z_{0}\right) J_{0}=0$. It is L-outer, $L\left(J_{0}, J_{0}\right) K_{0} \subset K_{0}$, since $P\left(J_{1 / 2}\right)\left[L\left(a_{0}, b_{0}\right) z_{0}\right] \subset P\left(J_{1 / 2}\right) z_{0}=0$ by PI14 and $P\left(J_{1 / 2}\right)\left[P\left(L\left(a_{0}, b_{0}\right) z_{0}\right) J_{0}\right] \subset$ $P\left(J_{1 / 2}\right)\left\{P\left(a_{0}\right) P\left(b_{0}\right) P\left(z_{0}\right)+P\left(z_{0}\right) P\left(b_{0}\right) P\left(a_{0}\right)+L\left(a_{0}, b_{0}\right) P\left(z_{0}\right) L\left(b_{0}, a_{0}\right)-\right.$ $\left.P\left(P\left(a_{0}\right) P\left(b_{0}\right) z_{0}, z_{0}\right)\right\} J_{0}($ by JT4 $) \subset P^{*}\left(J_{1 / 2} \cdot a_{0}\right) P\left(b_{0}\right) P\left(z_{0}\right) J_{0}+P\left(J_{1 / 2}\right) P\left(z_{0}\right) J_{0}+$ $P\left(J_{1 / 2}\right) L\left(a_{0}, b_{0}\right) P\left(z_{0}\right) J_{0}-P\left(J_{1 / 2}\right) L\left(J_{0}, J_{0}\right) z_{0}($ by PI11 $) \subset P\left(\left(J_{1 / 2} \cdot a_{0}\right) \cdot b_{0}\right) P\left(z_{0}\right) J_{0}+$ $0+P\left(J_{1 / 2}, J_{1 / 2}\right) P\left(z_{0}\right) J_{0}-P\left(J_{1 / 2}, J_{1 / 2}\right) z_{0}$ (by PI10 and PI14) $\subset P\left(J_{1 / 2}\right) P\left(z_{0}\right) J_{0}+$ $0-0=0$.
K_{0} is inner, $P\left(K_{0}\right) J_{0} \subset K_{0}$, since $P\left(J_{1 / 2}\right)\left[P\left(z_{0}\right) a_{0}\right]=0$ by hypothesis and $P\left(J_{1 / 2}\right)\left[P\left(P\left(z_{0}\right) a_{0}\right) J_{0}\right]=P\left(J_{1 / 2}\right) P\left(z_{0}\right) P\left(a_{0}\right) P\left(z_{0}\right) J_{0} \subset P\left(J_{1 / 2}\right) P\left(z_{0}\right) J_{0}=0$.
K_{0} is trivially P-invariant (2.7) and (2.8), $P\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right) K_{0}=$ $P\left(J_{1 / 2}\right) P(e) P\left(J_{1 / 2}\right) K_{0}=0 . \quad$ It is L-invariant (2.5), $L\left(J_{1 / 2}, J_{1 / 2}\right) K_{0} \subset K_{0}$, since $P\left(J_{1 / 2}\right)\left[L\left(x_{1 / 2}, y_{1 / 2}\right) z_{0}\right]=\left\{P\left(\left\{y_{1 / 2} x_{1 / 2} J_{1 / 2}\right\}, J_{1 / 2}\right)-L\left(y_{1 / 2}, x_{1 / 2}\right) P\left(J_{1 / 2}\right)\right\} z_{0}$ (by $J T 5)=0$ and

$$
\begin{aligned}
P\left(J_{1 / 2}\right) & {\left[P\left(\left\{x_{1 / 2} y_{1 / 2} z_{0}\right\}\right) J_{0}\right] \subset P\left(J_{1 / 2}\right)\left\{P\left(x_{1 / 2}\right) P\left(y_{1 / 2}\right) P\left(z_{0}\right)+P\left(z_{0}\right) P\left(y_{1 / 2}\right) P\left(x_{1 / 2}\right)\right.} \\
& \left.+L\left(x_{1 / 2}, y_{1 / 2}\right) P\left(z_{0}\right) L\left(y_{1 / 2}, x_{1 / 2}\right)-P\left(P\left(x_{1 / 2}\right) P\left(y_{1 / 2}\right) z_{0}, z_{0}\right)\right\} J_{0}(\text { by JT4 }) \\
\subset & P\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right)\left(P\left(y_{1 / 2}\right) P\left(z_{0}\right) J_{0}\right)+P\left(J_{1 / 2}\right) P\left(z_{0}\right) J_{0} \\
& +P\left(J_{1 / 2}\right) L\left(J_{1 / 2}, J_{1 / 2}\right) P\left(z_{0}\right) J_{0}-P\left(J_{1 / 2}\right) L\left(J_{0}, J_{0}\right) z_{0}=0
\end{aligned}
$$

as above. The trickiest part is L-invariance (2.6), $E_{0}\left(J_{1 / 2}, J_{0} \cdot\left(K_{0} \cdot J_{1 / 2}\right)\right) \subset$ K_{0}. We first show this is killed by $P\left(J_{1 / 2}\right)$. We have

$$
\begin{aligned}
& P\left(J_{1 / 2}\right)\left[E_{0}\left(J_{1 / 2}, J_{0} \cdot\left(K_{0} \cdot J_{1 / 2}\right)\right)\right] \\
& \quad=P\left(J_{1 / 2}\right)\left\{J_{1 / 2}\left(K_{0} \cdot J_{1 / 2}\right) J_{0}\right\}(\text { by P4 } 4)=P\left(J_{1 / 2}\right) L\left(J_{0}, K_{0} \cdot J_{1 / 2}\right) J_{1 / 2} \\
& \quad \subset\left\{-L\left(K_{0} \cdot J_{1 / 2}, J_{0}\right) P\left(J_{1 / 2}\right)+P\left(\left\{\left(K_{0} \cdot J_{1 / 2}\right) J_{0} J_{1 / 2}\right\}, J_{1 / 2}\right)\right\} J_{1 / 2}(\text { by JT5 }) \\
& \quad \subset\left\{\left(K_{0} \cdot J_{1 / 2}\right) J_{0} J_{1 / 2}\right\}+L\left(J_{1 / 2}, J_{1 / 2}\right)\left\{\left(K_{0} \cdot J_{1 / 2}\right) J_{0} J_{1 / 2}\right\}
\end{aligned}
$$

where $\left\{\left(K_{0} \cdot J_{1 / 2}\right) J_{0} J_{1 / 2}\right\}=E_{1}\left(K_{0} \cdot J_{1 / 2}, J_{0} \cdot J_{1 / 2}\right) \quad($ by P 3$) \subset E_{1}\left(K_{0} \cdot J_{1 / 2}, J_{1 / 2}\right)=$ $E_{1}\left(J_{1 / 2}, K_{0} \cdot J_{1 / 2}\right)^{*}($ by P 8$)=\left\{J_{1 / 2} K_{0} J_{1 / 2}\right\}^{*}\left(\right.$ by P3) $\subset\left(P\left(J_{1 / 2}\right) K_{0}\right)^{*}=0$.

To see $P\left(J_{1 / 2}\right)$ also kills $P\left(E_{0}\right) J_{0}$ we use PI6 to write $P\left(E_{0}\left(x_{1 / 2}\right.\right.$, $\left.\left.a_{0} \cdot\left(z_{0} \cdot y_{1 / 2}\right)\right)\right) J_{0} \subset P\left(x_{1 / 2}\right) P^{*}\left(a_{0} \cdot\left(z_{0} \cdot y_{1 / 2}\right)\right) J_{0}+P^{*}\left(a_{0} \cdot\left(z_{0} \cdot y_{1 / 2}\right)\right) P\left(x_{1 / 2}\right) J_{0}+E_{0}\left(x_{1 / 2}\right.$, $\left.P\left(a_{0} \cdot\left(z_{0} \cdot y_{1 / 2}\right)\right)\left(J_{0} \cdot x_{1 / 2}\right)\right)$. Here $P^{*}\left(a_{0} \cdot\left(z_{0} \cdot y_{1 / 2}\right)\right) J_{0}=P\left(z_{0} \cdot y_{1 / 2}\right) P\left(a_{0}\right) J_{0} \quad$ (by

PI11) $=P^{*}\left(y_{1 / 2}\right) P\left(z_{0}\right) P\left(a_{0}\right) J_{0} \subset P^{*}\left(J_{1 / 2}\right) P\left(z_{0}\right) J_{0}=0$ by PI10, and $P^{*}\left(a_{0}\right.$. $\left.\left(z_{0} \cdot y_{1 / 2}\right)\right) J_{1}=P\left(a_{0}\right) P\left(z_{0} \cdot y_{1 / 2}\right) J_{1}=P\left(a_{0}\right) P\left(z_{0}\right) P^{*}\left(y_{1 / 2}\right) J_{1} \quad($ by PI10, 11) \subset $P\left(a_{0}\right) P\left(z_{0}\right) J_{0} \subset K_{0}$ since $K_{0} \triangleleft J_{0}$, also $P\left(a_{0} \cdot\left(z_{0} \cdot y_{1 / 2}\right)\right)\left(J_{0} \cdot x_{1 / 2}\right)=a_{0} \cdot\left\{z_{0}\right.$. $\left.P\left(y_{1 / 2}\right)\left(z_{0} \cdot\left(a_{0} \cdot J_{1 / 2}\right)\right)\right\}$ (using PI16 twice) $\subset J_{0} \cdot\left(z_{0} \cdot J_{1 / 2}\right)$ so that $E_{0}\left(x_{1 / 2}, P\right) \subset$ $E_{0}\left(J_{1 / 2}, J_{0} \cdot\left(z_{0} \cdot J_{1 / 2}\right)\right)$ is killed by $P\left(J_{1 / 2}\right)$ by the above. Thus $P\left(J_{1 / 2}\right)$ does kill all three pieces of $P\left(E_{0}\right) J_{0}, E_{0}$ is contained in K_{0}, and K_{0} is an invariant ideal.

Next we establish that $L\left(J_{1 / 2}, J_{1 / 2}\right)$ and $P\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right)$ and $P^{*}\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right)$ send an ideal into its "square root" or "fourth root".
3.2. Lemma. For any ideal $K_{i} \triangleleft J_{i}(i=1,0)$ we have

$$
\begin{gather*}
L\left(J_{1 / 2}, J_{1 / 2}\right) P\left(K_{i}\right) J_{i} \subset K_{i} \tag{3.3}\\
P\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right) P\left(P\left(K_{i}\right) J_{i}\right) J_{i} \subset K_{i} \tag{3.4}\\
\text { if } i=0, P^{*}\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right) P\left(J_{0}\right) P\left(P\left(K_{0}\right) J_{0}\right) J_{0} \subset K_{0} \tag{3.5}
\end{gather*}
$$

Proof. (3.3) $L\left(x_{1 / 2}, y_{1 / 2}\right) P\left(z_{i}\right) a_{i}=-P\left(z_{i}\right) L\left(y_{1 / 2}, x_{1 / 2}\right) a_{i}+P\left(\left\{x_{1 / 2} y_{1 / 2} z_{i}\right\}\right.$, $\left.z_{i}\right) \alpha_{i}$ (by JT5) $\in-P\left(K_{i}\right) J_{i}+P\left(J_{i}, K_{i}\right) J_{i} \subset K_{i}$ since K_{i} is an ideal.
(3.4) For $w_{\imath} \in P\left(K_{i}\right) J_{i}$ we have $P\left(x_{1 / 2}\right) P\left(y_{1 / 2}\right) P\left(w_{i}\right) J_{i}=\left\{P\left(\left\{x_{1 / 2} y_{1 / 2} w_{i}\right\}\right)-\right.$ $\left.P\left(w_{i}\right) P\left(y_{1 / 2}\right) P\left(x_{1 / 2}\right)-L\left(x_{1 / 2}, y_{1 / 2}\right) P\left(w_{i}\right) L\left(y_{1 / 2}, x_{1 / 2}\right)+P\left(P\left(x_{1 / 2}\right) P\left(y_{1 / 2}\right) w_{i}, w_{i}\right)\right\} J_{i}$ (by JT4) $\subset P\left(K_{i}\right) J_{i}-P\left(K_{i}\right) J_{i}-L\left(J_{1 / 2}, J_{1 / 2}\right) P\left(K_{i}\right) J_{i}+P\left(J_{i}, K_{i}\right) J_{i} \quad$ using (3.3) for $\left.w_{i}\right) \subset K_{i}$.
(3.5) $\quad P\left(x_{1 / 2}\right) P(e) P\left(y_{1 / 2}\right) P\left(a_{0}\right) L_{0} \subset P\left(x_{1 / 2}\right)\left[P\left(\left\{e y_{1 / 2} a_{0}\right\}\right)-P\left(a_{0}\right) P\left(y_{1 / 2}\right) P(e)-\right.$ $\left.L\left(e, y_{1 / 2}\right) P\left(a_{0}\right) L\left(y_{1 / 2}, e\right)+P\left(P(e) P\left(y_{1 / 2}\right) a_{0}, a_{0}\right)\right] L_{0}($ by JT4 $) \subset P\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right) L_{0}-$ $0-L\left(e, y_{1 / 2}\right) P\left(a_{0}\right)\left\{J_{1 / 2} L L_{0}\right\}+\left\{J_{1} L_{0} J_{0}\right\}=P\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right) L_{0}$, so if $L_{0}=$ $P\left(P\left(K_{0}\right) J_{0}\right) J_{0}$ we have $P\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right) L_{0} \subset K_{0}$ by (3.4).

It is not clear whether (3.5) can be improved to assert $P^{*}\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right) P\left(P\left(K_{0}\right) J_{0}\right) J_{0} \subset K_{0}$.

Now we can describe a class of ideals which is guaranteed to be invariant.
3.6 Proposition. Any strongly semiprime ideal $K_{1} \triangleleft J_{1}$ is invariant.

Proof. We first prove that K_{1} is L-invariant, i.e., $w_{1}=$ $L\left(x_{1 / 2}, y_{1 / 2}\right) z_{1} \in K_{1}$ for all $z_{1} \in K_{1}$. By strong semiprimeness we will have $w_{1} \in K_{1}$ if we can show $P\left(w_{1}\right) J_{1} \subset K_{1}$. But

$$
\begin{aligned}
P\left(w_{1}\right) J_{1}= & \left\{P\left(x_{1 / 2}\right) P\left(y_{1 / 2}\right) P\left(z_{1}\right)+P\left(z_{1}\right) P\left(y_{1 / 2}\right) P\left(x_{1 / 2}\right)\right. \\
& \left.+L\left(x_{1 / 2}, y_{1 / 2}\right) P\left(z_{1}\right) L\left(y_{1 / 2}, x_{1 / 2}\right)-P\left(P\left(x_{1 / 2}\right) P\left(y_{1 / 2}\right) z_{1}, z_{1}\right)\right\} J_{1} \text { (by JT4) }
\end{aligned}
$$

$$
\begin{aligned}
& \subset P\left(x_{1 / 2}\right) P\left(y_{1 / 2}\right) P\left(z_{1}\right) J_{1}+P\left(K_{1}\right) J_{1}+L\left(x_{1 / 2}, y_{1 / 2}\right) P\left(K_{1}\right) J_{1}-\left\{J_{1} J_{1} K_{1}\right\} \\
& \subset P\left(x_{1 / 2}\right) P\left(y_{1 / 2}\right) P\left(z_{1}\right) J_{1}+K_{1} \quad \text { using (3.3)) },
\end{aligned}
$$

so it suffices if all $u_{1}=P\left(x_{1 / 2}\right) P\left(y_{1 / 2}\right) P\left(z_{1}\right) a_{1}$ fall in K_{1}. Here again it suffices if $P\left(u_{1}\right) J_{1} \subset K_{1}$, and for this

$$
\begin{aligned}
P\left(u_{1}\right) J_{1} & =P\left(x_{1 / 2}\right) P\left(y_{1 / 2}\right) P\left(P\left(z_{1}\right) a_{1}\right) P\left(y_{1 / 2}\right) P\left(x_{1 / 2}\right) J_{1} \\
& \subset P\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right) P\left(P\left(K_{1}\right) J_{1}\right) J_{1} \subset K_{1} \text { by }
\end{aligned}
$$

Next we prove K_{1} is P-invariant. Let $w_{1}=P\left(x_{1 / 2}\right) P\left(y_{1 / 2}\right) z_{1}$; to show w_{1} falls in K_{1} it again suffices by strong semiprimeness if it pushes J_{1} into K_{1}, i.e., if $P\left(w_{1}\right) J_{1}=P\left(x_{1 / 2}\right) P\left(y_{1 / 2}\right) P\left(z_{1}\right) P\left(y_{1 / 2}\right) P\left(x_{1 / 2}\right) J_{1} \subset$ $P\left(x_{1 / 2}\right) P\left(y_{1 / 2}\right) P\left(z_{1}\right) J_{1}$ falls into K_{1}. But again this is in K_{1} since it pushes J_{1} into $K_{1}, P\left(P\left(x_{1 / 2}\right) P\left(y_{1 / 2}\right) P\left(z_{1}\right) a_{1}\right) J_{1} \subset P\left(x_{1 / 2}\right) P\left(y_{1 / 2}\right) P\left(P\left(z_{1}\right) a_{1}\right) J_{1} \subset$ K_{1} by (3.4).

Because it is such a nuisance to verify the extra invariance needed when $i=0$, and since we will not need the result, we do not establish the analogous result for $K_{0} \triangleleft J_{0}$.

3.7. Corollary. Any maxinal ideal $M_{1} \triangleleft J_{1}$ is invariant.

Proof. If M_{1} is maximal then $\bar{J}_{1}=J_{1} / M_{1}$ is simple with invertible element \bar{e}, hence the Jacobson and small radicals are zero and \bar{J}_{1} is strongly semiprime (see [1, p. 38]), so M_{1} is strongly semiprime in J_{1}.

We now have the tools to establish our main result.
3.8. Simplicity Theorem. If e is a tripotent in a simple Jordan triple system J, then the Peirce subsystems $J_{1}(e)$ and $J_{0}(e)$ are simple.

Proof. We may as well assume e is proper, else the result is trivial. Then J_{1} contains a nonzero tripotent and consequently is not trivial, and it has no proper ideals since any such could be enlarged to a maximal proper ideal $0<M_{1}<J_{1}$ (Zornifying and avoiding e), which would be invariant by 3.7 , whereas by $2.15 J_{i}$ contains no proper invariant ideals.

Thus J_{1} is simple. We may easily have $J_{0}=0$; we will show that if J_{0} is nonzero then it must be simple. First, it is strongly semiprime: any element trivial in J_{0} would be trivial in $J\left(P\left(z_{0}\right) J_{0}=0\right.$ implies $P\left(z_{0}\right) J=0$), whereas by simplicity and non-quasi-invertibility (thanks to $e \neq 0$) the system J is strongly semiprime (see [1, p. 38] again). In particular, J_{0} is not trivial, and we need only show it
contains no proper ideals $0<K_{0}<J_{0}$. Suppose on the contrary that such a K_{0} exists. By (ordinary) semiprimeness we have successively $K_{0}^{\prime}=P\left(K_{0}\right) K_{0} \neq 0, K_{0}^{\prime \prime}=P\left(K_{0}^{\prime}\right) K_{0}^{\prime} \neq 0, K_{0}^{\prime \prime \prime}=P\left(K_{0}^{\prime \prime}\right) K_{0}^{\prime \prime} \neq 0$. By the Flipping Lemma $2.11 K_{1}^{\prime \prime \prime}=P\left(J_{1 / 2}\right) K_{0}^{\prime \prime \prime}+P^{*}\left(J_{1 / 2}\right) K_{0}^{\prime \prime \prime}$ is an ideal in J_{1}, so by simplicity of J_{1} we have either $K_{1}^{\prime \prime \prime}=0$ or $K_{1}^{\prime \prime \prime}=J_{1}$. In the first case $K_{0}^{\prime \prime \prime}$ is an ideal annihilated by $P\left(J_{1 / 2}\right)$, hence is contained in the invariant ideal $\operatorname{Ker} P\left(J_{1 / 2}\right)$ by 3.1 ; by (2.15) we know J_{0} contains no proper invariant ideals, so Ker $P\left(J_{1 / 2}\right) \supset K_{0}^{\prime \prime \prime}>0$ forces $\operatorname{Ker} P\left(J_{1 / 2}\right)=$ J_{0}, hence $P\left(J_{1 / 2}\right) J_{0}=0$, contrary to (2.14iii) (assuming $J_{0} \neq 0$). Thus the first case $K_{1}^{\prime \prime \prime}=0$ is impossible.

On the other hand, consider the case $K_{1}^{\prime \prime \prime}=J_{1}$. Here (by (2.14i)) $J_{0}=P\left(J_{1 / 2}\right) J_{1}=P\left(J_{1 / 2}\right) K_{1}^{\prime \prime \prime}=P\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right) K_{0}^{\prime \prime \prime}+P^{*}\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right) K_{0}^{\prime \prime \prime}$ is contained in K_{0} by (3.4) and (3.5) (noting $K_{0}^{\prime \prime}=P\left(P\left(K_{0}\right) K_{0}\right) K_{0}^{\prime} \subset$ $P\left(P\left(K_{0}\right) J_{0}\right) J_{0}$ and $K_{0}^{\prime \prime \prime}=P\left(K_{0}^{\prime \prime}\right) K_{0}^{\prime \prime} \subset P\left(J_{0}\right)\left(P\left(K_{0}^{\prime}\right) K_{0}^{\prime}\right) \subset P\left(J_{0}\right) P\left(P\left(K_{0}\right) J_{0}\right) J_{0}$ as required by (3.4) and (3.5)). But $J_{0}=K_{0}$ contradicts propriety of K_{0}.

In either case the existence of a proper K_{0} leads to a contradiction so no K_{0} exists and J_{0} too is simple.

This settles a question raised by Loos [1, p. 133] whether J_{1} is simple in case J is simple and $J_{0}=0$. The result was known when J had d.c.c. on principal inner ideals. Of course, for the case $J_{0}=0$ we would not need the elaborate machinery of Peirce decompositions, since the Peirce relations and invariance are vastly simplified (for example $P\left(J_{1 / 2}\right) P\left(J_{1 / 2}\right) J_{1}=0$, so P-invariance is automatic).

The analogous simplicity result fails for $J_{1 / 2}: J_{1 / 2}$ need not inherit simplicity from J, since when $J=M_{p, q}(D)$ is the space of $p x q$ matrices over D relative to $P(x) y=x y^{*} x\left(y^{*}={ }^{t} \bar{y}\right)$, then the diagonal idempotent $e=e_{11}+\cdots+e_{r r}(1 \leqq r<p \leqq q)$ has $J_{1 / 2}=J_{10} \boxplus J_{01}$. In the simplest case $p=q=2, r=1$ we have $J_{1 / 2}=D e_{12} \boxplus D e_{21}$. Note, however, that these proper ideals $K_{1 / 2}=J_{10}, L_{1 / 2}=J_{01}$ are invariant under J_{1} and J_{0} but not under brackets. It is still an open question whether $J_{1 / 2}$ is simple as a bracket algebra (it is if $J_{0}=0$), or whether it is always simple or a direct sum of two ideals as a triple system.

References

1. O. Loos, Jordan Pairs, Lecture Notes in Mathematics No. 460, Springer Verlag, New York, 1975.
2. -, Alternative triple systems, Math. Ann., 198 (1972), 205-238.
3. O. Loos, Lectures on Jordan Triples, U. of British Columbia Lecture Notes, 1971.
4. K. McCrimmon, Peirce ideals in Jordan algebras, Pacific J. Math., 78 (1978), 397-414.
5. ——, Collinear idempotents, Pacific J. Math., 78 (1978), 397-414.
6. K. Meyberg, Lectures on Algebras and Triple Systems, U. of Virginia Lecture Notes, 1972.

Received October 20, 1977. Resarch partially supported by grants from the National Science Foundation and the National Research Council of Canada.

University of Virginia
Charlottesville, VA 22903

