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POINTWISE COMPACTNESS AND MEASURABILITY

SurJIT SINGH KHURANA

Among other results it is proved that if (X,%,p) is a
probability space, E a Hausdorff locally convex space such
that (E’, s(E’, F)) contains an increasing sequence of abso-
lutely convex compact sets with dense union, and f: X > F
weakly measurable with f(X) C K, a weakly compact convex
subset of F, then f is weakly equivalent to g: X —» E with
9(X) contained in a separable subset of K.

In [8] and [9] some remarkable results are obtained for the
pointwise compact subsets of measurable real-valued functions and
some interesting applications to strongly measurable Banach space-
valued functions are established. In this paper we continue those
ideas a little further. We first give a somewhat different proof of
(9], Theorem 1) and then apply it to give a generalization of
classical Phillip’s theorem ([5]). Also some result about equicontinu-
ous subsets of C(X), the space of all continuous real-valued functions
on (X, 7,) (z, is the lifting topology, [10], p. 59; in [8] this topology
is denoted by T,) are obtained.

All locally convex spaces are taken over reals and notations of
[6] are used. For a topological space Y, C(Y) (resp. C,(Y)) will
denote the set of all (resp. all bounded) real-valued continuous
functions of Y. N will denote the set of natural numbers.

In this paper (X, 2, ££) is a complete probability measure space.
Let %% be the set of all real-valued %-measurable functions on X,
=, the essentially bounded elements of <% and M™, the bounded
elements of &~ We fix a lifting, [10], 0: &¥* — M~ and on X we
always take the lifting topology 7z, ([10], p. 59). For fe & ge &
we write f =g if f(x) = g(x), V2 e X, and f =g if f(x) = g(x), a.e.
[¢#]. For a Hausdorff locally convex space K, a function f: X — K
is said to be weakly measurable if hof is U-measurable, Vhe E’,
the topological dual of E. Two weakly measurable functions
fie X—E, i=1,2, are said to be weakly equivalent if hof, = hof,
VheE'. The space & and norms ||-||, and ||-|l. have the usual
meanings. We shall call a topological space, countably compact if
every sequence in it has a cluster point, and sequentially compact
if every sequence has a convergent subsequence.

We start with a different proof of the following result of [9].
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THEOREM 1 ([9], Theorem 1). Let H be a subset of & such that
for any h,e H, h,e H, h, #+ h, implies h, & h,. Then, with the
pointwise topology on H, the following are equivalent:

(i) H 1s sequentially compact;

(ii) H 1is compact and metrizable.

If H is convex, then each of (i) and (ii) is also equivalent to:

(iii) H s compact;

(iv) H 18 countadbly compact.

Proof. By ([6], Theorem 11.2, p. 187) each of (i), (ii), (iii), (iv)
implies that H is relatively compact in R¥, with product topology.
Thus each of these conditions implies that H is pointwise bounded.
Denote by ¢ the homeomorphism, [0, ] — [0, 1], z — /(1 + z). For
any acl, the directed net of all finite subsets of H, let h, =
sup {|r|: hea}, and p, = p(®°h,). {p.} is a monotone bounded net
in Cy(X), which is boundedly complete. Let sup p, = p € C,(X). This
means there is an increasing sequence {a(n)} I such that p =
SUD Py (this follows from the fact that p(p) = sup ¢(p,)). Since
Do = Poh,, we get p;{1l} is pnull, Va. From this it follows that
K = p™{1} is pgnull. Thus ¢ = (@ 'op)Xy/x is a measurable function
such that || < q a.e. [¢], Vhe H.

(i) < (ii) is simple ([8], Prop. 1, p. 197), the metric d of (ii)
being defined by d(f, 9) = || (f — ¢)/1 + ¢ql|,. (i) = (iii) and (iii) = (iv)
are trivial. Now we come to the proof of (iv) = (i). Take a sequence
{fx}c H. Since 1/(1 + q)H is relatively weakly compact in (<4, ||1])
there exists a subsequence {f,} of {f.} and an f,€.%, such that
1/(1 + q)f, — f, weakly. Thus there exists a sequence {g,} in the
convex hull of {f.:l1<n <} (note {g,JcH) such that
1/ + ¢)g, — f, a.e. [¢] (because a convergent sequence in (A, ||-|l)
has a subsequence converging a.e. [g¢]). Taking f to be a cluster
point of {g,} in H, we get 1/(1 + q)f = f(¢r). We claim f, — f in H.
If f, - f there exists an xe€ X, an ¢ > 0, and a subsequence {f.} of
{f.} such that one of the two following conditions are satisfied:

(1) fa(@) > flx) + ¢, ¥n;

(ii) fa(x) < flx) — &, Vn.

Since 1/(1 + q)fw — 1/(1 + q)f weakly, proceeding as before we get
a sequence {g,} in the convex hull of {f,:1=<m < o} such that
1/1 + @)gy — 1/ + o)f a.e. [¢]. If " is a cluster point of {g.} in
H we get f” = f() but because of (i) or (ii), f"(x) # f(x), a con-
tradiction. This proves that H is sequentially compact.

This result is also proved in [11] by a different method.
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By a classical theorem of Phillips [5], if f: X — E, E being a
Banach space, is weakly measurable and f(X) is relatively weakly
compact in E, then f is weakly equivalent to a strongly measurable
function ([8], Theorem 3, p. 200). What one really needs to do is
to find a weakly equivalent function g such that g(X) is separable.
The next theorem is a generalization of Phillips’ theorem.

THEOREM 2. Let (H, 7 ) be a Hausdorff locally convexr space
such that there exists an increasing sequence {A,} of absolutely con-
vex compact subsets of (E’', o(E’', E)) whose union 1is dense in
(E', o(E', E)). Suppose f: X — E is weakly measurable and f(X) C K,
for some weakly compact convex subset of E. Then there exists a
weakly measurable function g: X — K, g = flw) and 9g(X)C K,, a
separable closed convex subset of K.

Proof. Since (E, o(E, E")) can be considered as a subspace of R”,
with product topology, f can be considered as f: X — RZ’. For each
heE', define g(h) = p(ho f) and let g: X — R*, (g9), = g(h), Yhe E'.
g is evidently continuous. If g(x,) ¢ K for some x,€ X, there exists,
by separation theorem ([6], p. 65), an he £’ such that hog(x,) >
sup (K). This is a contradiction since ko f =< sup h(K) implies
o(ho f) < sup h(K). Evidently g = f(w). FixneN. By Theorem 1,
B, ={h-g:heA,}, with the topology of pointwise convergence on
X, is a compact metric space. We metrize E by the seminorms p,,
p.(x) = sup {|h(x)|: he A,}. We denote this metric topology by .75.
For each n, E, = (C(B,), ||-ll) is a separable Banach space (here ||-||
is sup norm), and so F = [I3., E, is a separable Frechet space. Let
X, be the quotient space obtained from X by the equivalent relation,
x=y<=g)=gly). BEach xeX, gives rise to xeC(B,), x(t) = t(x)
for each te B,, for every n. Thus X, can be embedded in F, z, —
(2, %, +--)€ F. Taking, on X, the topology induced by F, we easily
verify that g: X, — (E, .7,) is continuous and so (9(X), .7,) is separa-
ble. Let K, = the closed convex hull, in (#, . 77), of a countable
dense subset of (¢9(X), 7,). If g(X) & K,, by separation theorem,
there exists an k¢ E' and z, ¢ X such that hog(x,) > sup h(K,;). Since
(B, 7)) DUi-1 A,, qo9(x,) = sup q¢(Ky), Vge U= 4,. Now there ex-
ists a net {h.} c Uz, 4, such that i, — h uniformly on each compact
convex subset of (E,0(E,E’)). From this it follows ko g(x,) < sup h(K,),
a contradiction. This proves the result.

REMARK 3. If E is metrizable then (&', o(E’, E)) contains a
sequence of compact absolutely convex sets whose union is E'. If
Y is a completely regular Hausdorff space containing a o-compact
dense set and E = C,(Y) with strict topology B,, G, then it is
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proved in ([3], Theorem 3) that (E’, o(E’, E)) has an increasing
sequence of absolutely convex compact sets with dense union — here
E is not metrizable.

REMARK 4. The function ¢g: X — (E, o(E, E')), obtained in this
theorem, is measurable in the sense of ([2], Def. 4, p. 89).

The next theorem, in some sense, is a generalization of ([9],
Theorem 3).

THEOREM 5. Let E be a Hausdorff locally convex space such
that there exist, in (E', o(E', E)), an increasing sequence {A,} of
absolutely convex compact sets whose union is E’'. Suppose g: X — K
18 weakly measurable such that go f = 0 implies go f % 0, for every
feE'. Then g(X) is contained in a separable subspace of E.

Proof. In the notations of Theorem 2, B, = {hog:hecA,} are
compact and metrizable, with the topology of pointwise convergence,
and .7, is the metric topology, on E, of uniform convergence on A,.
Proceeding exactly as in Theorem 2, we prove that g(X) is a separa-
ble subset of (FE, .7,). Let F = (FE, 7,) and E, = the closed separa-
ble subspace, in (H, .7 ), generated by a countable dense subset of
9(X), 7). If g(x,) ¢ E, for some x,€ X there exists, by separation
theorem, an heE’ such that hog(x,)) >0 and h =0 on E, Since
E =Uz, A, CF, hog(x)) <sup (hog(X)) < sup h(E,) = 0, a contradic-
tion. This proves the result.

In the next theorem we do not assume H to be uniformly
bounded ([8], Theorem 4, p. 203).

THEOREM 6. Let H be a pointwise bounded subset of C(X). If
H is equicontinuous then, with the topology of pointwise convergence
on X, its closure in C(X) is compact and metrizable. Conversely
iof H is sequentially compact then there is a p-null set A such that
H is equicontinuous at each point of the open set X\A of (X, z,).

Proof. If H is equicontinuous then its pointwise closed convex
hull H,, in R*, lies in C(X) and is compact and convex, and so the
result follows from Theorem 1.

Conversely suppose H is sequentially compact. Then, by
Theorem 1, H is compact and metrizable. By the generalized
Egoroff’s theorem ([4], p. 198) there exists a A-partition of X =
U, X, with p#(X,) =0 and @#(X;) >0, Vi=1 such that Hly, is
compact in the topology of uniform convergence on X, Vvi=1.



POINTWISE COMPACTNESS AND MEASURABILITY 391

Y, = X, N p(X,), i = 1, are nonvoid, disjoint, open subsets of (X, z,)
and p(A) =0, where A = X\Ug, Y,. By the Ascoli Theorem ([1],
Ch. X, §2.5), H|,, are equicontinuous for each i. The result follows
now.
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