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ON CERTAIN SEQUENCES OF LATTICE POINTS

JOSEPH L. GERVER and L. THOMAS RAMSEY

Let S be a finite subset of Rn. A sequence {zx} is an
S-walk if and only if zi+ι—zt is an element of S for all i.
In an effective manner it is shown that long S-walks in Z2

must have an increasing number of collinear points. In Z\
however, an infinite S-walk may have a bounded number
of collinear points.

1* Introduction. Let S be a finite subset of Rn.

DEFINITION. An S-walk is any (finite or infinite) sequence of
vectors in Rn, say {̂ }, such that zi+ί -- z^eS, for all i.

Given S, let M be the maximum of the Euclidean norms of the
vectors in S. In [5] the following theorem is proved (see also [3]
for the case M — Λ/~2):

THEOREM. Let S c Z2, and let K be any positive integer. There
exists N = N(K, M) such that any S-walk of length at least N must
have K collinear points.

With Theorem 1 of this paper we provide an effective bound
on N(K, M). With Theorem 2 we show that the situation of SaZz

is quite different, i.e., an infinite S-walk in Zz may have a bounded
number of collinear points. In Theorem 3 we show that there are
still some restrictions in Zz, namely that if S has only three
elements, then a sufficiently long S-walk must have three collinear
points.

2* The Planar case*

THEOREM 1. Let SaZ2, let K be any positive integer, and let
N be a positive integer such that

log2 N ^ 21ZM\K - iγ + \og2(K - 1) .

Then, for every S-walk {2rĴ L0, there is some line L, and K choices
for i, such that zte L.

Proof. We suppose that the theorem is false for some K and
derive a contradiction. Let Q = 8 21/2>M(K - 1). Let T denote the
set of (positive and negative) Farey fractions of order no greater
than Q. Let A be the set of all lines through the origin with
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slopes in T. Let B be the mirror image of A reflected through
the line y = x. Enumerate the lines in the two sets A and B in
order of increasing slope: Llf L2, L3, ? Let {zt) be a counterexample
to the theorem for K. We may assume that' z0 is the origin.

Let Zj be an arbitrary point of the counterexample sequence.
There are lines in the set A U B, Ln and Ln+19 such that Zj is on or
between these lines; that is, the slope of the line through the origin
and Zj is between or equal to the slopes of Ln and Ln+ί, respectively
a and b.

Dirichlet's theorem [2, page 1] gives us for x = (α + δ)/2, inte-
gers p and g, 0 < q < Q, such that

\qx-p\ ^Q'1

We have either p/q >̂ 6 ^ α, or b ^ a ^ p/g. Note that α6 ̂ 0 . We
may therefore choose p/q to be the same sign as a and b. Let IΓ0

be the line through the origin with slope p/q and let U be the
larger of the two angles between Ho and L% and between HQ and
Ln+1. Clearly, since α, b, and p/g have the same sign (viewing zero
as positive and negative), the tangent of U is at most 2Q~1q~~\

Enumerate the lines parallel to HQ through points of Z2 as
• iϊ_2, H_u Ho, Hlf H2, so that the distance from Ho to Ht is

where d is the minimum distance between such translates of

We now return to Zj. Among zJf zJ+1, , 2rJ+(2P_1)(2Σ:_1) at least
one point is on some H^ with | i | > P — 1 . Otherwise one of the
Hif with \ί\ S P — If would contain if points of our S-walk,
contrary to hypothesis. Let 27 be on a line Ht, with | ΐ | > P — 1,
and J ^ / ^ J + (2P - l)(iΓ - 1). This point zf is at least distance
Pd from JH"0. The component of zf parallel to HQ is at most fM.
Thus, if V is the angle between zf and iί0, we have

I tan V\ ^ Pd/fM .

By taking P so that (2P - l)(iί - 1) ^ J, we can write that

I tan V I ̂  Pd/M[J + (2P - l)(if - 1)]

^ Pd/2M(2P - 1)(K - 1)

> d/AM(K - 1) .

We now estimate d. We may assume that both Ln and Ln+1

are in A, since otherwise they are both in B and the mirror image
of the forthcoming analysis applies. With this assumption both a
and b are in T. We may also assume that p/q is in Γ, for if not
either p/q ^ 1 or p/q ^ — 1. In the first case 1/1 will play the role
of p/q and in the second, —1/1. Thus
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d ^ (p2 + qTι/2 ^ (2ί/2q)~ι .

Thus

I tan V I > [4'21/2Mq(K - I)]"1 .

It is now clear that the choice of Q as 8-21/2M(K — 1) gives us

I tan V\ > |tan 171 .

It is clear that the broken line path from zδ to zf has crossed
either Ln or Ln+1. In summary, given Zj on or between Ln and
Ln+1, there is some integer t such that 0 < t ^ (2P — 1)(JSΓ — 1) and

( i ) P is the first integer such that (2P - 1)(K - 1) ^ J and
(ii) zJ+t is within Λf of either Ln or Lw+1.

By induction we choose a subsequence {zt.} of {*,} such that
( i ) each zt. is within M of some line in A U B and
(ii) ί, < ί<+1* ^ t, + (2P - 1)(K - 1), where P is the first integer

such that (2P - 1)(JSΓ - 1) ^ tt.
Note that we may choose t0 — 0 and tλ = 1. In general, if £* ^

1), then the P for ti+1 satisfies

2P - 1 ^ j \ + 1 .

Thus, ί<+1 ^ (2i, + 1)(K - 1). Thus, if j t ^ 2έ - 1, we have i<+1 ^
2i+1 - 1.

We now count the number of lines in A{J B. It is less than
2Q2. For any given line in A U JB, the number of translates of it
through points of Z2 which are within distance M of it is at most
2M/d, where d is the minimum distance between such translates.
If their common slope is p/q in Γ, we have

d ^ (p2 + <f )~1/2 ^ (21/2Q)"1 .

If their common slope with respect to the τ/-axis is in T, the mirror
image analysis applies. Thus, in all cases, 2Mjd <> 2 21/2MQ. Finally,
(2Q2)(2-21/2MQ) = 4 21/2MQ3 is an upper bound on the number of
lines which the subsequence {zt.} can occupy. If the index i on tt

is at least (K — l)(4 21/2JίQ3), one of these lines will have K points
of {zt.}. All that is required is that t^N. Since i i^(if~l)(2 i - 1 ) ,
it suffices to have

log2 (K - 1) + 4 2ι/2MQ\K - 1) ^ log2iV .

Since Q = 8-2ί/2M(K - 1), we have 4 2ι/2MQ\K - 1) = 213M\K - I)4.
By our choice of N this is satisfied. This contradiction establishes
the theorem.

REMARK 1. Theorem 1 remains true in %-dimensional space
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with the same relations between N, M and K if we use n — 1
dimensional hyperplanes for L instead of lines. The proof consists
of projecting the S-walk onto Z2, finding a line there and taking
its pre-image under the projection.

REMARK 2. Professor Carl Pomerance of the University of
Georgia [4] has extended this theorem by considering walks whose
average step size is bounded. His theorem is stated below. Let
d(V) = ΣSΓoMISi+i ~*ill for a finite sequece V = {*<},%<= Z1.

THEOREM. For every positive integer K and every positive real
number M, there exists m0 = mQ(M, K) such that if m > m0 and
d(V)/m <; M, then there are K points of V which are collinear.

An effective bound on m0 is not known for Pomerance's theorem.

Ill* Three dimensional case*

THEOREM 2. If S is a set of vectors which do not all lie in
the same plane, then there exists an infinite S-walk in which no
511 + 1 vectors are collinear.

NOTATION. If A = (alf , α j and B = (bu , 6 J are ordered
sets of vectors, and β is a vector operator, we let RA = (α», , αj,
(A, B) = (a19 '- ,an,bu , δm), and βA = (/Sα̂  , /3αJ. Let /, j ,
and k be the three orthonormal unit vectors. For a vector z=zιi +
zj + z3fe, let ||2r||M = Si + s2 + s8 and H*!!-1 = O' + ^ + 3̂ — ^2—^3—
Jδŝ i)1/2 Note that ||2r||N and H^H1 are proportional to the components
of z parallel and perpendicular respectively to the vector i + j + k.
Let 7 be the length of the component of i, J, or k perpendicular to
i + j + k. Then 7 = (2/3)1/2 and in general the perpendicular com-
ponent of z has length 7 | |^ | | 1 .

Proof. It suffices to prove Theorem 2 for the case where S =
{ί, j , k). Let α and β be vector operators such that ai = j , α j = i,
αί: = A:, βi — i, βj — k, and βk = j . We define inductively ordered
sets of vectors An. Let Ao = (i), and let iln+1=(AΛ, αAΛ, RβAn, An,
RβaAn, RβAn, An). Note that A» has T elements and that the
sequence An+ι begins with An. It follows that there exists a unique
infinite sequence of vectors {vp} such that (ΌU , v7n) = An for all
n. Let *p = Σj=i^? f° r all positive integers p. Then TF ί̂Zp} is an
S-walk. We claim that no 511 + 1 elements of W are collinear.

For convenience of notation we let zQ be the zero vector. Let
C« = {zQ, zί9 •••, z7n}. We prove by induction that the projection of
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C» onto the plane perpendicular to i + j + k lies within a trapezoid
with base 4"7, base angles 60°, and adjacent sides 4*7/3, with z0

and z7n lying at extreme ends of the base. We will refer to such
a trapezoid as a trapezoid of order n. The case n = 0 is trivial
Assume it is true for n. Note that An, aAn, RβAn, and RβaAn

are all mirror images of each other, either in space or in time (i.e.,
one can get from one to the others by permuting the unit vectors'
by reversing the order of the sequence, or both). It follows that
the set C"n = {z7*v, ••, zr»(]/+1)} is congruent to C°, or its mirror image
for 0 ^ v ^ 6. Therefore the projection of C* lies within a trapezoid
of order n, with z7nu and z7*(v+1) lying at extreme ends of the base.
From the definition of An+ι, it follows that the seven trapezoids of
order n fit together within a trapezoid of order n + 1, as illustrated
in Figure 1.

It is straightforward to prove, by induction on n, that for
any positive integer v, the projections of Cί+1 and Cζ%\ can fit
together in one of only three possible configurations (ignoring
rotations, reflections, and reversals of the sequence), namely those
illustrated in Figure 2.

It follows that the distance between two points lying in non-
adjacent trapezoids of order n must be at least 3-ι/ϊ 4"γ, and that
the distance between two points lying in adjacent trapezoids, or

FIGURE 1

FIGURE 2
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the same trapezoid, of order n can be at most 2-4*7.
Now let p and q be positive integers such that 7* ̂  | p — q | <

7n+ί. Then, if n ^ 1, zp and zq cannot lie in adjacent trapezoids of
order n — 1, so \\zp — zq\\L ̂  β"172^*""1; if w = 0, this inequality is
trivially satisfied. Likewise, zp and zg must lie in adjacent trapezoids,
or the same trapezoid, of order n + 1, so \\zp—zq\\L <^2 4W+1. Since
\\Zp - *JIM = \P - Q\> we have

Now let r and s be positive integers such that 7W <; | r — s| < 7W+1,
with m ^> n, so that

3 - 1 / 2 . 4 » - i . 7 - ( » + i ) < | | ^ __ Z β \ \ ± / ι \ Z r - ^ i j i i ^ 2 4 W + 1 7 - W .

If zP, zg, 2rr, and zs are collinear, then

\\zp - z J I V I I * , - ^ | | » = \\zr - z . | | V I | 2 r r - z . | | »

so 3-1/2.4--i.7-(-+D < 2 .4^ + 1 7"m. I t f o l l o w s t h a t (γ/4)*- < 224i/T,

and m - n < (log 224 vΊΓ)/(log 7/4) < 11, i.e., m - w ̂  10. Therefore
I ̂  — 8 I/I i? — q I < 711, and there are at most 711 collinear points in W.

Furthermore, if X is a set of collinear points in W which all
lie within the same trapezoid of order n, but not within the same
trapezoid of order n — 1, then no two points of X can lie within
the same trapezoid of order n — 11. However, no line can intersect
more than five trapezoids of order n — 1 within a trapezoid of order
n. For suppose a line intersected six of the trapezoids C£, Q, , C£
in Figure 1. If Cί where excluded, then the line would have to
intersect C» and C£, in which case Q would be missed. If Cl were
excluded, then the line would intersect Cl and Cl, missing Cl. But
a line intersecting Cl and Cl would miss Cl. Therefore, there are
at most 511 collinear points in W, and the theorem is proved.

It is obvious that this result can be sharpened considerably
without changing the method of proof. For example it is not hard
to convince oneself, by studying Figure 2, that in fact 41t~1 ^ \\zp —
zq\\L ^ 4*+1 if T S \p - q\ < 7n+1. Also, there is no need to lump
together all values of \p — q\ between T and 7*+1. By using a finer
partition it ought to be possible to show that for a given value of
\p — q\, the possible values of \\zp — zq\\Ll\\zp — zq\\ϊι range over a
factor no greater than 4. Since 4 < (7/4)3, this would imply that
W can have no more than 73 collinear points, all lying in the same
trapezoid of order n, and no two lying in the same trapezoid of
order n — 4. Finally, one could examine the 74 trapezoids of order
n — 4 within a trapezoid of order n, preferably with the aid of a



ON CERTAIN SEQUENCES OF LATTICE POINTS 363

computer, and find an upper bound on the number which can be
collinear, not only in the plane, but in 3-space. To clinch the
argument, it might be necessary to descend to order n — 5.

One would hope that by this method a sufficiently clever and
persistent mathematician could determine the true maximum number
of collinear points in W, which undoubtedly is three. However,
there is no hope of sharpening Theorem 2 further than this, for we
have the following theorem:

THEOREM 3. // S has exactly three elements, then every S-walk
of length nine has three collinear vectors; in fact three equally
spaced collinear vectors.

Proof. This result follows from the theorem of T. C. Brown
[1] that any sequence of length nine on three symbols contains two
adjacent segments which are permutations of each other. Brown's
theorem can be verified in about one hour by direct computation.

An S-walk of length eight with no three collinear points is
obtained by summing the sequence i, j , i, k, iy j , i.

REMARK 3. Theorem 2 also holds in the case where SaR2,
provided that there are three elements eu e>, and eΛ of S, such that
ei x e2> e2 x e-d> and ed x ex are linearly independent over the rationals.
In other words, the condition that the elements of £ be lattice
points is necessary for Theorem 1.

The above theorems leave unanswered the question of whether
it is possible to have an infinite S-walk with no three collinear
points for some SaZn (in particular, can n = 3?).

REFERENCES

1. T. C. Brown, Is there a sequence on four symbols in which no two adjacent
segments are permutations of one another, Amer. Math. Monthly, 78 (1971), 886-888.
2. J. W. S. Cassels, An Introduction to Diophantine Approximations, Cambridge
University Press, Cambridge, 1957.
3. P. L. Montgomery, Solution of a problem of T. C. Brown, Amer. Math. Monthly,
79 (1972), 1143-1144.
4. Carl Pomerance, Collinear subsets of lattice point sequences - an analogue of
Szemeredϊs theorem, to appear in J. Combinatorial Theory.
5. L. Thomas Ramsey, Fourier-Stieljes transforms of measures with a certain conti-
nuity property, J. Functional Analysis, 25 (1977), 306-313.

Received February 28, 1978.

UNIVERSITY OF HAWAII

HONOLULU, HI 96822






