LONG WALKS IN THE PLANE WITH FEW COLLINEAR POINTS

Joseph L. Gerver

Let S be a set of vectors in R^{n}. An S-walk is any (finite or infinite) sequence $\left\{z_{i}\right\}$ of vectors in R^{n} such that $z_{i+1}-z_{i} \in S$ for all i. We will show that if the elements of S do not all lie on the same line through the origin, then for each integer $K \geqq 2$, there exists an S-walk $W_{K}=\left\{z_{i}\right\}_{i=1}^{N(K)}$ such that no $K+1$ elements of W_{K} are collinear and $N(K)$ grows faster than any polynomial function of K.

Specifically, we will prove that

$$
\log _{2} N(K)>\frac{1}{9}\left(\log _{2} K-1\right)^{2}-\frac{1}{6}\left(\log _{2} K-1\right)
$$

We will then show that if the elements of S lie on at least L distinct lines through the origin, then there exists an S-walk of length $N(K, L)$ with no $K+1$ elements collinear, such that $N(K, L) \geqq$ $(1 / 4) L^{*} N(K-1)$, where $L-2 \leqq L^{*} \leqq L+1$ and $L^{*} \equiv 0 \bmod 4$. In [3] it was shown that if $S \subset Z^{2}$, and for all $s \in S$ we have $\|s\| \leqq M$, then there does not exist an S-walk $W=\left\{z_{i}\right\}_{i=1}^{N(K, M)}$ such that no $K+1$ elements of W are collinear and

$$
\log _{2} N(K, M)>2^{13} M^{4} K^{4}+\log _{2} K
$$

Before proving these theorems we introduce some notation. If $A=\left(\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}\right)$ and $B=\left(\boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{m}\right)$ are ordered sets of vectors, we let $R A=\left(a_{n}, \cdots, a_{1}\right)$ and we let $(A, B)=\left(a_{1}, \cdots, \boldsymbol{a}_{n}, \boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{m}\right)$. We let $2 A=(A, A)$ and, for every positive integer k, we let $(k+1) A=$ $(k A, A)$. If J is a vector operator, we let $J A=\left(J a_{1}, \cdots, J a_{n}\right)$.

Theorem 1. Let S contain two vectors independent over \boldsymbol{R}, and let K be an integer greater than or exual to 2. There exists an S-walk $W_{K}=\left\{z_{p}\right\}_{p=1}^{N(K)}$ such that no $K+1$ elements of W_{K} are collinear and such that

$$
\log _{2} N(K)>\frac{1}{9}\left(\log _{2} K-1\right)^{2}-\frac{1}{6}\left(\log _{2} K-1\right)
$$

Proof. If we let $\left(\log _{2} K-1\right)^{2} / 9-\left(\log _{2} K-1\right) / 6=\log _{2} K$, then $\log _{2} K=(25+3 \sqrt{65}) / 4>12$ or $(25-3 \sqrt{65}) / 4<1$. Therefore if $1 \leqq \log _{2} K \leqq 12$, and $2 \leqq K \leqq 4096$, then

$$
\frac{1}{9}\left(\log _{2} \mathrm{~K}-1\right)^{2}-\frac{1}{6}\left(\log _{2} K-1\right)<\log _{2} K
$$

Since W_{K} cannot have more than $N(K)$ collinear points, we need only consider $K>4096$.

We may let $S=\{i, j\}$ without loss of generality, where \boldsymbol{i} and \boldsymbol{j} are orthonormal unit vectors.

For every positive integer m and nonnegative integer n, let $A_{0}^{m}=i$, and let

$$
A_{n+1}^{m}=\left(m A_{n}^{m}, 2^{n} R J A_{n}^{m}\right),
$$

where $J \boldsymbol{i}=\boldsymbol{j}$ and $J \boldsymbol{j}=\boldsymbol{i}$. Let $V=\left\{\boldsymbol{v}_{p}\right\}_{p=1}^{N}=\mu A_{\nu}^{\mu}$, where μ is the greatest integer less than or equal to $((7 / 9) K)^{1 / 3}$, and ν is the least integer greater than or equal to $\log _{2} \mu-3 / 2$. Note that since $K>$ 4096, we have $\mu \geqq 14$, and $\nu \geqq 3$. Let $z_{p}=\sum_{q=1}^{p} \boldsymbol{v}_{q}$ for each p, and let $W=\left\{z_{p}\right\}_{p=1}^{N}$. We maintain that W has no more than K collinear points and that $\log _{2} N>\left(\log _{2} K-1\right)^{2} / 9-\left(\log _{2} K-1\right) / 6$.

Let $b_{0}=1$ and let $b_{n+1}=\left(\mu+2^{n}\right) b_{n}$. Then b_{n} is the cardinality of A_{n}^{μ}, and $N=\mu b_{\nu}$. Clearly $b_{n} \geqq \mu^{n}$, so $N \geqq \mu^{\nu+1}$ and $\log _{2} N \geqq$ $(\nu+1) \log _{2} \mu \geqq\left(\log _{2} \mu-1 / 2\right) \log _{2} \mu$. Since μ is the greatest integer less than or equal to $((7 / 9) K)^{1 / 3}$, and $((7 / 9) K)^{1 / 3}>14$, we have $\mu>$ $(14 / 15)((7 / 9) K)^{1 / 3}>((1 / 2) K)^{1 / 3}$. It follows that $\log _{2} N>1 / 9\left[\log _{2}((1 / 2) K)\right]^{2}-$ $\log _{2}((1 / 2) K) / 6=\left(\log _{2} \mathrm{~K}-1\right)^{2} / 9-\left(\log _{2} K-1\right) / 6$.

We now prove that W has no more than K collinear points.
Let $C_{n}^{\alpha}=\left\{z_{p}: \alpha b_{n} \leqq p \leqq(\alpha+1) b_{n}\right\}$. For each n, all C_{n}^{α} are congruent; specifically one can get from any one to any other by a translation plus, possibly, a reflection about the major diagonal (i.e., a reflection about the line passing through the vector $\boldsymbol{i}+\boldsymbol{j}$, which interchanges \boldsymbol{i} and \boldsymbol{j}), followed by a rotation about the origin of 180°. This reflection plus rotation is equivalent to a reflection about the line perpendicular to the major diagonal (i.e., the line passing through the vector $\boldsymbol{i}-\boldsymbol{j}$). We will refer to this latter line as the minor diagonal. Let

$$
\begin{aligned}
U_{n}^{\beta} & =\left\{C_{n}^{\alpha}: \beta\left(\mu+2^{n}\right) \leqq \alpha<(\beta+1)\left(\mu+2^{n}\right)\right. \\
& \text { if } n \neq \nu \text { and } U_{\nu}^{\rho}=\left\{C_{\nu}^{\alpha}: 0 \leqq \alpha \leqq \mu\right\}
\end{aligned}
$$

Note that $C_{n+1}^{\beta}=\left\{z_{p}: \beta\left(\mu+2^{n}\right) b_{n} \leqq p \leqq(\beta+1)\left(\mu+2^{n}\right) b_{n}\right\}$, so U_{n}^{β} is a partition of C_{n+1}^{β} and U_{ν} is a partition of W. We now consider a line with slope m and determine for each n, the maximum number of elements of U_{n}^{β} which the line can intersect (the maximum number cannot depend on β, since all C_{n+1}^{β} are congruent). Let r_{n} be this maximum number. Then the line cannot intersect more than $r=$ $\prod_{n=0}^{\nu} r_{n}$ points of W.

Let s_{n} be the slope of $z_{b_{n}}$; i.e., $s_{n}=y_{n} / x_{n}$ where $z_{b_{n}}=x_{n} \boldsymbol{i}+y_{n} \boldsymbol{j}$. The slope of $z_{(\alpha+1) b_{n}}-z_{\alpha b_{n}}$ is then either s_{n} or s_{n}^{-1}, depending on whether C_{n}^{α} is a simple translation of C_{n}^{0}, or a translation of the reflection of C_{n}^{0} about the minor diagonal. We wish to find a lower bound on s_{n} / s_{n-1}.

Now $x_{0}=1, y_{0}=0, x_{n+1}=\mu x_{n}+2^{n} y_{n}$, and $y_{n+1}=\mu y_{n}+2^{n} x_{n}$. It follows that x_{n}, y_{n}, and s_{n} are strictly positive for all $n \geqq 1$. We now prove by induction that $s_{n}<2^{n} / \mu$. Clearly $s_{0}=0<2^{\circ} / \mu$ and $s_{1}=1 / \mu<2^{1} / \mu$. Suppose $s_{n}<2^{n} / \mu$. Let $t_{n}=2^{n} / s_{n} \mu$. Then $t_{n}>1$. Now

$$
\begin{aligned}
s_{n+1} & =\left(\mu y_{n}+2^{n} x_{n}\right) /\left(\mu x_{n}+2^{n} y_{n}\right) \\
& =\left(\mu s_{n}+2^{n}\right) /\left(\mu+2^{n} s_{n}\right) \\
& =\left(\mu s_{n}+\mu s_{n} t_{n}\right) /\left(\mu+\mu s_{n}^{2} t_{n}\right) \\
& =\left(s_{n}+s_{n} t_{n}\right) /\left(1+s_{n}^{2} t_{n}\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
t_{n+1} & =2^{n+1} / s_{n+1} \mu=2 s_{n} t_{n} / s_{n+1} \\
& =2 s_{n} t_{n}\left(1+s_{n}^{2} t_{n}\right) /\left(s_{n}+s_{n} t_{n}\right) \\
& =2 t_{n}\left(1+s_{n}^{2} t_{n}\right) /\left(t_{n}+1\right) .
\end{aligned}
$$

We now view t_{n+1} as a function of the real variables t_{n} and s_{n}, and compute its partial derivatives:

$$
\partial t_{n+1} / \partial t_{n}=2\left(s_{n}^{2} t_{n}^{2}+2 s_{n}^{2} t_{n}+1\right) /\left(t_{n}+1\right)>0
$$

and

$$
\partial t_{n+1} / \partial s_{n}=4 t_{n}^{2} s_{n} /\left(t_{n}+1\right)>0
$$

Since t_{n+1} has the value 1 when $s_{n}=0$ and $t_{n}=1$, it follows that $t_{n+1}>1$ when $s_{n} \geqq 0$ and $t_{n}>1$, as is the case here. Therefore $s_{n+1}<2^{n+1} / \mu$.

Next, recall that $\nu-1<\log _{2} \mu-3 / 2$, so if $n \leqq \nu-1$, then $2^{n} \leqq 2^{\nu-1}<2^{-3 / 2} \mu$. Since $2^{n}>s_{n} \mu$, it follows firstly that $s_{n}<2^{-3 / 2}$, and secondly that

$$
\begin{aligned}
s_{n+1} / s_{n} & =\left(\mu s_{n}+2^{n}\right) /\left(\mu s_{n}+2^{n} s_{n}^{2}\right) \\
& >2 \mu s_{n} /\left(\mu s_{n}+2^{-3 / 2} \mu s_{n}^{2}\right) \\
& =2 /\left(1+2^{-3 / 2} s_{n}\right)>2 /\left(1+\frac{1}{8}\right)=\frac{16}{9}
\end{aligned}
$$

It follows that, given m, there is at most one n such that $(3 / 4) s_{n} \leqq m \leqq(4 / 3) s_{n}$. Suppose there exists λ such that $(3 / 4) s_{l} \leqq m \leqq$ $(4 / 3) s_{\lambda}$. Then $m<(3 / 4) s_{\lambda+1}$ and $m>(4 / 3) s_{\lambda_{1}}$. Moreover, for all $n>$ $\lambda+1$, we have $m<(27 / 64) s_{n}<(1 / 2) s_{n}$, and for all $n<\lambda-1$, we
have $m>(64 / 27) s_{n}>2 s_{n}$. All of the above also holds if we replace s_{n} by s_{n}^{-1}, except that some of the inequalities are reversed and constants replaced by their reciprocals in the obvious way.

We now calculate for each of the five cases, $n=\lambda, n=\lambda+1$, $n=\lambda-1, n>\lambda+1$, and $n<\lambda-1$, the maximum number r_{n} of elements of U_{n}^{β} which a line of slope m can intersect. We can assume without loss of generality that C_{n+1}^{β} is a simple translation of C_{n+1}^{o}; if C_{n+1}^{β} is a translation of the reflection of C_{n+1}^{0} about the minor diagonal, then we can apply the same argument, replacing s_{n} by s_{n}^{-1}. Then C_{n}^{α} is a simple translation of C_{n}^{0} for $\beta\left(\mu+2^{n}\right) \leqq$ $\alpha<\beta\left(\mu+2^{n}\right)+\mu$, and a translation of the reflection of C_{n}^{n} for $\beta\left(\mu+2^{n}\right)+\mu \leqq \alpha<(\beta+1)\left(\mu+2^{n}\right)$. For each α, the first point of $C_{n}^{\alpha+1}$ coincides with the last point of C_{n}^{α}. It is easy to prove by induction on n that C_{n}^{0} (and therefore C_{n}^{α} for all α) lies entirely within a right triangle, with sides x_{n} and y_{n} adjacent to the right angle, and with the first and last points of C_{n}^{0} at opposite ends of the hypotenuse. Therefore the sets $C_{n}^{\alpha}: \beta\left(\mu+2^{n}\right) \leqq \alpha<\beta\left(\mu+2^{n}\right)+$ μ lie within congruent right triangles, whose hypotenuses are adjacent segments of a line with slope s_{n} (see Fig. 1). It follows

Figure 1
that a line with slope $m>s_{n} q /(q-1)$ or $m<s_{n}(q-1) / q$ can intersect at most q of the sets $C_{n}^{\alpha}: \beta\left(\mu+2^{n}\right) \leqq \alpha<\beta\left(\mu+2^{n}\right)+\mu$ at distinct points (i.e., assign the last point of each set C_{n}^{α} to the set $C_{n}^{\alpha+1}$, and do not count the line as intersecting C_{n}^{α} if it only intersects this last point). Suppose $m \leqq 1$. Then $m<(1 / 2) s_{s}^{-1}$, and a line of slope m can intersect no more than two of the sets $C_{n}^{\alpha}: \beta\left(\mu+2^{n}\right)+$ $\mu \leqq \alpha<(\beta+1)\left(\mu+2^{n}\right)$. If $n=\lambda$, then a line of slope m can intersect all μ of the sets $C_{n}^{\alpha}: \beta\left(\mu+2^{n}\right) \leqq \alpha<\beta\left(\mu+2^{n}\right)+\mu$ for a total of $\mu+2$. If $n=\lambda+1$ or $\lambda-1$, the line can intersect at most 4 of the sets $C_{n}^{\alpha}: \beta\left(\mu+2^{n}\right) \leqq \alpha<\beta\left(\mu+2^{n}\right)+\mu$, for a total of 6 , while if $n>\lambda+1$ or $n<\lambda-1$, the line can intersect at most two of the sets $C_{n}^{\alpha}: \beta\left(\mu+2^{n}\right) \leqq \alpha<\beta\left(\mu+2^{n}\right)+\mu$ for a total of 4 . If $m>1$, then we obtain essentially the same results by redefining λ so that ($3 / 4$) $s_{\lambda}^{-1} \leqq m \leqq(4 / 3) s_{\lambda}^{-1}$, the only difference being that μ is replaced by 2^{n}, which in any case is less than μ. Therefore we have $r_{n} \leqq \mu+2$ if $n=\lambda, r_{n} \leqq 6$ if $n=\lambda-1$ or $\lambda+1$, and $r_{n} \leqq 4$ for all other n. Finally, we have

$$
\begin{aligned}
r & =\prod_{n=0}^{\nu} r_{n} \leqq(\mu+2) \cdot 6^{2} \cdot 4^{\nu-2}<36(\mu+2) \cdot 4^{1 \log _{2 \mu-5 / 2}} \\
& =\frac{36}{32} \mu^{2}(\mu+2) \leqq \frac{9}{7} \mu^{3} \leqq K
\end{aligned}
$$

If λ does not exist, then there are at most two values of n for which $(27 / 64) s_{n} \leqq m \leqq(64 / 27) s_{n}$, and these two values can take the place of $\lambda-1$ and $\lambda+1$ in our argument.

Remark. We can use this method to get slightly better results as follows: The method works by partitioning W into a heiarchy of sets, each set of order $n+1$ being partitioned into $\mu+2^{n}$ sets of order n, and showing that for almost all n, a given line can intersect at most four sets of order n within a given set of order $n+1$. Suppose that instead of using the partition based on the sets C_{n}^{α}, we modify this partition slightly by splitting each C_{n}^{α} into two sets of order n, namely $\left\{z_{p}: \alpha b_{n} \leqq p \leqq \alpha b_{n}+\mu b_{n-1}\right\}$ and $\left\{z_{p}: \alpha b_{n}+\right.$ $\left.\mu b_{n-1} \leqq p \leqq(\alpha+1) b_{n}\right\}$. Then each set of order $n+1$ would have either 2μ or 2^{n+1} sets of order n, and it should not be hard to show that for almost all n, a given line can intersect at most three sets of order n within a given set of order $n+1$. We would then have $r=c \mu \cdot 3^{\nu}=c \mu^{1+\log _{2} 3}$, where c is a constant which does not depend on K, and finally

$$
\log _{2} N=\left(1+\log _{2} 3\right)^{-2}\left(\log _{2} K\right)^{2}+O\left(\log _{2} K\right)
$$

However, it seems impossible to push this method any further.
Theorem 2. Suppose that S contains L elements which are pairwise independent over \boldsymbol{R}. Then there exists an S-walk $\Omega=$ $\left\{\boldsymbol{u}_{i}\right\}_{i=1}^{N}$ containing no set of $K+1$ collinear points, such that

$$
\log _{2} N>\frac{1}{9}\left[\log _{2}(K-1)-1\right]^{2}-\frac{1}{6}\left[\log _{2}(K-1)-1\right]+\log _{2} L^{*}-2
$$

where $L-2 \leqq L^{*} \leqq L+1$ and $L^{*} \equiv 0 \bmod 4$.
Proof. The L elements of S with distinct arguments must include $L / 2$ elements (if L is even) or ($L+1$)/2 elements (if L is odd) in the same half-plane. Label these elements $s_{1}, s_{2}, s_{3}, \ldots$ in order of their arguments. For $1 \leqq n \leqq(1 / 4) L^{*}$, let $W_{n}=\varphi_{n} W$ where W is defined as in the proof of Theorem 1 , and φ_{n} is the linear vector operator which maps i to $s_{2 n-1}$ and \boldsymbol{j} to $\boldsymbol{s}_{2 n}$. Let N_{0} be the cardinality of W and let $w_{n}=x s_{2 n-1}+y s_{2 n}$ be the final element of W_{n}. For $1 \leqq i \leqq N_{0}$, let z_{i} be defined as in the proof of Theorem 1, and let $u_{i}=\varphi_{1} z_{1}$. Let $u_{N_{0} n+i}=\sum_{j=1}^{n} w_{j}+\varphi_{n+1} z_{i}$ for
$1 \leqq n \leqq(1 / 4) L^{*}-1$. Finally, let $N=(1 / 4) L^{*} N_{0}$ and let $\Omega=\left\{\boldsymbol{u}_{i}\right\}_{i=1}^{N}$. Note that Ω is constructed by placing the W_{n} end to end in sequence.

By Theorem 1,

$$
\log _{2} N>\frac{1}{9}\left(\log _{2} K-1\right)^{2}-\frac{1}{6}\left(\log _{2} K-1\right)+\log _{2} L^{*}-2 .
$$

We will now prove that no $K+2$ points of Ω are collinear. Substituting $K-1$ for the bound variable K then gives us Theorem 2 for the case $K \geqq 3$. For the case $K=2$, we simply let $u_{i}=$ $\sum_{j=1}^{i} \boldsymbol{s}_{j}$. The resulting set $\left\{\boldsymbol{u}_{i}\right\}$, which contains at least ($1 / 2$) L^{*} elements, is the set of vertices of a convex polygon; hence no three elements are collinear.

Let $T_{n}=\left\{u_{i}\right\}_{i=N_{0}(n-1)+1}^{N_{0}^{n}}$ and let $\boldsymbol{t}_{n}=\sum_{j=1}^{n} \boldsymbol{w}_{j}$, so that \boldsymbol{t}_{n} is the final element of T_{n}. Let $t_{0}=0$ and let $r_{n}=t_{n-1}+x s_{2 n-1}$ for $n \geqq 1$. Note that $t_{n}=r_{n}+y s_{2 n}$. Note also that from results proved previously, the set T_{n} must lie entirely on or in the interior of the triangle Δ_{n} with vertices t_{n-1}, r_{n}, and t_{n}. Consequently any line which intersects T_{n} must intersect Δ_{n}. Now consider the polygon P with vertices $\boldsymbol{t}_{0}, \boldsymbol{r}_{1}, \boldsymbol{t}_{1}, \boldsymbol{r}_{2}, \boldsymbol{t}_{2}, \cdots, \boldsymbol{r}_{L^{*} / 4}, \boldsymbol{t}_{L^{*} / 4}$ in that order. The (directed) edges of this polygon are the vectors $x s_{1}, y s_{2}, x s_{3}, \cdots$, $y s_{L^{*} / 2}$, and $-x \sum_{n=1}^{I * / 4} s_{2 n-1}-y \sum_{n=1}^{L^{* * / 4}} \boldsymbol{s}_{2 n}$. Since the vectors $\boldsymbol{s}_{1}, \boldsymbol{s}_{2}, \boldsymbol{s}_{3}, \cdots$ are listed in order of increasing argument, and the range of all their arguments is less than 180°, it follows that the interior angles of P are all less than 180°, so P is convex. Now any line intersecting Δ_{n}, and in particular any line intersecting T_{n}, must intersect at least two sides of Δ_{n} (including each vertex in its two adjacent sides), and therefore must intersect P. Since P is convex, a line can only intersect P at one or two points, or along an edge. Therefore no line can intersect more than two of the T_{n}. Unless the slope of a line is between that of $s_{2 n-1}$ and $s_{2 n}$ inclusive, it can only intersect one point of T_{n}. By Theorem 1, no line can intersect more than K points of T_{n}. Therefore, no line can contain more than $K+1$ points of Ω.

Remark. In order to compare these results with the upper bound in [3], we can consider the case where $S=\left\{\boldsymbol{s} \in Z^{2}:\|s\| \leqq M\right\}$. Since the number of lattice points in a disc of radius R is $\pi R^{2}+$ $O(R)$ [2], we know that the number of lattice points with both coordinates divisible by q, in a disc of radius M, is $\pi M^{2} / q^{2}+O(M / q)$. Therefore the number L of lattice points with relatively prime coordinates is

$$
\pi M^{2} \sum_{n=0}^{\infty}(-1)^{n} \sum_{q \in Q_{n}} q^{-2}+O\left(M \sum_{q \in Q} q^{-1}\right),
$$

where Q is the set of square free positive integers less than or equal to M, and Q_{n} is the set of integers in Q with n distinct prime factors. It follows [1] that

$$
L=6 M^{2} / \pi+O(M \log M)
$$

Finally, if we let $N(K, M)$ be the length of the longest S-walk with no more than K collinear points, and we choose any constants $c_{1}<(9 \log 2)^{-1}$ and $c_{2}>2^{13} \log 2$, then we have

$$
M^{2} \exp \left[c_{1}(\log K)^{2}\right]<N(K, M)<\exp \left[c_{2} M^{4} K^{4}\right]
$$

for all M and all but a finite number of K.

References

1. T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, (1976), 63.
2. H. Rademacher, Lectures on Elementary Number Theory, Blaisdell, New York, (1964), 100.
3. L. T. Ramsey and J. L. Gerver, On certain sequences of lattice points, Pacific J. Math., 83 (1979), 357-363.

Received June 16, 1978.
University of Hawail
Honolulu, HI 96822
Current address: University of Georgia
Athens, GA 30602

