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LONG WALKS IN THE PLANE WITH FEW
COLLINEAR POINTS

JOSEPH L. GERVER

Let S be a set of vectors in Rn. An S-walk is any
(finite or infinite) sequence {zt) of vectors in Rn such that
Zi+i—Zi 6 S for all i. We will show that if the elements of
S do not all lie on the same line through the origin, then
for each integer K7z29 there exists an S-walk Wκ={zt}?J*>
such that no K+l elements of Wκ are collinear and N(K)
grows faster than any polynomial function of K.

Specifically, we will prove that

logMK) > hlog2K - I)2 - -ί(loft K - 1) .

We will then show that if the elements of S lie on at least L
distinct lines through the origin, then there exists an S-walk of
length iV(jKΓ, L) with no K+l elements collinear, such that N(K, L)^
(X/4)L*N(K - 1), where L - 2 ^ L* ^ L + 1 and L* = 0 mod 4. In
[3] it was shown that if SaZ2, and for all seS we have ||β||<£Λf,
then there does not exist an S-walk W = {zz)flftM) such that no
K+l elements of W are collinear and

log2 N(K, M) > 2ί*M4Ki + \og2K .

Before proving these theorems we introduce some notation. If
A = (alf , an) and B = (bt, , 6 J are ordered sets of vectors, we
let RA = (an, , αx) and we let (A, B) = (au , an,blf , bm). We
let 2A = {A, A) and, for every positive integer k, we let (k+l)A —
(JcA, A). If J is a vector operator, we let JA = (Jalf , Jan).

THEOREM 1. Let S contain two vectors independent over R,
and let K be an integer greater than or exual to 2. There exists
an S-walk Wκ = {zp}ξL*} such that no K+l elements of Wκ are
collinear and such that

log2 N(K) > ±(log2K - If - i-(log2 K - 1) .

Proof. If we_let (log2 K - l)2/9 - ( l o g ^ - l)/6 - log2 K, then
log2 K = (25 + 3i/65)/4 > 12 or (25 - 3l/65)/4 < 1. Therefore if
1 ^ log2 K ^ 12, and 2 ^ K ^ 4096, then
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-ί(log2 K - I)2 - l ( lo& K - 1)< log2 if .

Since Wκ cannot have more than N(K) collinear points, we need
only consider K > 4096.

We may let S = {ί, j} without loss of generality, where i and j
are orthonormal unit vectors.

For every positive integer m and nonnegative integer n, let
A™ = i, and let

where Ji = j and Jj — i. Let V = {tfJJLi = j&A?, where μ is the
greatest integer less than or equal to ((7/9)iΓ)1/3, and v is the least
integer greater than or equal to log2μ — 3/2. Note that since K>
4096, we have μ ^ 14, and v ^ 3. Let 2rp = Σ?=i Γ<z f° r e a c ^ P> a n d
let PΓ = {zp}ζ=1. We maintain that T7 has no more than K collinear
points and that log2 N > (log2 K - l)2/9 - (log2 K - l)/6.

Let bQ = 1 and let δn+1 = (μ + 2n)bn. Then &„ is the cardinality
of ii£, and i\Γ = μbv. Clearly bn^μn, so N ^ μv+1 and log2iV

r^
(y + 1) loga JM ̂  (log2 ^ — 1/2) log2 jM. Since μ is the greatest integer
less than or equal to ((7/9)Z")1/3, and ((7/9)iO1/3 > 14, we have μ >
(14/15)((7/9)iί:)1/3>((l/2)ί:)1/3. It follows that log2iV>l/9[log2((l/2)if)]2-
log2 ((1/2) JΓ)/6 = (loR K - l)2/9 - (log2 if - l)/6.

We now prove that W has no more than K collinear points.
Let C; = {zp: abn <> p ^ (a + l)bn}. For each n, all C%

α are
congruent; specifically one can get from any one to any other by
a translation plus, possibly, a reflection about the major diagonal
(i.e., a reflection about the line passing through the vector i + jf

which interchanges i and j), followed by a rotation about the origin
of 180°. This reflection plus rotation is equivalent to a reflection
about the line perpendicular to the major diagonal (i.e., the line
passing through the vector i — j). We will refer to this latter
line as the minor diagonal. Let

Ui = {C:: β(μ + 2n)^a<(β
if n Φ v and Ul - {C?: 0 ^ a ^ μ) .

Note that C£+1 = {zp: β{μ + 2n)bn ^ p S (β + l)(β + 2n)bn), so U£ is
a partition of Ci+1 and J7y

0 is a partition of TΓ. We now consider
a line with slope m and determine for each n, the maximum number
of elements of Ui which the line can intersect (the maximum number
cannot depend on β, since all C£+1 are congruent). Let rn be this
maximum number. Then the line cannot intersect more than r =
ΠίUo^ points of W.
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Let sn be the slope of zκ; i.e., sn = yjxn where zbn = xj + ynj.
The slope of z{a+1)K — zabn is then either sn or β;1, depending on
whether CZ is a simple translation of Ci9 or a translation of the
reflection of Ci about the minor diagonal. We wish to find a lower
bound on snlsn_γ.

Now xQ = 1, 1/0 = 0, α?Λ+1 = 'μxn + 2Λi/n, and yn+ί = μyn + 2*an. It
follows that xn, yn, and sn are strictly positive for all n ^ 1. We
now prove by induction that sn < 2Ύμ. Clearly s0 = 0 < 2°/^ a n d
sx = 1/^ < 2'/μ. Suppose sn < 2W/^. Let tn = 2n/snμ. Then tn > 1.
Now

Thus

tn+1 - 2n+1/sn+1μ = 2sJJsn+1

= 2sJn(l + «iί»)/(β + «•*•)

- 2ίw(l + βiί»)/(ί + 1) .

We now view tn+1 as a function of the real variables tn and sn9 and
compute its partial derivatives:

dtn+1/dtn = 2{sltl + 2sltn + l)/(ίH + 1) > 0

and

3t +i/d* = 4ίi« /(* + 1) > 0 .

Since tn+ι has the value 1 when sn = 0 and £„ = 1, it follows that
tn+ι > 1 when sn ^ 0 and £„ > 1, as is the case here. Therefore

Sn+1 < 2^/μ.
Next, recall that v — 1 < log2 μ — 3/2, so if w ̂  v — 1, then

2n ^ 2y~1 < 2~3/2μ. Since 2n > sΛ^, it follows firstly that sn < 2"3/2,
and secondly that

+ 2nsl)

> 2μsJ(μsn + 2~^μsl)

= 2/(1 + 2"3X) >

It follows that, given m, there is at most one n such that
(3/4)«Λ ^ m ̂  (4/3)«ft. Suppose there exists λ such that (3/4)8* 5£m^
(4/3)8*. Then m < (3/4)sί+1 and m > (4/3)8;^. Moreover, for all n>
X + 1, we have m < (27/64)sw < (l/2)s%, and for all n < λ — 1, we
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have m > (64/27)$* > 2sn. All of the above also holds if we replace
s* by sή\ except that some of the inequalities are reversed and
constants replaced by their reciprocals in the obvious way.

We now calculate for each of the five cases, n = λ, n = λ + 1,
n — λ — 1, w > λ + 1, and n < λ — 1, the maximum number rn of
elements of U£ which a line of slope m can intersect. We can
assume without loss of generality that CJ?+ί is a simple translation
of Cn+u if G?+i is a translation of the reflection of C»+1 about the
minor diagonal, then we can apply the same argument, replacing
sn by s~ι. Then C£ is a simple translation of C£ for β(μ + 2") ^
oί < β(μ + 2") + μf and a translation of the reflection of Cl for
β(μ + 2W) + μ ^ α < (/S + l)(μ + 2n). For each a, the first point of
Cn+ί coincides with the last point of C£. It is easy to prove by
induction on n that C£ (and therefore Cί for all a) lies entirely
within a right triangle, with sides xn and yn adjacent to the right
angle, and with the first and last points of C« at opposite ends of
the hypotenuse. Therefore the sets C%: β{μ + 2n) ^ a < β(μ + 2n) +
μ lie within congruent right triangles, whose hypotenuses are
adjacent segments of a line with slope sn (see Fig. 1). It follows

FIGURE 1

that a line with slope m > snq/(q — l) or m < sn(q — l)/q can intersect
at most q of the sets C£: /3(μ 4- 2n) ^ α < /3(μ + 2n) + μ at distinct
points (i.e., assign the last point of each set C£ to the set C£+1,
and do not count the line as intersecting C£ if it only intersects
this last point). Suppose m ^ 1. Then m < (l/2)s7x, and a line of
slope m can intersect no more than two of the sets C£: β(μ + 2n) +
μ ^ a < 03 + l)(jM + 2*). If w = λ, then a line of slope m can
intersect all μ of the sets CΛ

α: β(μ + 2n) ^ a < β(μ + 2n) + μ for a
total o f μ + 2. If w = λ + 1 or λ - 1, the line can intersect at
most 4 of the sets C£: β(μ + 2n) <* a < ^ ( ^ + 2*) + ju, for a total
of 6, while if w > λ + l or ^ < λ — 1, the line can intersect at
most two of the sets C£: β(μ + 2Λ) ^ a < β(μ + 2W) + μ for a total
of 4. If m > 1, then we obtain essentially the same results by
redefining λ so that (S/tysj1 ^ m ^ (4/3)s7x, the only difference being
that μ is replaced by 2*, which in any case is less than μ. There-
fore we have rn ^ μ + 2 if w = λ, rn ^ 6 if n = λ — 1 or λ + 1 , and
rΛ ^ 4 for all other w. Finally, we have
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r = lίrn^(μ + 2) 62 4
* = 0

V~2

If λ does not exist, then there are at most two values of n for
which (27/64)sΛ <̂  m ^ (64/27)sΛ, and these two values can take the
place of λ — 1 and λ + 1 in our argument.

REMARK. We can use this method to get slightly better results
as follows: The method works by partitioning W into a heiarchy
of sets, each set of order n + 1 being partitioned into μ + 2n sets
of order n, and showing that for almost all n, a given line can
intersect at most four sets of order n within a given set of order
n + 1. Suppose that instead of using the partition based on the
sets Cn, we modify this partition slightly by splitting each C£ into
two sets of order n, namely {zp: abn <: p <; abn + μbn_ύ and {zp:abn +
μbn-! <ίp^(a + 1)6Λ}. Then each set of order n + 1 would have
either 2μ or 2*+1 sets of order n, and it should not be hard to show
that for almost all n, a given line can intersect at most three sets
of order n within a given set of order n + 1. We would then have
γ = cμ-Zv = cμ1+1O82S, where c is a constant which does not depend
on K, and finally

log2 N = (1 + log2 3Γ2(log2 Kf + O(log2 K) .

However, it seems impossible to push this method any further.

THEOREM 2. Suppose that S contains L elements which are
pair wise independent over R. Then there exists an S-walk Ω —
{wJίLi containing no set ofK+1 collinear points, such that

log2 N > i - [log, (K-D- I]2 - l [ log t (K - 1) - 1] + log2 L* - 2 ,
" to

where L - 2 ^ I / * ^ L + 1 and L * Ξ O m o d 4 .

Proof. The L elements of S with distinct arguments must
include L/2 elements (if L is even) or (L + l)/2 elements (if L is
odd) in the same half-plane. Label these elements su s2, s3, in
order of their arguments. For 1 ^ n ^ (1/4)L*, let Wn = φnW
where W is defined as in the proof of Theorem 1, and φn is the
linear vector operator which maps i to 82n^ and j to s2n. Let JVJ,
be the cardinality of W and let ιυn = fts^.i + 2/s2Λ be the final
element of Wn. For 1 ^ i ^ JVO, let zt be defined as in the proof
of Theorem 1, and let ut = ^ z ^ Let uNon+i = Σ*=i ^i + 9> +i*
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1 ^ n ^ (1/4)L* - 1. Finally, let N = (1/4)L* 2V0 and let β = {αjf=1.
Note that 42 is constructed by placing the Wn end to end in
sequence.

By Theorem 1,

log2 N > —(log2 K - I)2 - -ί(log2 JΓ - 1) + log2 L* - 2 .

We will now prove that no K + 2 points of i2 are collinear. Sub-
stituting K — 1 for the bound variable ϋΓ then gives us Theorem
2 for the case K ^ 3. For the case if = 2, we simply let u{ =
Σ* =i*/ The resulting set {wj, which contains at least (1/2)L*
elements, is the set of vertices of a convex polygon; hence no three
elements are collinear.

Let Tn = {wj&vou_i)+i and let tn = Σ*=i "-V s o t i i a t ^ i s the
final element of Tn. Let f0 = 0 and let rn — tn_x + xs2n_1 for w ^ 1.
Note that tn = rΛ + #s2w. Note also that from results proved previ-
ously, the set Tn must lie entirely on or in the interior of the
triangle Δn with vertices tn_u rn9 and tn. Consequently any line
which intersects Tn must intersect Jn. Now consider the polygon
P with vertices t0, rlf tu r2, t2, , rL*u, tL*u in that order. The
(directed) edges of this polygon are the vectors xsu ys2, xsd, ,
y8L*/2, and — &Σ£='ίβ2»-i — 2/Σί=ί*2» Since the vectors βlf *2, s3, •••
are listed in order of increasing argument, and the range of all
their arguments is less than 180°, it follows that the interior angles
of P are all less than 180°, so P is convex. Now any line intersect-
ing Δn9 and in particular any line intersecting .Tn9 must intersect at
least two sides of Δn (including each vertex in its two adjacent
sides), and therefore must intersect P. Since P is convex, a line can
only intersect P at one or two points, or along an edge. Therefore
no line can intersect more than two of the Tn. Unless the slope
of a line is between that of s^^ and s2n inclusive, it can only in-
tersect one point of Tn. By Theorem 1, no line can intersect more
than K points of Tn. Therefore, no line can contain more than
K + 1 points of Ω.

REMARK. In order to compare these results with the upper
bound in [3], we can consider the case where S = {seZ2: \\s\\<LM}.
Since the number of lattice points in a disc of radius R is πR2 +
O(R) [2], we know that the number of lattice points with both
coordinates divisible by q, in a disc of radius M, is πM2/q2 + O(M/q).
Therefore the number L of lattice points with relatively prime
coordinates is

έ ( - i r Σ Q~2-
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where Q is the set of square free positive integers less than or
equal to M, and Qn is the set of integers in Q with n distinct
prime factors. It follows [1] that

L = 6M2/π + O(MlogM) .

Finally, if we let N(K, M) be the length of the longest S-walk
with no more than K collinear points, and we choose any constants
c, < (91og2)~1 and c2 > 213log2, then we have

M2 exp [φog Kf] < N(K, M) < exp [c2M
4K']

for all M and all but a finite number of K.
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