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CONTINUOUSLY VARYING PEAKING FUNCTIONS

JOHN ERIK FORNAESS AND STEVEN GEORGE KRANTZ

Let X be a compact metric space, A £ C(X) a closed
subalgebra. Let - ^ ^ 1 be the set of peak points for A.
It is shown that there is a continuous function Φ;^~>A
such that Φ(x) peaks at x for all xe-^8.

0* Let X be a compact Hausdorff space, C(X) the continuous
functions on X under the uniform norm, and A a closed subspace
of C(X) containing 1. Let 3P be the set of peak points for A.
Clearly if X has more than one point and # e ̂  then there are
infinitely many functions in A which peak at x. Can one construct
a function

so that Φ(x) peaks at x and Φ has some regularity properties?
In [4], using the von Neumann selection principle, it was shown

that for I ^ S c c C 5 1 with smooth boundary, A = A(&) (the
analytic functions on & which extend continuously to j ^ ) , one can
choose Φ to be measurable. The same argument is valid under much
more general circumstances.

In the present note we prove that, for quite general X and for
A an algebra, Φ can be chosen to be continuous. This generalizes
results in [1, Theorem 3.1] and [2, Proposition 4].

l Throughout the discussion, -X" will be a fixed compact metric
space with metric d. We let C(X) denote the continuous, complex-
valued functions on X with the uniform norm and A £ C(X) will
be a closed complex linear subspace. If xeX, r > 0, then B(x, r) =
{teX:d(x, t)<r}.

DEFINITION. A point x e X is said to be a peak point for A if
there is an feA with f(x) = 1 and, for all yeX~ {x}, \f(y)\ < 1.
The function / is said to peak at x.

We let &(A) denote the set of peak points for A.

THEOREM. Let X be a compact metric space, A Q G{X) a closed
subalgebra (with or without 1). Then there is a continuous map

Φ: &>(A) > A

such that Φ(x) peaks at x for each x
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The remainder of the paper is devoted to the proof of the
theorem. We proceed via a sequence of lemmas. The plan of the
proof is as follows.

For each k e {1, 2, } we will construct a continuous function

such that for each xe^(A) we have
( i ) 110,01011=1;
( i i ) [Φk(x)](x) = 1;

(iii) if t e X ~ B(x, I/A?) then | [Φk(x)](t) | ^ 1 - 1/(Λ + 2).
Once the {Φk} are constructed, the proof is immediate. For let
φ = ΣΓ=i2~zΦi. Then Φ is continuous and for each xe^(A) we have
Φ(x) 6 A and [Φ(x)](x) = 1. Moreover, if £ ̂  a? and & > l/d(x, t) then

I [*(*)](«) I ̂  Σ2-'I[*«(*)](*)I + \2~k[Φk(χ)](t)\

^ 1 - 2~k + 2^fc(l - l/(fc + 2 ) ) < 1 .

So Φ(ίc) peaks at ». Thus it remains to construct the Φk.

LEMMA 1. Let xoe^(A). Let p be a strictly positive continu-
ous function on X with p(x0) — 1. Then there is an f e A with
f(x0) = 1 and \f(x)\ ^ p(x) for all xeX.

Proof. This is a special case of Theorem 12.5 of Gamelin [3],
p. 58.

COROLLARY 2. With hypotheses as in Lemma 1, there is a g eA

such that g(x0) = 1, \g(%)\ < p(x) for all xeX — {x0}.

Proof. Immediate.

LEMMA 3. Let xoe.^(A). Let ψeA peak at x0. There is a
map

Ψ: &>(A) Π {\ψ(x) i > 1/2} > A

so that
( i ) Ψ(x) peaks at x for each xe&*(A) Π {\ψ(%)\ > 1/2},
(ii) Ψ(xo) = ψ,
(iii) Ψ is continuous at α?0.

Proof. For each x e &*(A) — {x0} choose, by Corollary 2, a func-
tion <pxeA such that φx{x) = 1 and
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( * ) I φx{t) I < min {(2 - | f{x) \ - \ ψ(t) |)/2(1 - | ψ(x) |),

for all teX~ {x} .

Now for each xe^(A) D {1̂ 0*01 > 1/2} we define

[2(1— \ψ(x)\)φm+ sgnψ(x)f]/[2- \ψ(x)\] if x Φ x09 \f(x)\ > 1/2 ,

ψ if x = α?o .

Here sgn2 = «/|«|, any zeC~ {0}.
Clearly if a? ^ x0 and ίc is sufficiently close to x0 then | ψ(x) \ > 1/2

and we have

^ IF(χ) -
^ | | [ 2 ( 1 -

+ lit (i
ΞS {[2(1 -

+ (1 -
g 5(1 - |'

>0

-sgnir(x) ψ\\ + ||sι

\γ(x)\)φx + sgnψ(x)

• -sgnf(x))\\

ityίX/ljll^Px — sgn τ̂ (

• r\^(ίc)) s g n ^(ct/) ilr

Hχ)\) + |1 ~ sgnψ>(;

a s x ———> ΏQn

gnψ(x) ψ — ψ\\

* ψ*]/[2 — l^( ^)|] — sgn ^(x) * ψll

it?) ^5r||

||]}/[2— |^(ίc)|] + |1 — sgnτ/r(a;)|

x)\

It remains to verify that Ψ(x) peaks at x when \ψ(x)\ > 1/2. For
such x, we have W(x)](x) — 1. Further, if t =5̂= α? then by (*) we
have

2(1 - \ψ{x)\)\φu(t)\ < 2 - \f(x)\ - \f{t)\

or

12(1 - \f{x)\)φx{t)\ + |+(*)l < 2 - ItWI

whence

12(1 - I f(aθ |)?>.(ί) + sgnψ(x)f(t)\ < 2 -

or

LEMMA 4. Fίa; α positive integer k. There is a sequence
of functions,

Φί:^{A) >A

satisfying, for each z e ^(A) and every j,
( i ) | |Φί(*) | | .= l ;
(i i) [Φί(x)](x) = 1;
(iii) lim sup ||Φί(a;) - Φ{(y)\\ ^ 4r' (I/A;);

{A)
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(iv) for every 1e X ~ B(x, (1 - 2~0 (1/k)),

I [Φί(x)](t) I ̂  (1 - 2/(Je + 2)) + Σ 2"< (l/(fc + 2))

( v ) ||Φί(a?) - Φί-̂ aOH ^ 2 - . (1/fc), i ^ 2.

Proof. This lemma is the heart of the matter. We construct
the Φ{ inductively on j . First consider j = 1. For each as 6 <^(A)
construct, by Lemma 1, a function <px e A which satisfies <px(x) = 1
and

|9>.(t) I ̂  min {1 - Skd(x, t)/(k + 2), 1 - 2/(fc + 2)} .

Using ψ = <pz, construct a function

\ > 1/2} — > A

satisfying the conclusions of Lemma 3. Choose r\, 0 < τ\ < 1/4& so
that ί eB(x, rι

x) implies that \<px(t)\ > 1/2 and

Now observe that if y e B(xf r\) and t £ B(y, l/2k) then

d(x, t) ^ d(y, t) - d(y, x) ^

Therefore for such 2/, £ we have

\[¥l(y)](t)\ <: |[ri(a?)(ί)]| + |[Γi(»)](

(**) ^l9>.(*)l+4-.(l/(fc + 2))
2)) + 2"1 (l/(fc + 2))

Now since έ^(A) is a metric space, it is paracompact ([5], p.
160, Cor. 35). Hence there is a locally finite refinement ^ = {U1

ω}ωeΩί

of the covering {B(x, ri)}βe^u> of ^ ( A ) . Let ίcω, ωeΩlf be chosen
so that I7L £ J5(α?ω, ri,). Let BJ, denote jB(xω, riω). We may assume
that Ui C J3J,. Let {Zi,} be a continuous partition of unity sub-
ordinary to ^ 1 and define

Then conclusions (i) and (ii) are immediate. Conclusion (iv) follows
from (**). Conclusion (v) is vacuous for j = 1. It remains to
verify (iii).

Fix xe&*(A). Then there is a neighborhood W of x and
{ωl9 , ωj S Ωι so that WΠ supp lω Φ 0 only if co e {α ,̂ , α>Λ}.
Of course m may depend on x. Letting α̂  denote xω.f ί = 1, , m,
we have that
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lim sup 11 Φ\{%) - Φ\(y) 11 ̂  Σ Km sup | Xi(χ) - X\{y) \ \ \ ΨXf(y) | |

isup \\Ψl.(x) — Ψ\.{y)\\

ίUx) lim sup \\Ψx<(x)-Ψx(χi)\\

+ Σ,Άt(x) lim sup \\Ψit(xt) - Ψit(y)\\

^ 2 4Γ*/(k + 2) ^ 4-1 (1/fc) .

Now suppose that Φi, ,Φ{ have been constructed so that (i)-(v)
are satisfied. Let x e ^(A). Using -ψ = Φ{(x), we construct a
function

Π {|-f(α)| > 1/2} > A

satisfying the conclusions of Lemma 3. Choose H+1, 0 < ri+ι <
2-*-1 (1/k) so that t e J5(a;, ri+1) implies that | [*{(«)](*) | > 1/2 and
both

\\Ψί+1{x) - ??"ί+1(ί)ll ^ 4"'-2 (1/(Λ + 2))

(***) and

If now y e 5(«, ri+ 1), ί ί B(y, (1 - 2-ί"1) (1/k)) then

d(a?, ί) ^ d(y, t) -

Hence for such ?/, ί we have

^ | [Φί(χ)]( ί ) | -

g (1 - 2/(k +

= (1 - 2/(fc +

+• 4

2))

2))

)
i=l

3 + 1

+ Έ'

L/(* + 2))

2-« (l/(fc 4

r * (1/(Λ -\

-2))-

- 2 ) ) .

2))

Choose a locally finite refinement <%fj+1 = {ί/ΐ+1}ωeΰi+1 of the covering
{£(a, rί+1)}.β u) of ^ ( A ) . Let {xω}ωeΩj+i be chosen so that U3

ω

+1 £
B(a?ω, rί+OsBi+S each ω 6 fli+1. We may assume that ϊ7i+1£JBί+1. Let
{%£+1} be a continuous partition of unity subordinate to ^ i + 1 . Define

_ V ΎJ

It follows as in the case i = 1 that (i), (ii), (iii), and (iv) hold. To
verify (v) fix xe^(A). Let ωu ---,ωm satisfy the property that
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XJx) Φ 0 iff ω 6 {ft)1; , o)m}. Let xt denote xωi, i = 1,

| |Φί+ 1(a0-Φ{(x)| |^

, m. Then

+

2) + 0

The induction is complete.

LEMMA 5. For k e {1,

( i )
(ϋ)
(iii)
(iv)

t
\\Φk{x)\\ = 1 for
[Φk(x)](x) = 1;
Φk is continuous
| [Φk(x)](t) 1 ^ 1 —

2, ••

Φr c

JL/yfC

•} ί/iere

6 ^ (A),

+ 2) /orαiί x 6

functions

t eX~B(x,

Proof. Let Φi be as in Lemma 4 and define Φfc = lim .̂.toa Φ
j

k. That
the limit exists follows from (v) of Lemma 4. The conclusions (i)-(iv)
of the present lemma now follow from the corresponding parts of
Lemma 4.

By the discussion preceding Lemma 1, the proof of the theorem
is complete.

REMARK. Our proof yields something more general. Indeed,
instead of assuming X to be metric, one need only assume that the
relative topology on ^ has a σ-locally finite base. By [5], p. 128,
this is equivalent to assuming that & is metric, hence paracompact,
and the proof goes through as before.

The referee has kindly observed that given our Lemma 3, one
can use Theorem 3.1" of [6] to prove that if X is compact Hausdorflf
and A is separable then the theorem holds. This is a weaker result
than the one outlined in the preceding paragraph. Moreover, the
proof using [6] is not essentially shorter than the elementary one
presented here, and the construction of Φ as the unifiorm limit of
discontinuous functions has intrinsic interest.

REMARK. It would be interesting to know whether, in the
presence of differentiable structure in X and A, the peaking func-
tions may be chosen to vary differentiably.
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