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HARMONIC ANALYSIS ON COMPACT
HYPERGROUPS

RICHARD C. VREM

Let K be a compact hypergroup (convo) as defined by
R. Jewett. It is shown that Trig (K) is uniformly dense
in C(K) and the Peter-Weyl theorem holds. A generaliza-
tion of the Weil character formula is obtained and a Fourier
transform is defined. Analogues of the Riemann-Lebesgue
lemma, ParsevaΓs identity and the Riesz-Fischer theorem
are proved in this setting. The space A(K) of functions
in L^K) with absolutey convergent Fourier series is shown
to be the linear span of the positive-definite functions on
K and the equality A(K) = U(K) *L2(K) is established.

!• Introduction• There has recently been considerable interest
shown by some harmonic analysts in the question of which topologi-
cal spaces have enough structure so that a convolution on the cor-
responding space of all finite regular Borel measures can be defined.
Dunkl [3], Jewett [5] and Spector [10] have all addressed this ques-
tion and they have given axioms which are essentially the same.
Jewett calls these objects convos while Dunkl and Spector refer to
them as hypergroups. We shall use the latter terminology but we
adopt Jewett's axioms. For a survey of the subject, the interested
reader is referred to Ross [8].

This article will be primarily concerned with compact nonabelian
hypergroups. In a subsequent paper we will consider lacunarity on
compact hypergroups. Throughout this paper K will denote a hyper-
group and M{K) the space of finite regular Borel measures on K.
In §2 the representation theory of (locally) compact hypergroups is
studied. If K~ denotes the set of equivalence classes of continuous
irreducible representations of K then it is shown that K~ separates
points of K. If K is compact then the elements of K~ are finite-
dimensional and an analogue of the Peter-Weyl theorem is obtained.
It is also shown that Trig (K) is uniformly dense in the space C(K)
of continuous functions on K. §3 contains basic results regarding
the Fourier-Stieltjes transform on M(K). It is also shown that i f
will consist of unitary representations precisely when K is a group.
The Fourier-Stieltjes series of a regular Borel measure is defined in
§4 and the space A(K) of L\K) functions with absolutely convergent
Fourier series is considered. It is shown that A(K) is the linear
span of the positive-definite functions on K and can be written as
L\K)*U(K) (throughout this paper * will refer to the convolution
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on M(K)). Finally, we prove A{K) is a regular Banach algebra
under convolution and provide an example to show A{K) need not
be a Banach algebra under pointwise operations.

The notation used is that of Jewett [5] except δx denotes the point
mass at x9 x -»αΓ is the involution on K and IA the indicator func-
tion of A. For each representation U in K~, Hu is the corresponding
Hubert space and if U is finite-dimensional dυ is the dimension of
U. If K admits a Haar measure it will be written m and if K is
compact then m is assumed to be suitably normalized.

Finally, the author wishes to thank K. A. Ross for his many
helpful suggestions and criticisms.

2* Representation theory. We first assume K is an arbitrary
locally compact hypergroup. Following Jewett [5, 11.3] we define a
representation of I as a non norm-increasing ^-representation of
the Banach *-algebra M{K). The representation will be called con-
tinuous if it is weak operator continuous on M+(K) with the cone
topology. For notational convenience, we write Ux for Uδχ where
x e K. We now give a fundamental example.

EXAMPLE 2.1. Suppose if is a locally compact hypergroup admit-
ting a Haar measure m and let H = L2(ra). Jewett [5, 6.2] shows
that the left regular representation T of K on H is a faithful re-
presentation of K. We show that T separates the points of K. If
a, b e K with a Φ b then there exist disjoint relatively compact
neighborhoods N17 N2 of cΓ and V respectively. By [5, 3.2 D] there
exist open neighborhoods Wly W2 of e so that {cΓ} * Wλ £ Nx and
{b}*W2S^N. It is easy to see that Ta(IN), is identically 1 on
V= Wί Π W2 and Th{IN) is identically 0 on V. Thus T separates
points.

The proof of the next theorem is modeled after a proof of
Nachbin [7].

THEOREM 2.2. If U is a continuous irreducible representation
of a compact hypergroup K then U is finite-dimensional.

Proof. Fix ζ,XeH where H - Hπ. Let ζeH and define Γ(ζ)

as the unique vector in H such t h a t

<Tξ, V> = ί (U%ξ9 Q(Uxη, X)-dm(x) for all η e H .

It is easily shown that T(ζ, λ) is a bounded linear operator on H and
that Γ(ζ, λ) commutes with each Uμ, μ e M(K). Thus T(ζ, λ) is scalar,
say Γ(ζ, λ) = α(ζ, λ)J. By [5, 7.2A] m = mT so that α(ζ,
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a(V> £)<ίt λ> a n ( * hence α(ζ, λ) = c<ζ, λ>~ for some constant c. It
follows that

\ (Uxζ,

If we let ξ = ζ = 57 = λ == β where ||/S|| = 1 then

But the continuous function a? -> | {Uxβ, /3>|2 has value 1 at β so c is
positive.

Let {ζj?=i be an orthonormal set in H. Let ζ = λ = ζfe, 1 <: & <̂  w
and ξ = 57 = αr in equation (1). Using (1) and the fact that {ζj is
an orthonormal set we have

^ ί \\Uxa\\*dm{%) £ \
JK JK

Hence dim (H) ^ c~\
We next want to show there are enough continuous irreducible

representations of a locally compact hypergroup to separate points.
First we require the following lemma.

LEMMA 2.3. Let K be a locally compact hypergroup admitting
a Haar measure. Let T be a continuous irreducible *-representa-
tion of M(K) on B(H) with T\Ma(K) Φ 0. Then there is a unique
continuous irreducible representation U of K such that Uv — Tv for
all veMa(K).

Proof Let T= T\Ma(K). Since M(K) is a Banach *-algebra
[5, 6.1G] we have \\Tμ\\ S \\μ\\ for all μeM(K). Thus Tis a bound-
ed *-homomorphism. Suppose ξ e H and 2\(£) = 0 for all v e Ma(K)
and let Hζ = {Tμ(ζ): μeM(K)}~. Since Hξ is a closed T-invariant
subspace of H we have Hξ = {0} or H$ = H. Using the fact that
Ma is an ideal of M(K) and our hypothesis that T ξέ 0 one can show
iϊ ? ^ £Γ. The irreducibity of T then forces ξ = 0 and [5, 11.5A]
gives the existence of a unique representation U oί K such that
Z7y = Γ, for all veMa(K). To show C7 is irreducible, it suffices to
show T is irreducible. If X is a closed T-invariant subspace of H
then (span T(X))~ is Γ-invariant since ikfα(iί) is an ideal. If
(span T(X))~ - {0} it follows that X = 0. Since (span f(X))~ £ X,
(span T{X)T - i ϊ implies X = H.

THEOREM 2.4. Lei K be a locally compact hypergroup. There
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are enough continuous irreducible representations of K to separate
points.

Proof. By Example 2.1 the regular representation M(K) is
faithful so there are enough continuous irreducible ^representations
of M(K) to separate points. If a,beK with a Φ b then as in Ex-
ample 2.1 there exists a relatively compact neighborhood W of e so
that v = δa*Lw and μ = δb*Lw are supported on disjoint sets. So
there exists a continuous irreducible ^representation T of M{K)
such that Tv Φ Tμ. By Lemma 2.3 there exists a continuous irredu-
cible representation U of K so that Uv Φ Uμ, i.e., Ua Φ Ub.

COROLLARY 2.5. If K is a compact hypergroup then there are
enough finite-dimensional continuous irreducible representations of
K to separate points.

Proof. This follows from Theorems 2.2 and 2.4.

Unless otherwise stated K will from now on be a compact
hypergroup. Suppose UeK~ and {ζ^Eί is an orthonormal basis for
Hπ. We define coordinate functions for U by ujk(x) — (Uzζk, ζ3 >
where 1 <: j , k <: dυ. If Trig^ (K) is the linear span of coordinate
functions of U then it is easily seen that Trig^ (K) is independent
of the choice of basis for Hv. Trig (if) will denote the linear span
of UίTrig^iO: UeK~}.

We next establish orthogonality relations for these coordinate
functions.

THEOREM 2.6. // U, VeK~ then there exists a constant kΌ with
kjj ^ dv such that

ίkΰ1 if U= V, j = r, k = s
ujk(vr8) dm^

: (0 otherwise .

Moreover, if K is a group then kσ = dσ.

Proof. Suppose U= V and {ζ,}^ is a fixed orthogonal basis
for Ήίjj. Using equation (1) of Theorem 2.2 and the fact that the
basis is orthonormal we conclude

if r = j and k — s

otherwise .
\κu3kvrtdm = ζ

Let kxj = c"1. Then dπ ^ kσ from the last line of the proof of 2.2
and equality occurs when K is a group.
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The case where U and V are not equivalent is handled by a
standard argument.

COROLLARY 2.7. The dimension of each Ύτigu(K) is d\> If
fixed coordinate functions are selected for each UeK~ then
{kψUif. UeK~, 1 <S i, j ^ du) is an orthonormal set in L2(K). Also,
Trig (K) = ©{Trig^ (K): UeK~}.

LEMMA 2.8. M(K) has a nonnegative approximate unit in
L\K).

Proof. Use normalized indicator functions of neighborhoods of
e and [5, 5.1C].

THEOREM 2.9. Trig(ii) is dense in L\K).

Proof. Let T denote the regular representation of K on L\K).
By [5, 7.2C] L\K) is the direct sum of its minimal closed ideals
and each of these minimal closed ideals is finite-dimensional. Let μ
be in M(K) and let {ta} be a bounded nonnegative approximate unit
as in Lemma 2.8. If I is a minimal closed ideal of L\K) with
fel, then μ*feL\K) and hence ta*(μ*f)->μ*f in L\K). Since
I is closed, we have μ*f el, i.e., I is Γ-invariant. Hence T\I is a
finite-dimensional representation of K which can be written as a
direct sum of continuous irreducible subrepresentations, say L\K) =
®{Hβ:βeA}. Write T\Hβ^ Tβ and d(β) for the dimensional basis
for Hβ. Suppose / e L\K) and </, g) = 0 for all g e Trig (JSΓ). Since
TβeK~ for each βeA we have

0 = ( <Γίfirj, g!>f(x)dm(x) - (T7gi gξ) = φgξ, gξ) .

Since {̂ :/3 6 i , 1 <: i ^ d(/S)} is a basis for I/2(ίΓ) we have f*h = 0
for all heL\K). In particular, /*ί α = 0 for all a and hence / = 0.

The following generalization of the Peter-Weyl theorem for
compact groups was known to Spector [10, II. 1.3] (compare with
[4, 27.40]).

COROLLARY 2.10. For feL2(K) we have

/ = Σ Σ kσ<f, %*> ujk

ivhere the series is in L2(K). Furthermore, if {ajk(U): UeK", l ^ i ,
k ^ djj) is any set of complex numbers such that
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Σ Σ kσ\aJh(U)\*< oo

then there is a unique geL\K) such that (g, ujk) = ajk(U) for all
~, 1 <; j , k<* dσ and for which g = ΣueK- Σi,*=i 4ukuajk(U)ujk.

Since Trig (if) is not an algebra of functions ([10, II. 1.3]) we
cannot apply Stone-Weierstrass. In order to prove Trig (K) is uni-
formly dense in C{K) we require the following lemmas.

LEMMA 2.11. Let {ha} Q L\K)+ with \\K\\, == 1 for all a. Then
{ha} is a left approximate unit in L\K) if limα H/W^-wlli = 0 for
all neighborhoods W of e. Moreover, ha —> δe in the weak-* topology.

Proof. From [5, 5.4H] we have limy^e\\fy, - f\\t = 0 and [5,
3.3B] shows that H/^H,^ | |/ | | 1 # The proof that {fcβ} is a left ap-
proximate unit now follows as in [4, 28.52]. A standard argument
shows that ha —> de in the weak-* topology.

LEMMA 2.12. There is a bounded left approximate unit {ha} in
LX{K) such that for all a:

( i ) KeΊrig+(K)
( i i ) . ||Λ«||χ = 1

(iii) ha is a finite sum of functions of the form g*g* where
ge Trig(K).

Proof. Let {kw} be the approximate unit described in 2.8. Let
ψw sz kw*kw. The proof now proceeds as in the group case [4,
28.53] (note that this proof does require Corollary 2.10).

The next theorem answers a question of Dunkl [3, 3.7].

THEOREM 2.13. Trig (if) is uniformly dense in C(K).

Proof, Suppose feC(K). By Lemma 2.12 there exists a left
approximate unit {ta} £ Trig+ (K) for L\K). If heL\K) and
feC(K) it is easy to see that \\h*f\\u ^ | | / | | ||Λ||χ Thus C(K) is a
left I/(jK>module. By Lemma 2,11 ta -> δβ in the weak-* topology
and hence ί α * / - > δ e * / = / uniformly [5, 4.2F]. Thus U{K)*C(K)
is dense in C(K). By the Cohen Factorization theorem [4, 32.22]
there exist heL\K), geC(K) so that / = h*g. Now

and ί α * / e T r i g ( i 0 so Trig (K) is uniformly dense in C(K).

REMARKS 2.14. (a) For UeK~ we define Xσ(x) = tr(Uz). Then
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two finite-dimensional representations U and V of K are equivalent
if and only if their characters are the same, i.e., lv = lv.

(b) If heC(K), then x-*h(x*y*xw *z) is continuous on K for
each y,zeK; see [5, 3.1B, 3.1G],

We now generalize WelΓs character formula for compact groups
[4, 27.54].

THEOREM 2.15. A nonzero continuous function h on K satisfies

(1) h{y)h{z) = \ h(x * y * xw * z)dm(x)
JK

if and only if h(x) = k^ Xυ{x) for some

Proof We first show that h = k^Xu satisfies equation (1). Let
UeK~, d = du and {ζ, }y=i an orthonormal basis for Hv. By equation
(1) of Theorem 2.2

ζi9 ζd}(Uzζk, ζk) = \ f <JJmUJih ζkXϋx, Uzζk, ζ,

= \ (UxUyUx,Uzζk>

JK

Thus
d d

k=ί 3=1 °

= \ tτ(UxUyUx* Z72)<Zm(x)
JK

and a straightforward calculation shows that tr (U9UvUΛvUz) —
Xu(x*y*xw *z) which implies (1) as desired.

Conversely, suppose h satisfies (1). If Uh = 0 for all UeK~
then 0 = (h, ujk) for all coordinate functions ujk and Corollary 2.10
implies h — 0 contrary to hypothesis. Suppose U in K~ satisfies
[ Uxh(x)dm(x) Φ 0 . L e t zeK a n d g = h\ T h e n
JK

h(z)Uh = I I gx(xw *y)Uydm(y)dm\x) .
JK JK

So if teK and ζ,ΎjeHπ then using [5, 5.ID] and Fubini's theorem
repeatedly we have

<Uth(z)Uhξ, η) = \κ\κ9%y)(UtUxUyζ, V)dm(y)dm(x)

= \ \ 9y(t* *xKUxUyξ,η)dm(x)dm(y)
JK JK

= \ \ Q%x
J K J K
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Since U is irreducible we have h(z) Uh is scalar for all z e K. Since
h Φ 0, Uh is scalar, say Uh = al. Using equation (1) and [5, 5.ID].

h(z) Uh=\ \ h(y) Ux. Uy Uz* Uxdm(y)dm(x) = Uh \ Ux« Uz, Uxdm(x)
JK JK JK

so, in particular, h(e)Iπ — \ Ux*Uxdm(x). If ξeHu with ||f|| = 1
JK r

then as in the proof of Theorem 2.2 dukϋ1 = \ (Uxξ, Uxξ)dm(x) and
JK

hence dukϋ1 = A(e). Now
= t r J^ f7av C7zv C7^m(α;) = t r

which implies Λ(s) = kfl%~{z) where f7 is the conjugate representa-
tion of U. Since UeK~ the proof is complete.

3* Fourier transform* The development and notation in this
section follows closely that found in Chapter 28 of [4]. We continue
to assume K is a compact hypergroup. The *-algebra 11^** B(Hσ)
will be denoted by ξ?(K~); scalar multiplication, addition, multiplica-
tion and the adjoint of an element are defined coordinatewise. Let
E = (Eσ) be an element of gf (iT). For 1 ^ p < oo we define

= ( Σ kσ\\Eσ\\'φy
9 and

The norms HΊI^ are the operator norms of [4, D. 37, D. 36(e)] and
the notation g { ( i θ , &<*>(K~) and gf0(iO is as in [4, 28.24].

DEFINITION 3.1. For μeM(K) let μ~(U) = Όμ for each UeK~.
Then /ΓeifCSΓ) and is called a Fourier-Stieltjes transform of μ.
If feL\K) then jΓ(l7) = 0/ and we call p a Fourier transform
of Λ

THEOREM 3.2. For each μ 6 M(K) the mapping μ —> μ~ is a non
norm-increasing ""-isomorphism of the algebra M{K) into the algebra

Proof. Since U e K" it is immediate that the map is a

*-homomorphism and that | |/Γ|L ^ \\μ\\. If Uμ = 0 for all UeίC"

then 1 %fcώμ = 0 for all coordinate functions %fc. Thus the continuity

of the^map / -> ί /d/i and 2.13 imply [ fdμ = 0 for all / 6 C(JBΓ) so

that μ = 0.

THEOREM 3.3. Tfeβ mαj) / ~> / " is α ?io^ norm-increasing ^-iso-
morphism of L\K) onto a dense subalgebra of
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Proof. Imitate the proof in [4, 28.40],

THEOREM 3.4. The map f —> / " is an inner product preserving
map of L\K) onto gf 2 (iθ. In particular, | |/~| | 2 = | | / | | 2 . For f e
L2(K) we have

f= Σ K Σ <T( W , C?>%»

where the series converges in the L2-norm.

Proof. Use Corollary 2.10.

The next theorem and its corollaries show that the notation of
unitary representation is appropriate for a compact hypergroup
precisely when the hypergroup is in fact a group. Also, these
results generalize [3, 2.2] and [8, 3.1].

THEOREM 3.5. Let K be a compact hypergroup, UeK~ and T
a weak operator closed subgroup of the unitary operators on Hπ.
Then S — {x e K: Ux e T) is a closed subhypergroup of K.

Proof. Clearly e e S and S" = S. We need only show S*S £ S.
Let x, y e S and ξ e Ή.υ. Consider

, UxUyξ) = \ (Uzξ, UxUyξ)dδx*dv(z)

and note | (Uzξ, UxUyξ> I ̂  <£, £>• A l s o ^ t h e m a P z ^ <P&, UxUyζ) is
continuous and the support of δx * δy is compact so a straightforward
argument shows that <£, ξ) = (U,ξf Utξ) for all ξeHUy z, te support
dx*δy. In particular, choosing z = ί it follows that Z7̂  is unitary
for all z in the support of δx*δy. Now if z, te support δx*δy then
(ζt f) — (UtvUzξ, ξ) which implies U is constant on the support of
δx*δy, i.e., if zesupport δ^^δ^

= ί Utdδ**δy(t)= UxUyeT
J UL

Thus

COROLLARY 3.6. J/ if cmd Z7 are as in 3.5 £Aew S = {xeK:
Ux = 1} is a closed subhypergroup of K.

COROLLARY 3.7. Let N = Γ\UGKA {xeK: Ux is unitary}. Then
N is the maximal subgroup of K.
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Proof. Let M denote the maximal subgroup of K. If x e M
then UmU* = Uβ = I so that M £ N. Notice that JV is a closed
subhypergroup of Kby Theorem 3.5. If xeN and UeK~, we have
ί7iβ#βV = Ϊ7βί7βv = / = Z7β and hence (&,*&,) = <?e. Theorem 3.2 im-
plies dx*dxv = δe so that #e.Λf.

4* Functions with absolutely convergent Fourier series* In
this section we define the Fourier-Stieltjes series of a measure and
study in some detail the set A(K) of those L\K) functions with
absolutely convergent Fourier series.

DEFINITIONS 4.1. Let μeM(K) and UeK~. Set Aσ = μ~(β)*
and write A for the element (Aπ) of &(K~). The Aπ are called the
coefficient operators of μ and the formal expression Σ^ez* kσ tr {AnU)
is called the Fourier-Stieltjes series of μ. If ^ = /dm for some
feL\K) we call Σσe** kσtτ (AπU) the Fourier series of /. If fe
L\K), ff*Σiueκ*kutr(AuU) with Σnτeκ» kσ\\ Au\\φi < co we say /
has an absolutely convergent Fourier series. For / e A{K) we define

PROPOSITION 4.2. Let fe A(K), f & Σ^e^- kσtr (A^ϋJ) Γλen / i s
equal a.e., ίo ίfeβ continuous function ΣUSK* kσ t r (A^ί/J αm£ so cα^
δe regarded as an element of C(K). Also, \\f\\π ^ ll/ll^ Further-
more, the mapping f —> f" is a norm-preserving linear isomorphism
of A(K) onto g\(jSΓ )̂ α^cί so A(K) is a Banach space.

Proof. The proof here is similar to the group case [4, 34.5,
34.6, 34.7].

We call a complex-valued function f on K positive-definite (p.d.)
if / is continuous and 0 ^ Σ?=i Σ*=i to&if&i * χ7) for e a c ^ choice of
complex numbers α* and elements ^ 6 K. We denote the set of p.d.
functions by P(K).

LEMMA 4.3. If feP(K) then (Γ(U)ζ, ξ) ^ 0 for all
and ξeHu. In particular, tr(jΓ(Z7)) ^ 0 /or all feP(K).

Proof. Clearly, we may assume | | £ | | = 1. Now extend ξ to
an orthonormal basis {ζ, } for Hσ where ξ = ζ lβ It follows that

(f^(U)ξ, ξ) = I unfdm. However, u n = fciί2^*fcj/2%n which implies

*™) ^ 0

where the last inequality follows from [5, 11.1A, 11.IB].
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The next theorem is instrumental in our characterization of
A{K). The proof given here applies Mercer's theorem following a
method of Krein [6].

THEOREM 4.4. Iffe P(K) then /(β) = II/IL = Σ * β * * kσ tr (Γ(U))
where the series converges absolutely.

Proof. [5, 11.1E] gives f(e) = \\f\\u. Define J(x, y) = f(y~ * x)
which is continuous by [5, 3.1A], Now define the operator Ty.

L\K)-*L\K) by Tj{g){x) = \ J(x, y)g(y)dm(y) = g*f(x) for all ge

L2(K). Since Tj is just right convolution by /, Tj is a bounded
linear operator on L\K) which is also compact [2, VI. 9.56]. Clearly
J(x, y) = JΊΰ~x) and (Tjg, g)^0 since feP(K). Thus Tj satisfies

the conditions of Mercer's theorem [2, XL 8.57, XI. 8.58]. Therefore

we may write J(x, y) — Σί°=i \&i(%)@i(y) where {ΦJΓ=i is an orthonorm-
al set of eigenfunctions for Tj with corresponding eigenvalue λ< and
the series converges absolutely and uniformly on K x K. We have
(φi, /> = φi*f(e) = λΆ(e) and J(a?, y) = f(y"*x) so by setting # = e
we obtain

/(*) - Σ </, «i>«*(*)

with the series converging absolutely and uniformly on K. For
~ the uniform convergence implies

(l) </, O = Σ </,*«><#<, O

Since /, Φ, e C(K) we have /", Φ7 e <ί?2(K~) (Theorem 3.4) so that
f~φ? = \tΦϊ e gΊ(jSΓ") Proposition 4.2 implies

Φ*0*0= Σ
UeK*

with the series converging absolutely and uniformly. Thus

f(x) = Σ </, Φi> Σ Λσ tr {A
3=1 UeK*

and so by equation (1)

Λe) = ±<f,Φiy Σ fcFtr(*;(i7))= Σ Σ Σ
i=l UeKA UeK* j=i k-l

= Σ fcrtrcntO).

Finally, Lemma 4.3 shows that the series Σizejr^ fc^tr (/"(Z7)) con-
verges absolutely.
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LEMMA 4.5. Let K be any locally compact hypergroup. If
f,ge P(K) then fe P(K) and af + βg e P(K) for all a, /9gO. Also,
the poίntwise limit of p.d. functions is p.d.

Proof. The only statement requiring proof here is the last one.
Suppose /»-->/ pointwise with fneP(K). By Theorem 4.4, | |/J|« =
fn(e). A standard argument shows that sup {||/J|M: n = 1, 2, •} < <».
Since [support (δx*δyv) is compact, the lemma follows easily by an
application of Lebesgue's Dominated Convergence theorem.

THEOREM 4.6. / e P(K) if and only iffe A{K) and each Aπ

is p.d. The condition each AΌ is p.d. is equivalent to each operator
f~(U) being p.d.

Proof. Sufficiency follows from Lemma 4.4 and an argument
found in [4, 34.10]. We assume feP(K). Lemma 4.3 shows that
Γ(U) is p.d. for each UeK~. Moreover, tr (Γ(U)) = \\Γ(U)\\Ψl

([4, D.46]). By Theorem 4.4

Σ

and hence feA(K).

THEOREM 4.7. A(K) is precisely the linear span of P{K). In
fact, every f e P(K) has the form f = f± — f2 + i{fz — f4) where

Proof. This follows directly from Theorem 4.6 and [4, D.47].

THEOREM 4.8. If f,geL2(K) then f*geA(K) and \\f*g\\φι^

Proof. Use Theorems 3.2, 3.4 and Holder's inequality.

THEOREM 4.9. A(K) = L\K)*L\K).

Proof. Apply 4.8 and mimic the argument in [4, 34.15].
The next theorem establishes regularity for A(K); compare with

[1, 2.9] and [4, 34.21].

THEOREM 4.10. Let X, Y be disjoint, nonvoid, closed subsets of
K. There is a function feA(K) such that f(X) = {1}, f(Y) = {0}
and f(K) Q [0, 1].
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Proof. Select a symmetric neighborhood W of e so that
W*W*XQ K~ Y. Let / = mCTF)"1^* IwmZ. Clearly / is in A(K)
and it is not hard to show / has the desired properties.

REMARKS 4.11. Since g^CO is Banach algebra [4, 28.32(v)] it
follows that A(K) is a regular Banach algebra with convolution as
multiplication and || | |^as norm. However, in contrast to the group
case [4, 34.18], A(K) may not form a Banach algebra under point-
wise operations. In fact, we give an example of a finite abelian
hypergroup where A(K) fails to be a point wise Banach algebra.

EXAMPLE 4.12. Let K = {e, a, b} and K~ — {1, X, ψ} be as in

[5, 9.1C]. Since XeP(K) we have \\X\\9l = X(e) = 1 but 11%% =
(666/612) > 1 , i.e., 11%% > | |%|| f l | |%||9 l. The difficulty here is that
the product of p.d. functions need not be p.d.
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