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AVOIDABLE PATTERNS IN STRINGS OF SYMBOLS

DwicHT R. BEAN, ANDRZEJ EHRENFEUCHT AND
GEORGE F. McNULTY

A word is just a finite string of letters. The word W
avoids the word U provided no substitution instance of U
is a subword of W. W is avoidable if on some finite alpha-
bet there is an infinite collection of words each of which
avoids W. W is kth power-free if W avoids x , where z is
a letter. We develope the theory of those endomorphisms
of free semigroups which preserve kth power-freeness and
employ this theory to investigate kth power-free words.
We go on to prove that every kth power-free word on n
letters is a subword of a maximal word of the same kind.
Next we examine avoidable words in general and prove
that all words of length at least 2" on an alphabet with n
letters are simultaneously avoidable. We show that on any
finite alphabet the collection of avoidable words is simul-
taneously avoidable. We provide an effective (recursive)
characterization of avoidability. Finally we show how our
work can be extended to infinite words, to n-dimensional
arrays, and to circular words. We give an application to
the Burnside problem for semigroups. The present work
is chiefly concerned with certain combinatorial properties
of strings of symbols. As such, it belongs to formal lin-
guistics, to the theory of free semigroups, and to the theory
of partitioned linear orders. While we have taken all of
these points of view in the body of this work, it has pro-
ven most convenient to base our exposition on an attitude
between linguistics and free semigroups.

By an alphabet we mean any set, the members of which are
called letters and can be regarded in all subsequent discussions as
indivisible. A word on the alphabet N is a finite string of letters
belonging to N. For example, if N = {a, b, ¢, d} then abacd is a
word on N. The empty word is the string with no letters and it
is regarded as a word on every alphabet. Words can be concaten-
ated: whenever U and V are words, the result of concatenating U
and V is expressed by juxtaposition. If U = abacd and V = bdaca,
then UV = abacdbdaca. If W = UV then U is an initial segment
of W and V is a final segment. U is a subword of W provided
W = XUY for some words X and Y. For any word W and any
natural number %, W* is defined so that

W° is the empty word
Wit = WEW .
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The length of the word W, denoted by |W]|, is the number of oc-
currences of letters in W. Hence |abacd] =5. The word U is a
substitution instance of the word W provided W =¢pe, - - €, s,
where W is a word on the alphabet {e, ¢, ---, e,_:}, and there are
words E,, E,, ---, E,_, such that U= EE, --- E,_, with E, = E; if

e; = e;.
abxcab

is a substitution of
YT .

(Let ¢, =¢,=x,¢, = y, and E, = ab = E, with 2¢c = E..)
Concatenation is associative and it is well known that given any
alphabet N, the collection of nonempty words on N under concaten-
ation is one way to represent the semigroup freely generated by N.
Homomorphisms between free semigroups correlate with substitutions
in a natural way. The map h between {z, ¥} and {a, b, ¢, 2} given by

h(x) = ab
h(y) = xc

can be extended (uniquely) to a homomorphism between the semi-
groups freely generated by {z,y} and {a, b, ¢, x}. As in the last
example of the previous paragraph, under this homomorphism zyx
is carried to abxcab. The semigroup freely generated by N is de-
noted by #,. Frequently the only relevant fact about the alphabet
is its cardinality. So if » = |N| (the cardinality of N), then we
sometimes write .57, for #5.

DEFINITION 0.0. The word W awoids the word U provided no
subword of W is a substitution instance of U. When &% and &
are sets of words, we say & awvoids & if every member of &
avoids every member of £°. The word W is awoidable on the m
letter alphabet provided there is an infinite collection .&# of words
on the n letter alphabet which avoids {W}. The collection ¥ is
avoidable on the m letter alphabet if there is an infinite collection
Z of words on the » letter alphabets which avoids G. The collec-
tion & is avoidable if < is avoidable on some finite alphabet.

1. Our description of words, alphabets, and concatenation lacks some precision.
Perhaps the most convenient way to remedy this is to axiomatize our intuitive notion
of concatenation. This has been done by Alfred Tarski [28] and Hans Hermes [14];
see Corcoran, Frank, and Maloney [6]. Alternatively the ambiguities involved in our
discussion of words and alphabets can be avoided at the expense of introducing some
simple set theoretic “tricks” and of complicating our notation. Since none of our re-
sults depend on such details, we have not found it necessary to do this.



AVOIDABLE PATTERNS IN STRINGS OF SYMBOLS 263

It is not difficult to see that if 2 and ¥ are letters, then « and
zyx are unavoidable and that a*® is unavoidable on a two letter
alphabet. While it is not immediately evident that there are any
avoidable words at all, it turns out that for any finite alphabet all
but finitely many words are avoidable (see §3 below).

Among the simplest words are those of the form z* where x is
a letter. If W avoids «*, we say that W is kth power-free; W is
square-free if W avoids «* and it is cube-free if it avoids 2°. Let
W be a word on the alphabet N. W is a maximal kth power-free
word on N provided W is kth power-free and neither aW nor Wa
is kth power-free for any ae N. If M is also an alphabet we call a
homomorphism h: %y — ., kth power-free provided h(W) is kth
power-free whenever W is kth power-free.

We conceive a word of type w as a string of letters extending
to the right and arranged like the natural numbers. For example
the decimal representation of 7= can be regarded as a word of type
® on the alphabet {-,0,1,2, 3,4,5,6,7,8 9}. We note the follow-
ing lemma.

LeEMMA 0.1. Let n be a natural number. The collection < 1is
avotdable on n letters iff there is a word W of type w on an n let-
ter alphabet such that W avoids <.

This lemma is an immediate consequence of Konig’s Infinity
Lemma, since the relation “is an initial subword of” is a well-
founded partial order of the words on = letters.

Words of the same type as the integers could also be considered
here and a statement like Lemma 0.1 would still be true.

@ denotes both the set of all natural numbers and the first in-
finite cardinal (ordinal); 2¢ is the cardinality of the set of real num-
bers.

In 1906, Axel Thue in [29] established
A. x* is avoidable on a three letter alphabet, and
B. «* is avoidable on a two letter alphabet.

Both of these results were independently rediscovered by S. E.
Arshon [2] in 1937 and by Marston Morse and Gustav Hedlund (see
Morse [20] and Morse and Hedlund [21]) around 1940. It is inter-
esting to note that while Thue saw analogies with the theory of
Diophantine equations, the work of Morse and Hedlund was ground-
ed in the investigation of flows on surfaces of negative curvature,
and Arshon’s work was done in order to answer a question which
A.Y. Khinchin posed in January 1933. The papers of J. Leech [18],
Hawkins and Mientka [12], Evdokimov [10], Pleasants [25], Justin
[16], Entringer, Jackson, and Schatz [9], and Dekking [7] all provide
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either new proofs of Thue’s theorems or extensions of these theorems,
which, however, do not deal directly with avoidable words. On the
other hand all these papers are united by a common use of combi-
natorial properties of various homomorphisms. Apparently Thue
[30] was the first to make use of such properties in 1912. The
present work is a contribution to this line of investigation. Brown
[4] and Hedlund [13] collect together remarks concerning these de-
velopments.

Thue’s theorems have found diverse applications. They played
a role of fundamental importance in the solution of the Burnside
conjecture. (See Novikov [23], Novikov and Adjan [24], Adjan [1],
and Britton [3].) V.L. Murskii [22] employed them in the construe-
tion of a finitely based undecidable equational theory of semigroups.
Burris ane Nelson [5] use A to show that the lattice of equational
theories satisfying a® = 2® has an interval isomorphic with the lattice
of all equivalence relations on the natural numbers. In the course
of extending the work of Burris and Nelson, J. Jezek [15] proved
the following amazing theorem.

There is an infinite set F of square-free words on three letters
such that 7 ~ {W} avoids W for all We . F .

Our principal concern in §1 is kth power-free homomorphisms.
We establish the existence of a homomorphism k: &, — &, which
is kth power-free for all ¥ =2 and a homomorphism ¢:.%, — &,
which is kth power-free for all k¥ = 3. We also prove that there are
2" square-free words of type @ on three letters, no two of which
have any common final segments. A similar result holds for cube-
free words on two letters.

Section 2 deals with maximal kth power-free words. Itis shown
that every kth power-free word on » letters is a subword of a max-
imal kth power-free word on n letters. We also prove that for all
n, k=2 except n =2 =k there are infinitely many maximal kth
power-free words on n letters.

Section 3 takes up avoidable sets of words in general. After
establishing that certain sets of words on an infinite alphabet are
avoidable (i.e., avoided on a finite alphabet), we prove that every
word on n letters of length at least 2" is avoidable. The collection
of all avoidable words on an n letter alphabet also turns out to be
an avoidable collection. Finally, an effective characterization of the
notion of avoidable words is presented. The use of endomorphisms
in this section was suggested by the work of Z. Harris in the early
1950’s.

Some applications and extensions are collected in §4. We extend
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the notion of square-freeness from finite linear orders to arbitrary
ordinals and to the reals and the rationals. Every ordinal a e (2°)*
can be “colored” in a square-free fashion with three colors, whereas
two colors suffice for the reals and for the rationals. Next we dis-
cuss how the one dimensional notion of square-freeness might be
extended to n-dimensional arrays. As a result, we show how the
plane can be covered with square tiles of three colors so that no
rectangular pattern is repeated adjacent to itself. After this we
show that if Y is a set of semigroup equations on k variables where
each side of each equation has length at least 2* then some finitely
generated semigroup free with respect to 3 is infinite. Finally, we
consider how to extend the notion of kth power-free words to periodic
words of type w. This is equivalent to extending the notion to
necklaces of beads of different colors. As a result we find, for ex-
ample, that there are arbitrarily large “square-free” necklaces using
just beads of three colors.

Despite a period of investigation extending over seventy years
highlighted by diverse motivations and surprising applications, no
well understood coordinated theory has emerged and many problems
remain open. In §5, we collect some of these problems.

1. Homomorphisms between free semigroups which preserve
square-freeness. Axel Thue was among the first to investigate free
semigroups. The theorem below plays a key role in the present
work. It is a small improvement of Satz 17 in [30]. The proof we
present is essentially Thue’s; we include it here since [30] is not
generally available.

THEOREM 1. Let M and N be alphabets and let h be a homo-
morphism from 7, into Fy. If

() (W) is square-free whenever W is a word on M which is
square-free and of length mo greater than three, and

1) a = b whenever a,be M with h(a) a subword of h(b), then
h(U) is square-free whenever U is a square-free word on M.

Proof. Suppose h is a homomorphism fulfilling conditions (0)
and (1).

Claim. Ifa,e,e, ---,e,€ M and h(ee, - - - e,) = Xh(a)Y for some
(possibly empty) words X and Y on N, then a = ¢;, h(e, - - - ¢;_;) = X,
and h(e;, ---e,) = Y for some j=0,1, ---, n.

Proof of claim. It does no harm to suppose » = 1. From con-
dition (1) we know that h(a) is a subword of h(ese;+,) for some
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j=0,---,n— 1. Suppose the claim fails. Then h(e;) = AB, h(a)=
BC, and h(e;+,) = CD for some words A, B,C and D on N where B
and C are nonempty. This means that neither %(ae;a) nor h(ae;.,a)
is square-free. According to condition (0)a = ¢; = ¢;1, and hence
h(a) = AB = BC = CD. Therefore A and C are words of the same
length and moreover B = D. That is h(a) = BC = CB. Without
loss of generality we can say that C = BE for some possibly empty
word E. But then h(a) = BC = BBE, in violation of condition (0).
So the claim must hold.
Now suppose U is a word on M but n(U) = XYYZ where X,
Y, and Z are words on N with Y nonempty. We will prove that
U is not square-free. Let U=¢e,---¢, Wwiht E, = h(e), E,=
h(e), - -+, E = h(e,). By shortening U if necessary we can let E,=
XE! and E, = E, where E! and E, are nonempty and YY=
"E,--- K, By condition (0) we know n = 38. By condition (1) Y
is not a subword of either E! or E,. So there is 7 with 0< < n
and E; = E/E] with E/ nonempty and

Y = EVE, --- EJ
Y:EJ" j+1“‘E,:.

Now by the claim Ey = E/, E} = E;,n = 2j and E;, = E;,; for all 1
with 0 <7 <j. But then h(eeje,) = EE;E, = XE{EEE;Z which is
not square-free. By condition (0) either e¢,=¢; or e¢; =e¢, Say
e, = ¢;, the other case being similar. Therefore E; = Ej;., for all
1 < 7. On the basis of condition (0) it is easy to establish that 4 is
one-to-one on M. Hence ¢, = ¢;4; for all ¢ < j. This means that U
is not square-free. (In fact U =¢e - - ¢;_1e, - - - €;_,6,;.) So the
proof of the theorem is complete.

Theorem 1.0 furnishes an easily applicable sufficient condition
that will allow us to construct square-free homomorphisms. This is
so because a homomorphism between free semigroups is uniquely
determined by its behavior at the generators. Moreover any map
from M into &%, can be (uniquely) extended to a homomorphism
from &, into #,. If M is a finite alphabet, then the hypothesis of
the theorem requires checking finitely many cases. For example, if
M = {a, b, ¢} then to check condition (0) one need only verify that
the images of the twelve words

aba bab cab
abc bac cac
aca bea cba
ach beb cbe

are square-free. Establishing condition (1) is easier.
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COrROLLARY 1.1. (A. Thue [30]) The maps h: F,— . F, and g:
Fy— F, determined by h(a) = abcab
h(b) = acabcd
h(c) = acbcacb
and g(a) = abacd
g(b) = abcbac
g(b) = abcacbe

are both square-free.

Notice that both » and g map the letters to words of length
5,6, and 7. Aside from trivial maps obtained by renaming the
letters, these two maps which Thue found in 1912 are the simplest
square-free maps which do not take some letter to a word of length
at least eight. In fact, every other nontrivial square-free map from
Z, into &, that does not require a word of length eight or more
can be obtained from Thue’s maps by renaming the letters and/or
reversing the words. For example,

a — cbacd
b —— cacbab
¢ — cabacab

induces a square-free map.

COROLLARY 1.2. (A. Thue [29]) The word xx is avoidable on a
three letter alphabet.

Proof. The word a is square-free. {h"(a): n € ®} avoids zx by
Corollary 1.1, where & is the map described there.

J. Leech in [18] and P. A. B. Pleasants [25] also established
Corollary 1.2 by similar arguments. In each case, a particular
homomorphism is shown to be square-free. In fact, Pleasants uses
the same map # that Thue used, while Leech employs the more
symmetrical

a — abcbacbeabeba
b —— beacbacabeacdh
¢ — cabacbabcabac .

Both Leech and Pleasants were not aware of Thue’s work.

Corollary 1.1 establishes the existence of a nontrivial square-free
endomorphism of .&#,. Square-free endomorphisms on .#,, where
n > 3, are easier to construct. For example, the endomorphism of
#, induced by
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a — abdba
b —— beacd
¢ — cdbde
d — dacad

is easily seen to be square-free and to enjoy symmetry properties
similar to Leech’s endomorphism of .&#,.

COROLLARY 1.8. There is a square-free homomorphism from
F, into F,.

Proof. By Theorem 1.0, the homomorphism induced by

a — abed
b—— abdc
¢ — acbd
d — abed
e — adbe

is easily seen to be square-free.

COROLLARY 1.4. There is a square-free homomorphism from
F, into F,.

Proof. Let a, a, a, --- be a nonrepetitive listing of the de-
numerable alphabet (so &, is the semigroup freely generated by
{a;: 1€ ®}). By Corollary 1.1 there are infinitely many square-free
words on {a, b, ¢}. Let W, W,,W,, - -- be a nonrepetitive list of them.
The map induced by

a,— dW.,eW, for all i1cw

is square-free according to Theorem 1.0.

COROLLARY 1.5. There is a squatre-free homomorphism from
F, into F,.

Proof. The endomorphism of &, induced by

a — babcbd
b —— bacabd
¢ — beacbd
d — bcbabd

is square-free. Call it f. Let k& denote the extension of hokh (where
h is defined in Corollary 1.1) by
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d —— abcabacabecbacabacbabecabacabed .

Then h of is a square-free homomorphism from .7, into .7.

The image of a is
abcabacbeacbabecabacabebacbeacbacabebabeabacabebacbeacbabeabacabebabe
abacbbacabebacacbacacbeacbacabebabeabacbeacbacabebacbeacbabeabacbeac
bacabcbabecabacbeacbabeabacabebacbeacbacabebabeabacabebacabacbabeaba
cabecd

The image of a has length 209.

The image of b is
abcabacbecacbabeabacabebacbeacbacabebabecabacabebacbeacbabeabacabebabe
abacbecacbacabebacbecacbabeabacbeacbacabebabeabacabebacbecacbabeabacab
cbabecabacbeacbabecabacabebacbeacbacabebabecabacabebacabacbabecabacabeb
The image of b has length 202.

The image of ¢ is
abcabacbeacbabeabacabebacbeacbacabebabecabacbeacbacabebacbeacbabeabac
beacbacabebabecabacabebacbeacbabeabacabebabeabacbecacbacabebacbeacbabe
abacbeacbacabebabeabacbeacbabeabacabebacbeacbacabebabeabacabebacaba
cbabcabacabed

The image of ¢ has length 216.

The image of d is
abcabacbeacbabecabacabebacbeacbacabebabeabacbeacbacabebacbeacbabeabac
beacbacabebabeabacbecacbabeabacabebacbeacbacabebabeabacabebacbeacbabe
abac abcbabecabacbecacbabecabacabebacbeacbacabebabeabacabebacabacbabea
bacabcd

The image of d has length 209.

That hof fulfills condition (1) of Theorem 1.0 merely takes some
patience to verify, but that it fulfills conditions (0) required roughly
nine hours of run time on a PDP-11/45 computer.

EXAMPLE 1.6. There is an endomorphism of &%, which fulfills
condition (0) of Theorem 1.0 and yet fails to be square-free.

Proof. We construct such an endomorphism of .%#,. Let k& be
the endomorphism induced by

a— ad
b——b

¢ — cdbadce
d — cdabdce
e — cdadbce

k fulfills condition (0) but k(abac) = adbadcdbadce, which is not
square-free. In view of Corollaries 1.8 and 1.5, let ¢ be a square-
free homomorphism from .&#; into .%,. Finally, let » be the restric-
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tion of gok to #,. Then p fulfills condition (0) since %k does and
since ¢ is square-free. However p(abac) is not square-free.

THEOREM 1.7. There is a square-free homomorphism from &7,
into F,.

Proof. It is only necessary to compose the homomorphisms pro-
vided by Corollaries 1.4, 1.3, and 1.5.

THEOREM 1.8. On there letters, three are 2 square-free words
of type ®; mo two of which have common final segments.

Proof. With w letters it is easy to arrange 2* square-free
words of type @ no two of which have common final segments. A
collection H of sets is almost disjoint provided M N N is finite when-
ever M, Ne H and M + N. Let H be an almost disjoint collection
of subsets of the alphabet such that |H| = 2** Such a collection has
been constructed by W. Sierpinski [27]. For each Me H let W, be
a word of tpye w listing M without repetitions. {W,: M < H} is the
collection of 2“ square-free words no two of which have common
final segments. Now let f be a square-free endomorphism from .#,
into .#,. f can be extended to words of type w. Then {f(W,): Me H}
is the desired collection of words. f is one-to-one since it is square-
free. So {f(Wy): M€ H} has cardinality 2°. Now suppose M, Ne H
with M = N and yet f(W,) and f(W,) have a common final seg-
ment. Say MNN = {¢c,, -+, ¢,_:} and M = {¢,, -+, €y} U {a, @y, - -}
and N={¢, -, C._}U{by, b, ---}. Let 4, = f(a;) and B, = f(b,) for
all tew. Since f(W,) ann f(W,) have a common final segment, they
must have a common final segment in which the image of no ¢; oc-
curs. So for some j, ke® such that A, = XA}, where X may be
empty we have

F = A,’i'AjﬂAj-i-z U
F = B,By+1Bj+s - - -

where F' is the common final segment. Evidently, either some in-
itial segment of some B, is a final segment of some A; or else some
initial segment of some A, is a final segment of some B,. So
fa;ba;) is not square-free which is contrary to the square-freeness
of f and a,b,a; for all 1, se®. So f(Wy) and f(Wy) have no common
final segments. The proof is complete.

Alfred Manaster pointed out to us that using the work of
Kakutani, and Morse and Hedlund (see Gottschalk and Hedlund [11]
p. 109) it was easy to prove that there are 2° square-free words of
type @ on three letters.
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Now we take up the investigation of kth power-free homo-
morphisms. The analog of Theorem 1.0 is the following theorem.

THEOREM 1.9. Let M and N be alphabets and let h be a homo-
morphism from F, into Fy. Let k> 2. If

(0) (W) 1is kth power-free whenever W is a kth power-free word
on M with length no greater than k + 1.

(1) a = b whenever a,be M with h(a) a subword of h(b).

(2) If a,b,ceM and X h(a)Y = h(b)h(c), where X and Y may
be empty, then either X 1s empty and a =0b or else Y is empty
and a = ¢
Then h s kth power-free.

The only essential difference between the proof of this theorem
and the proof of Theorem 1.0 lies in the proof of the claim. Here
condition (2) is used to establish the claim. The details of this proof
are omitted.

There are square-free maps which are not cube-free. The end-
omorphism of .#, induced by

a — abacbab

b — cdabcabd

¢ — cdacabcbd
d — cdacbecacbd

is square-free according to Theorem 1.0 but h(a?) = abacbababacbab=
abac(ba)’cbab, and so h is not cube-free. On the other hand, some
square-free homomorphisms are kth power-free for all k > 2.

THEOREM 1.10. Let h be a homomorphism from ., into Fy,
where M and N are alphabets. If

(0) h is square-free,

(1) a= b whenever a,be M with h(a) a subword of h(b), and

(2) No proper initial segment of h(a) is a final segment of
h(a), for all ac M,
then h is kth power-free for all k > 1.

Proof. Let e, e, ---,e,e€ M and E, = h(e,), ---, and E, = h(e,).
Suppose k> 2, and h(ee, ---e,) = XY*Z where X, Y, and Z are
words on N with Y nonempty. We will show that ege, --- ¢, is not
kth power-free. Let E, = XE!" and E! = E,Z where E! and E! are
nonempty. (If it were not so we could simplify ee ---¢,.) So
Y*=EJE, --- E,. Now let ~ be the length of Y. Then any sub-
word of Y* of length 2~ is a square; hence the length of E, is less
than 27 for all ¢ with 0 <4 <mn. Moreover the length of E, is no
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greater than « for all ¢ with 0 < ¢ < m, since otherwise A, would
have a proper initial segment that would be a final segment. From
the hypotheses and %k > 2 it follows that Y is not a subword of
either £ or E,. This means that there are j, 7, ---, ji_. all be-
tween 0 and » with E; = E;E} and E;’ nonempty for all i <k —1
and

Y=E'E - E]
Y = EJE, ", - B,

jo 1

143 ’
Y= Ef/.-~zEflc~z“1 R

Now h fulfills the conditions of Theorem 1.0 and so the claim proved

there holds. Hence Ei = E| = E{/=---=E/_, and Ej = E}=---=
Elr: al’ld EZ = Ej'OnLi fOI' all 1: < jo; Tty Ejk—3+i = Ejk_2+7; fOI‘ all i < jo-
Therefore ee, --- e, = ee, -+~ ¢;,1(e;e. -~ €;,-)" € - - ¢;,_e,. But

h(ee;.e,) is not square-free, so e, =e; or e; =e, In either case
e, - - e, is not kth power-free and the theorem is established.

COROLLARY 1.11. There is a homomorphism from %, into %,
which ts kth power-free for all k = 2.

Proof. Each of the homomorphisms involved in the proof
Theorem 1.7 fulfills condition (2) of Theorem 1.10.

COROLLARY 1.12. There is a cube-free homomorphism from 7,
mto .

Proof. The homomorphism induced by

a —— abaabbaababaabaabba
b —— abaababaabaabbaababaabba
¢ —— abaababaabbaababaabaababaabba

fulfills the conditions of Theorem 1.9 and hence in cube-free.

THEOREM 1.13. There is a cube-free homomorphism from .7,
into F.,.

Proof. The composition of the homomorphisms established by
Corollaries 1.11 and 1.12 suffices.

COROLLARY 1.14. There is a cube-free endomorphism of 7,.

Proof. The endomorphism induced by
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a — abaabbaababaabaabba
b —— abaababaabaabbaababaabba

fulfills all the conditions of Theorem 1.9.

COROLLARY 1.15. (A. Thue [29]) zxx is avoidable on a two
letter alphabet.

Proof. This result can be regarded as a corollary of either
Corollary 1.14 (similar to Corollary 1.2) or Theorem 1.13.

THEOREM 1.16. Omn two letters, there are 2° cube-free words of
type @ mo two of which have common final segments.

The proof of this theorem does not differ in any important way
from the proof of Theorem 1.8 and we omit the proof. Again, the
construction of Kakutani mentioned in Gottschalk add Hedlund [11]
gives 2¢ cube-free words of type w on two letters.

2. Maximal kth power-free words. Recall that a word W on an
alphabet N is maximal kth power-free on N provided W is kth power-
free and both aW and Wa fail to be kth power-free, for all a e N.
In [2] S. E. Arshon constructed maximal square-free words on every
finite alphabet and S. R. Li in [19] has characterized maximal
square-free words. This section is devoted to demonstrating the
following theorem.

THEOREM 2.0. For any natural numbers n and k, any alphabet
N with |N|=mn, and any kth power-free word W on N, W is a
subword of some maximal kth power-free word on N.

Proof. Call a kth power-free word U on N right maximal (kth
power-free on N) if Ua fails to be kth power-free, for all a € N.
By considering symmetry, it is enough to show that every kth
power-free word on N is an initial segment of some right maximal
word on N. A kth power-free word U on N is contrary (for kth
power-freeness on N) provided U is not an intital segment of any
right-maximal word. The word W' is a conjugate of W if W and
W' are substitution instances of one another. W is vulnerable (for
Lth power-freeness on N) if W is a word on N, and given any con-
trary word U there is a conjugate W’ of W and a word X of posi-
tive length such that UXW’ is kth power-free on N. The proof

will be complete if a right maximal vulnerable word can be pro-
duced.
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In order to avoid trivial cases, let n, k = 2 with not both n = 2
and k = 2. There are two cases.

Case I. k=2 and n > 2.

Vulnerable words are produced according to the following rules.

Rule 0. Every letter is vulnerable.

Rule 1. If W is vulnerable and z is a letter such that no pro-
per initial segment of Wx is a final segment of Wz, then Wz is
vulnerable.

Rule 1 is a special case of the next rule.

Rule 2. Suppose W is vulnerable and z is a letter. If Wx=
BXB with |B| > 0 implies XBX is not square-free and Wz is square-
free then Wz is vulnerable.

Proof. Suppose Wz is not vulnerable. Let U be a contrary
word such that UXWz=z is not square-free for any word X. Pick X
such that | X| > 2(|U| + |W|) and UXW is square-free. There is a
word Z such that ZZ is a final segment of UXWx. If Wz is a
final segment of Z, then there is a word V with |V| > 0and UV Wz
square-free, since X is so long. This conclusion violates the choice of
U, so Wx is a final segment of ZZ but Z is a proper final segment
of Wx. That is, there are words A and B such that AWx = ZZ
and Wx = BZ. So AB = Z and then Wa = BAB and Z = ABAB.
Hence ABA is a subword of UXW. Thus ABA must be both square-
free and not square-free. Consequently Wz is vulnerable and rule

2 is verified.

Let N = {a,, a,, a5, -+, a,_;}. Set T, = a,a,a,0,0,a,0,0,0,0,a,. For
n=38, let T,,=T,a,T,. Observe that for all » = 3, T, is a right
maximal square-free word on the n letter alphabet.

Claim. a,T, is vulnerable for all » = 3.

Proof. a,a,a, is vulnerable according to rules 0,1,1 in that
order. Suppose a,a,a,0, is not vulnerable. Let U be a contrary
word such that UXW fails to be square-free whenever W is con-
jugate to a,a,a,a,. Pick X with |X|>2(|U| +4) and UZXa,e.a,
square-free. Now UXa,a,a.0, is not square-free and since X is so
long a,0, must be a final segment of X (otherwise a,a,a,a, is a sub-



AVOIDABLE PATTERNS IN STRINGS OF SYMBOLS 275

word of X). But then UYa,,a,0,0, = UXa,a,a, for some Y and
UYa,a,a.a, is square-free. However a,0,a,0, is a conjugate of a,a.,a,a,
and so a,0,a,a, is vulnerable; a,a,a,a.a, is vulnerable by a similar
argument; a,a,0,0,0,a, is vulnerable by rule 2. a.,a,a,0,0,0.0,0,a, is
vulnerable by rule 1 (three applications). a.a,a,0.0,a,0,0,0,0.a,a, is
vulnerable by three applications of rule 2. So a,T, is vulnerable.

For the sake of induction, suppose that a,T, is vulnerable.
a,T,a, is vulnerable by rule 1. Suppose XBzx is an initial segment
of T, and a,T,.a,XB is vulnerable. Assume BzY = a,T, and T,=
TBxW. Since a,T, is square-free and T, does not begin with a, it
follows that there must be a word V of positive length such that
a,T, = Bt VBxzW. Let aC=B. Then T,=CxVa,CxW and
a,T,a,XBx=a,CxVa,CxWa,Va,Cx. Finally Va,CxWa, Va,CxVa,
CxWa,V fails to be square-free. Consequently rule 3 applies and
a,T,a,XBx is vulnerable. In this way a,7,a,T.(=a,T,+;) can be
shown to be vulnerable and the claim is established.

Since a,T, is both vulnerable and right-maximal on the n letter
alphabet, where n = 3, Case I is finished.

Case II. k> 2 and n = 2.
Vulnerable words are produced according to the following rules.
Rule 0. Every letter is vulnerable.

Rule 1'. If W is vulnerable, x is a letter, Wx is kth power-free,
and W= Y'(xY)** for any nonempty Y where Y’ is a final seg-
ment of Y, then Wz is vulnerable.

Proof. Suppose not. Let U be a contrary word such that for
all X and all conjugates V'’ of Wz, UXV’ fails to be kth power-
free. Pick X with |X| = k(U] + |Wz|) such that UXW is kth
power-free. (Exchanging U for one its conjugates if necessary). So
there is a nonempty word Z such that z* is a final segment of
UXWzx. Since Wz is kth power-free it must be a proper final seg-
ment of z*. Since W= Y'(2Y)* where Y is any word with final
segment Y, it follows that Wx is a final segment of Z*'. Since
X is so long there must be a word V of positive length such that
UV Wz is an initial segment of UXW. Hence UV Wz is kth power-
free violating the choice of U. Rule 1’ is established.

Let T, =¢a!* and T,4, = (a,T,0,)a,T, for all » >1. Then T,
is a right maximal kth power-free word on the = letter alphabet
{ay, @, -+, a,_;}. Theorem 2.0 is established by the following eclaim.
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Claim. T, is vulnerable, for n = 2.

Proof. It suffices to show that a,_,7T, is vulnerable. After the
initial application of rule 0, rule 1’ always applies-trivially if n > 2
since a,_,a,_, is an initial segment of a,_,T, which occurs nowhere
else in this word. Suppose n = 2. q,T, = aa,afa) a6t . aq,
occurs k times in a,T, and a,a,a, is an initial segment of «,T, which
occurs nowhere else in this word. With these two observations in
mind it is easy to see that one use of rule 0 followed by repeated
use of rule 1’ will yield «,7,. Hence T, is vulnerable.

This completes the proof of the theorem.

COROLLARY 2.1. For all k,n =2 with k> 2 or n > 2, there
are infinitely many maximal kth power-free words on the n letter
alphabet.

Proof. The corollary follows from Theorem 2.0 in view of
Thue’s theorems, Corollaries 1.2 and 1.15 above.

3. Avoidable sets of words. In §1, we saw that {«*} is avoid-
able on {a, b, ¢}, while {x*} is avoidable on {a, b}. A. Thue found
these results in 1906. Evidently {x} is not avoidable and some re-
flection reveals that {xyx} is not avoidable. In this section we es-
tablish results about avoidable sets of words. Our principal tools
are the canonical endomorphisms defined below. All these are endo-
morphisms on semigroups of the form .&#,, for some n > 0. Let
n > 0. We represent the alphabet with 4n letters as

{a: 0=t <njU{b:0=1e < n}U{c: 0 =1 < njU{d: 017 <m}.

It is clear what is intended by the index of a letter.

DEFINITION 3.0. Let n > 0. The canonical endomorphism h on
the alphabet with 4% letters is the endomorphism induced by

a, — a,;b,d,
b, —— a;c.d;
¢, — a;d,d,
d; — b;bc,

where j = 8imod(n), k= 7 + 1lmod(n), and =%k + 1mod(n). In
most cases 3yn and then each letter is assigned a distinct word by &.

Consider {r’(a,): p € w}, where h is canonical. All words which
belong to this set, with the exception of a,, result from the con-
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catenation of words of the form
ajbkd[, a_.;c,,d[, a,-d,,d[, and b,-bkc‘

where j, k, and [ are subject to the constraints in Definition 3.0. If
3/n, and n > 2 then there are 4n such words. We call these fun-
damental words.

The following lemma is easy to verify.

LEMMA 3.1. Consider the alphabet with 4n letters where n > 0.
Let © and y be letters. Then xy can occur as a subword in at
most one fundamental word; moreover, if A and B are fundamental
and x 18 the right most letter in A while y is the left most letter
of B, then xy is not a subword of any fundamental word.

A word zy of length two which fulfills the hypothesis of the
moreover clause in Lemma 3.1 is called a border word.

LEMMA 3.2. If h is the canonical endomorphism for an alph-
abet with 4n letters where 3fn and n > 3, then h is square-free.

Proof. Lemma 3.1 makes it easy to check the conditions of
Theorem 1.0.

LemMmA 3.3. If h is the canonical endomorphism for an alpha-
bet with 4n letters where 3)n and n >3, and p >0 and xy s a
two letter subword of h”(a,), then modulo n the index of Yy is one
greater than the index of x.

The proof is by induction on p.

It follows from Lemma 3.3 that scanning the indices of %?(a,)
one would see 0,1,2, ---,n —1,0,1,2, ---, » — 1,0, --- ete.

DEFINITION 3.4. Let h be the canonical endomorphism for an
alphabet with 4n letters where » = 3. Let W be a word with W=
UFV and k(W) = XCY. F'isa father of C provided | X| < |n(U)| +1,
Y| = |MV)| + 1, and |C| = |h(F).

In the definition above, F' is a father of C if each letter of F
contributes at least two letters to C under the map h. Notice that
F is a father of C whenever there are words W, U, V, X, and Y
which fulfill the definition.

LemmA 3.5. If h is the canonical endomorphism for an alpha-
bet with An letters where 3fn and n > 3, then every word has at
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most one father, (i.e., fathers are unique.)

This lemma is an immediate application of Lemma 3.1. A sub-
word of h*(a,) (Where 3/n and n > 3) is fatherless if and only if it
is of length 1 or else it is a border word.

DEFINITION 3.6. A word W (on any alphabet) is scrambled pro-
vided

(i) if a letter = occurs in W, then it occurs at least twice in
W, and

(ii) if x and y are distinet letters occurring in W, then both
xy and yx are subwords of W.

THEOREM 3.7. The set of all scrambled words on a denumerable
alphabet is avoidable on the twenty letter alphabet.

Proof. We pick n =5 and, letting % be the canonical endo-
morphism on the alphabet with 4.5 letters, we will show that
{h*(a,): p € w} avoids each scrambled word.

Suppose, to the contrary, that W is scrambled and not avoided
by {h*(a,):pcw}. Let W=e¢,---e, where ¢, ---, e, are letters.
Then there is some substitution instance W* = e}ef - -- e of W such
that for some p, W* is a subword of h”(a,). Pick p as small as
possible so that each of ef, ef, ---, ¢f has a father. Since fathers
are unique (Lemma 3.5) let F, be the father of e¥, F, be the father
of e¥, ---, and F, be the father of e¢%. Then F\F,---F, is a sub-
word of h?‘(a,) and it is also substitution instance of W. At least
one of F,, F, ---, F, is fatherless.

Claim 0. If F, is fatherless, then both F,_, and F,,, where
they exist, have fathers.

Proof of claim 0. Without loss of generality we assume that
F, and F,,, are both fatherless and seek a contradiction. Since W
is scrambled it follows that F,F,,, and F,. . F, are both subwords of
h**(a,). Since both F; and F,,, are fatherless, they both have
length no more than two. Examination of the indices involved re-
veals a violation of Lemma 3.3.

Claim 1. Only F, and F, can be fatherless.

Proof of claim 1. Suppose F', is fatherless with 0 <7 <m. By
claim 0 F,_, and F,,, have fathers, so F, , # F,# F,;,. Let j be
the index of the last letter in F,_, and % be the index of the first
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symbol in F,;,. Then k=7 + 3mod(5) or k= j + 2mod(5), since
1< |F)|£2 F,_, # F;y, according to Lemma 3.3. Since W is scram-
bled F, ,F,,, is a subword of h*%(a,). Hence k= j + 1mod(5).
This is a contradiction.

Since W is secrambled F, = F,, sinec ¢, occurs at least twice in
W. m # 1 since h is square-free. If 0 < j <m, then F,F; must
occur in F, ... F, since W is scrambled. Therefore F, = F; for all
j=1,---,m— 1. Hence W = ¢e" ‘¢, and m = 3. But this violates
the square-freeness of h?™*(a,). So {h?(a,): » € @} avoids W and the
theorem is proven.

DEFINITION 3.8. Let mew with 8}n and % > 8. The ancestry
relation is the transitive closure of the fatherhood relation on the
alphabet with 4n letters. That is, U is an ancestor of W provided
for some k< w there are words V,, V, -, VL, with U=V, V,= W
and V; is the father of V., for all j with 0 < j < k.

The ancestry relation is a well-founded partial order.

DEFINITION 8.9. Let new with 3/n and #» >38. Let W be a
word on the alphabet with 4n letters. The lineage of W is the
number of ancestors of W.

DEFINITION 3.10. Let kew and W be a word. W has mesh k
provided whenever « is a letter and V is a word in which z does
not occur with |V| >k, then xVz is not a subword of W.

DEFINITION 3.11. W is a doubled word provided every letter
which ocecurs in W occurs at least twice in W.

THEOREM 1.12. Let ke w. The set of all doubled words of mesh
k on a denumerable alphabet is avoidable on an alphabet with mo
more than 8k + 16 letters.

Proof. Let m be a number with 3tn, » > 3, and n > 2k. Let
h be the canonical endomorphism on the alphabet with 4% letters.
Let W be a double word of mesh k. We argue that {h”(a,): p € w}
avoids W.

Suppose not. As in the previous proof, let W = ee, --- ¢, and
pick pew and a substitution instance W* = ¢fe --- e of W which
is also a subword of h”(a,).

Claim. For all ¢ =0, ---, m there is some j < m such that e
has greater lineage than e}.
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Proof of the claim. Since W is a doubled word of mesh £k,
there is 1 =0, ---,m with 1 < |4 — 1| £k and ¢, = ¢,. For conveni-
ence suppose 7 < I. Suppose that for all ¢ with ¢+ < g <1, the line-
age of ef is no greater than that of ef. Let G be the fatherless
ancestor of e¢f and let r be the number of ancestors of ¢f. Then
GHG is a subword of h*"(a,) where |H| < 2(k — 2) < 2k since in
h*~"(a,) each ef has no ancestors (though possibly some “proposed
fathers” of length one are available) or else a fatherless ancestor.
Now let ¢ be the index of the final symbol in G. In view of Lemma
3.8 eithert =t + |H| + 1mod nor else t =t + |H| + 2mod n, which
violates |H|+ 252k —2<2k<n. So there must be ¢ with i1 <g<1
and the lineage of ¢f is greater than the lineage of e¢f. The claim
is proven and with it, the theorem.

Theorems 3.7 and 3.12 reveal that certain sets of words involving
infinitely many letters can be avoided on finite alphabets.

THEOREM 3.13. Let N be an alphabet with n letters. {W: |W| = 2"
and W is a word on N} is avoidable.

Proof. The proof depends on the following lemma which is
easily established by induction on =.

LEMMA 3.14. If |N| = n and W is a word on N with |W| = 2=,
then W has a doubled subword U with [U| < 2.

Now for each W on N with |W| = 2" pick a U, according to
Lemma 3.14. By Theorem 8.12 {U,: W is a word on N with
|W| = 2"} is avoidable, say by the infinite set .# of words on some
finite alphabet. So # avoids {W: W is a word on N with |W| = 27}
since U,, is a subword of W. The proof is complete.

LEmMMA 3.15. If & 1is an set of arbitrarily long words on the
alphabet M and G is a set of arbitrarily long words on the alphabet
N, then there is a set 57 of words on the alphabet M X N such
that if F avoids W and % awvoids U, then 57 avoids both W
and U.

Proof. Without loss of generality, we assume both .# and 7
are closed under the formation of subwords. Let A=a,---a,_,
B=b,---b,, be words of length n respectively on M and N. De-
fine A X B = (a, by)---(a,_1, b,;). So A X B is a word on M x N.
Define o7 = {A x B: Ae #,Be <, and |A| = |B|}. Notice that A
and B are both substitution instances of A x B. So &7 must avoid
all words avoided by either &# or Z.
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COROLLARY 3.16. Let N be a finite alphabet. {W: W 4s a word
on N and {W} is avoidable} 1s avoidable.

Proof. By Theorem 3.13, let % Dbe a set which avoids {W: W
is a word on N with |W| = 2". Only finitely many singletons
remain. Let &, be a set avoiding W provided {W} is avoidable
and |W| < 2". According to Lemma 3.15 (or more properly its ob-
vious inductive extensions), {W: W is a word on N with {W} avoid-
able} is avoidable.

LEMMA 3.17. Let N be a finite alphabet and F be an infinite
set of words on N. There is ke ®w and an infinite set & of words
of mesh k on N such that every word avoided by F 1is avoided by <.

Proof. Proceed by induction on |N|.
Initial step. The lemma is immediate if |N| = 1.

Inductive step. Suppose the lemma is true for all alphabets
with fewer than |N| letters and nevertheless & is an infinite set
of words on N such that for all kecw and all sets & of words on
N of mesh k thereis a word W avoided by % but not by <. So
there must be a letter x ¢ N such that for every ke w, there is a
distinet word U,€.# such that for some V on N~{z} with |V| >k
we can conclude that xV or Va is a subword of U, Let & '=
{Y: Y is a word of N~{x} and Y is a subword of U, for some ke
w}. Evidently %' is a set of words on N~{x} which is infinite and
if W is avoided by ., then W is avoided by .&# ', since each
Ye.&# "' is a subword of some Ue.# . By the inductive assumption
there is an infinite set <’ of words on N~ {z} and some k€ ® such
that each word in ¥’ is of mesh %k, and moreover every word
avoided by .’ (and hence every word avoided by .&# ) is also
avoided by «’. This is contrary to the selection of %4 and hence
the inductive step is completed, establishing the lemma.

Our next objective is to provide an effective characterization of
the collection of avoidable words.

DEFINITION 3.18. Let W be a word. The letter x is free for
W provided z occurrs in W and for no ne® is it possible to find

letters e, ---, ¢, and f,, ---, f, such that all of the following are
subwords of W:
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xe,
Joo
A
fie,

Jnen
fax .

If x is free for W, then W* is the word obtained from W be de-
leting all occurrences of z.

LeMMA 8.19. Let W be a word on N such that the letter x is
free for W. There are subsets A and S of N such that

(i) zeA~S.

(ii) If ye A, ze N and yz is a subword of W, then z¢€S.

(i) If ye S, ze N and zy is a subword of W, then z< A.

Proof. Define A and S as follows.

ye A if and only if for some n € w there are letters ¢, -, ¢,
and f,, ---, f._. such that each of the following are subwords of W:

ze,
Joto
Sols

Jn16a
ye, .

ye S if and only if for some n € w, there are letters ¢, ---, ¢, and
fo, -+, fu such that each of the following are subwords of W:

xe,
Soto
S

fﬂe%
Sy -
2¢ S since x is free for W. Properties (ii) and (iii) are immediate

from the definitions of A and S.

LEMMA 3.20. If x is free for W and W*® is unavoidable, then
W is unavoidable.
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Proof. Let # be any infinite set of words of mesh k¥ (where
k< w) on any finite alphabet N. According to Lemma 3.18 it suffices
to show that .# does not avoid W.

Let ae N and m = |W]|. Since a™ is a substitution instance of
W it is safe to assume that a™ is not a subword of any word in
Z . We may also assume without loss of generality that a is the
first letter of every word in & and that if Ue. & then there is
Ve such that V = XUY where a is the first letter of Y.

Let E,, ---, E, be a listing without repetitions of all the words
on N of the form a’X where 0 < j <m and |X| £k and a does not
occur in X. Let M ={e, :---, ¢} be an alphabet with ¢ + 1 letters
and let ¢g: ., — ., be the homomorphism induced by g(e,) = E; for
each 1 <t. Now every Ue. & can be represented in a unique way
as a concatenation of members of {E, ---, E,} such that only the
last word in the concatenation is permitted to be of the form a’.
Let U* be the word on M corresponding to the word Ue.# with
respect to this representation under g. Let &#*={U*:Ue. ¥ }.
Since W= is unavoidable, W* has a substitution instance V which
is a subword of U* for some Ue.%# . Let

W = WoW, ** * W
W =22 ---2, and
V=2Z%--2Z,.

Let A and S be sets satisfying conditions (i), (i), and (iii) of Lemma
3.19. For each 1 =0,1, - .-, m, define

a if w, ==«

T if w,eAnS and g¢g(Z)a = aT
W,=+T if w,eS~Aand ¢gZ) =aT

9Z)a if w,eA~Sand w,#x

9(Z,) otherwise .

Claim. W,W,---W, is a subword of g(V)a.

The claim may be established by induection on m. By noting
that W, W, --- W,, is a substitution instance of W and that g(V)a
is a subword of Ua, which is itself a subword of a member of &,
we arrive at the conclusion that W is not avoided by &, as de-
sired.

LemMA 3.21. If x and y are letters occurring in W, U is the
word obtained from W by substituting x for vy, and U s unavoid-
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able, then W is unavoidable.

This lemma follows immediately since U is a substitution in-
stance of W. Say that U is obtained from W by identification of
letters whenever the first two hypotheses of Lemma 3.21 hold. W
reduces to U provided there are words V,, V,, ---, V,_, with W=V,
V=V,,and V,,, = V7 for some letter x free in V, or V,., is ob-
tained from V,; by identification of letters, for all ¢+ with 0 < in — 1.

THEOREM 3.22. The word W is unavoidable i1f and only if W
reduces to a word of length one.

Proof. Suppose W reduces to a word of length one. Since
words of length one are unavoidable, Lemmas 3.20 and 3.21 yield
that W is unavoidable.

Now suppose W is unavoidable. Pick » with 3}/»n and = > k*?
where k& = |W/|. Since W is unavoidable there is some »e® and
some substitution instance W* of W such that W* is a subword of
h*(a,) where h is the canonical endomorphism on 4% letters. More-
over, we choose p to be the smallest number such that each sub-
word of W* which represents a letter of W is fatherless or legiti-
mate. Let x be a letter occurring in W and X be the subword of
W* representing . A letter y occurring in h%a,), with ¢ < p, is a
proto-ancestor of x provided there is some occurrence of y in h%(a,)
not in any ancestor of any subword of W* representing a letter of
W such that the p — ¢-fold image of that occurrence contributes
at least one letter to some occurrence of X representing x in W*,
Proto-ancestors, unlike fathers, “grandfathers”, etec. are not unique
and may depend on the particular position of = in W.

Let #~y if and only if  and y occur in W and there is some
qg < p such that proto-ancestors or fatherless ancestors of both «
and y oceur in h%a,). ~is used to denote the transitive closure of ~.
~1s an equivalence relation. Let x be a letter occurring in W which
is represented by a fatherless subword of W* and let W+ be the
word obtained from W by deleting all the letters as-equivalent to
2. Bvidently, there is » < p such that some substitution instance
of W+ is a subword of h"(a,). Therefore all that remains to prove
is that W+ can be obtained fiom W by identification of letters and
the elimination of free letters.

Since W* is a subword of h?(a,), it is clear that some substitu-
tion instance W° of W is a subword of T, where T is a sufficiently
long word of the kind

012 -+ 4n — 1 012 --- 4n — 1012 - - -
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(using the first 4n natural numbers as letters). Moreover, n has
been chosen so large that the subwords of T representing letters
equivalent to « have a total length less that ». Hence, some of
the letters of T' do not occur in any of the subwords representing
letters of W equivalent to x. Let y be a letter of W such that
y»x and Y represents ¥ in T. Replace each such Y of W° by Y
1+ 12+ 2---4n — 1012-- -9 where 1 is the left most symbol of Y.
Let W' be the word obtained from W?° in this way. Then W' is a
substitution instance of W which is a subword of T. Let
Jo<ji< --- < 3j, be the letters which oceur in the subwords of W°
(and hence of W') which represent letters of W equivalent to «.

Let W result from W’ by the elimination of all occurrences of
7,. If the subword j, of W’ represents the letter y of W, then y
is free in W for otherwise there are letters u,v, - - - such that

Yu,
Vol
Vol
VU

v:Y

are all subwords of W. In this event there are subwords U,V,---
of W’ such that

35Uq
VU,

Vi

are all subwords of W’ and hence of T. But since j, is the last
letter in each V, then j,j, would be a subword of T, which is im-
possible. On the other hand ¥ and %’ may be letters of W equi-
valent to = and represented by Y and Y’ in W’ such that Y and
Y’ become identical when j, is deleted. At any rate W is a sub-
stitution instance of some word obtained from W by deletion of a
free letter and/or the identification of letters (or else it is still a
substitution instance of W). Moreover W retains all of the pro-
perties of W' above, but on a smaller alphabet. After p + 1 such
steps only a substitution instance of W+ remains; consequently W+
can be obtained from W by the deletion of free letters and/or the
identification of letters. Therefore W can be reduced to a single
letter, as desired.
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The word abaca’badaba’ca’ba’ reduces to a single letter (the first
step must be the identification of a and '), yet it cannot be reduc-
ed to a single letter by a series of deletions of free letters.

4. Extensions and applications.

A. Partitions of linear orders.

Thue’s theorem (Corollary 1.2) concerning square-free words can
be construed as

I. ® can be partitioned into three sets such that no two ad-
jacent intervals are partitioned in the same way. Another way to
say this is

II. ® can be partitioned into three sets such that for all 4, jew
with 7 > 0 there is kew such that 1 <k<i+j and k and &k + j
lie in different blocks of the partition.
With this in mind we make the following definition.

DEFINITION 4.0. Let a be an ordinal and let .&” be a partition
of a. Z is square-free provided for all B, vyea with 0 <~ and
B+ v + v =< a there exists dea such that 3 <6< 8 + vand ¢ and
d + v lie in different blocks of Z.

In a similar fashion we could define the notion of a cube-free
partition of an ordinal and, at some cost in complexity, even the
concept of a partition which avoids some set of words. In the
previous section we investigated the latter notion for ordinals no
larger than w; little is so far known about it at ordinals beyond w.

THEOREM 4.1°. Let a be an ordinal with a < (2°)*.
(a) There 1s a square-free partition of a into three pieces.
(b) There is a cube-free partition of a into two pieces.

Proof. According to Theorem 1.8 there is a collection & of
square-free words of type w, on the letters a, b, and ¢ such that
|| = 2% and no two distinct members of . have common final
segments. Let L = {\i A < a and ) is a limit ordinal}. Let f be a
function mapping L one-to-one into .. So f(\) is a square-free
word of type w. Now if Bea, there is a unique limit ordinal A
and a unique natural number 7 such that 8 = A\ + n. - Define ¢(3)
as the nth symbol of f(\). So g:a — {a, b, ¢} and it induces a parti-
tion .77 of « into three pieces. To see that .27 is square-free let
B,vea with B+ v+v=<a and 8=X-+n where )\ is a limit

2. After this proof was found Jean Larson, Richard Laver and George McNulty
proved that the theorem holds for all ordinals, not just those less than (22)*. A note
containing their proof has been submitted for publication.
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ordinal and new. In the case that vyew the existence of the re-
quired o follows from the square-freeness of f(A). In the case
® < v, there is a limit ordinal # # X\ and a natural number m such
that @ + v = ¢ + m. The existence of the requisite 6 now follows
from the fact that f(t) and f(\) have no common final segments.
So (a) is proven and (b) can be established by a similar argument
employing Theorem 1.16 in place of Theorem 1.8.

In the notion of a square-free partition of an ordinal, trans-
lations played a prominent role. So we are led to the next defini-
tion.

DEFINITION 4.2. A partition .72 of the set R of real numbers
(Q of rational numbers) is square-free provided for all », se R(r, s€
Q) with s > 0 there is a te R(tc®Q) such that » =t <7r +s and ¢
and t + s lie in different blocks of ..

THEOREM 4.3. There is a square-free partition of R(Q) into two
preces.

Proof. The constructions for R and @ are similar, so we provide
only the construction for B. Let Bt = {r:»e R and » > 0}.

Give both R and R x R+ well orderings of type 2°. We define
A, and B, by the following recursion for ordinals a < 2%, Let (v, s)
be the ath pair in B X R*. Let t be the least (in the well ordering
of R) member of [r, » + s) such that {f,t + s}¢ U;<. (4:NBs). If
te Uswd;, let

A, ={t}UUA; and B,={t +sfulUB;.

ga Ba

Otherwise, let

A, = {ts + }UﬁLJ A, and B, = {s}UﬂUaBﬂ .
Observe that |4, U B,| < 2° for all a < 2°.

Finally let A = Uacso 4« and B = U,c0 B,. Evidently AN B is
empty. For any fixed re R, |{(, 8):s > 0}| = 2" and so {(r, s): s > 0}
is unbounded in the well ordering of R x R*. Thus if » is the Bth
member of R we can pick a > B so that (», s) is the ath member
of R x R*. Consequently r¢ A,U B,Z AU B. Therefore {4, B} is a
partition of R and it is square-free by construction.

B. Multidimensional versions of square-freeness. Is it possible
to color the lattice points of the plane (or in general n-dimensional
space) with three colors such that no rectangle occurs adjacent to a
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copy of itself? Is it possible to color the points of the Euclidean
plane (Euclidean n-dimensional space) with two colors such that no
two adjacent rectangles are colored in the same way? The answers
to both these questions is yes. The proof of Theorem 4.3 can be
extended to handle the last question.

To manage the first question, we observe that the notion of a
square-free map can be suitably extended to the n-dimensional case,
where, however, individual letters are mapped to square (cubie, ete.)
arrays of letters. Once more, the orbit of an individual letter can
be used to obtain a cover (of the plane instead of the line) which
is square-free provided the map used is not trivial. The following
map based on the work of J. Leech [18] (see our remark after
Corollary 1.2) yields a square-free coloring of the lattice points in
the plane with three colors “a”, “b”, and “c”.

bcacbacabeac
cabacbabecaba
abecbacbcabcechd
cabacbabcabda
bcacbacabcecac
abcbacbecabebd
a——scabacbabcabda
abecbacbcabebd
bcacbacabecabd
cabacbabecabda
abcbacbecabebd
cabacbabecabda
bcacbacabcecac

ST Q8 O > Q & & T a ! o o

cabacbabecabda
abcbacbec abcebd
becacbacabcecac
abcbacbcabed
cabacbabecabda
bcacbacabecac
b——abcbacbcabebd
bcacbacabe ac
cabacbadbcecabda
abcbacbcabed
bcacbacabcac
abcbacbcabebd
cabacbabeaba

O & QR a 8 T o & Ta o
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abcbacbcabebda
bcacbacabecach
cabacbabecabdbac
bcacbacabecachd
abecbacbeabecbda
cabacbabecabdbac
c——bcacbacabecachd
cabacbabecabdbac
abcbacbcabcebda
bcacbacabcecach
cabacbabcecabac
bcacbacabcach
abcbacbc abebdba

Each row (and each column) of any one of these three 13 X 13 ar-
rays is one Leech’s thirteen letter words. This observation makes it
easy to check that each array in the orbit of a under this map is
indeed square-free.

C. An application to the Burnside problem for semigroups.

THEOREM 4.4. If X is a set of semigroup equations in no more
than k variables such that ¢ =teX tmplies |o|, || = 2%, then the
semigroup freely generated by 8-2* + 16 generators with respect to
Mod(X U {x(yz) = (xy)z}) is infinite.

REMARK. Mod(Z U {2(yz) = (xy)z}) is the class of all semigroups
in which each equation in 3 is universally true.

Proof. Let m = 8-2* 4- 16. According to Theorem 3.13 there is
an infinite set & of words on m letters which avoids T = {o: there
is 7 with either ¢ =7e3 or t =0¢€X}. Let A be the set of all
words on the m letter alphabet. For U, We A define

U~W if and only if U = W or neither U nor W avoids every
word in T. ~is a congruence relation on the free semigroup with m
generators. A/~ is infinite, has m generators, and each equation in
XY is true in this quotient semigroup. So the theorem is established.

This proof is reminescent of an idea credited to R. P. Dilworth
in Morse-Hedlund [21] (see also §6 of J. Rhodes [26]).

D. Periodic words.
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DEFINITION 4.5. Let W = ¢g, --- ¢,_, be a word on the alphabet
{es, -+, €._1}. W has period p provided e, = e; whenever |t — j| = p.
W is periodic if W has period p for some » with 0 < » < |W|+2/1.

A periodic word is never square-free. An infinite periodic word
is not kth power-free for any ke w. Suppose W is a periodic word
of type w with » the smallest positive period of W. Then any
subword of W of length a multiple of kp is a kth power of some
word. This leads us to the next definition.

DEFINITION 4.6. Let W be a periodic word of type @ with p
the smallest positive period of W and let k> 1. W is almost kth
power-free provided p||U| whenever U* is a subword of W.

We remark that (abca)” = abecaabcaabea-- - is a word with mini-
mal period 4 that fails to be almost square-free. - Some interesting
facts .concerning periodic words can be found in Ehrenfeucht and
Silberger [8]. Here we observe that every periodic word is an
initial segment of a periodic word of type w that has exactly the
same minimal positive period. Note also that a final segment of a
periodic word of type ® is itself a periodic word with the same
minimal positive period.

NOTATION. |7[ denotes the largest integer no greater than 7,
whenever 7 is a real number.

LEMMA 4.7. Let |W|=n and g.cd. (m,p)=d. If W has
periods m and p and n = m + p, then W has period d.

Proof. To avoid trivial and symmetric cases we assume » < m=
gp + r with 0 < » < p. Since g.c.d.(p, r) = d, it will suffice to show
that W has period ». Let W =ee, - ¢,, Where ¢, ¢, ---, e, , are
letters. Pick ¢+ with 0 1 <@+ » < m.

If pg <7, then e, =¢,_,, = € poim = €;4,. S0 suppose i < pq.
Let « = \i/p| and note that ¢ — 2 >0. If ¢ — px + m <mn, then
€ = €ipy = € poim = € _prim_ta—mp = €i+r. S0 We are done unless n <
1—pxr+m. Since m + p < n we obtain

m+p=1—px+m.
So p £1— px=1— pli/p] < p, a contradiction.
THEOREM 4.8. Let W be a word of type w with minimal posi-

tive period p. W is almost square-free if and only if every sub-
word of W with length p is square-free.
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Proof. We prove the harder implication. Suppose UU is a
subword of W with |U| = m as small as possible such that »/}m.
UU has periods m and p. If m = p, thed 2m = |UU| = m + p and
Lemma 4.7 then asserts that UU has period d = g.c.d. (m, p)<p, m.
In this event UU contains a square VV with |V| =d < m and p}d,
violating the minimality of |U|. So m < p.

Now suppose » < 2m. Then there a words U’ and U"” such
that U=U'U",|U'| =9 —m >0, and |U") =2m — p > 0. Since »
is a period of W, we have U” is both an initial segment and a
final segment of U. Consequently U”U"” is a subword of UU. Since
2m — p < m we again contradict the minimality of |U| (observe that
pf(2m — p) since m < p < 2m). So 2m < p. This means that some
subword of W with length p must fail to be square-free. The
proof is finished.

THEOREM 4.9. Let k> 2 and let W be a word of type w with
smallest positive period p. W is almost kth power-free if and only
if every subword of W of length \kp — 1/k — 1| is kth power-free.

Proof. We are only concerned with the harder implication. So
pick U with |U| = m as small as possible subject to ptm and U*
is a subword of W. U* has periods m and p. If km = m + p, then
by Lemma 4.7 U* has period d = g.c.d.(m, p). Since ptm we know
that ptd but that V* is an initial segment of U* for some word V
with |V|=d. Since d < m, this violates the minimality of |U|.
Consequently (k—1m <». So m<p—1/k—1. Finally m =
{p — 1/k — 1| and so km < |kp — 1/k — 1| and |[U* 1is bounded as
desired.

EXAMPLE. W = (((ab)*2a)*ab)* is a periodic word that is not
almost kth power-free but all subwords of it shorter than
klp — 1/k — 1} are kth power-free, where p is the smallest positive
period of W and k > 2.

COROLLARY 4.10. Let h be a kth power-free homomorphism
from Fy into Fy, where N and M are alphabets. If W is a word
on N of type @ with least positive period greater than 1 and if W
is almost kth power-free, then h(W) is almost kth power-free.

Proof. Let p be the least positive period of W and let V be
the word such that |V| =9 and W= V*. Let p" = |h(V)]. Let
g be the least positive period of h(W). Clearly q|p’. Suppose h(W)
is not almost kth power-free. Then there is a word U with U] =m
and p’fm and U* a subword of R(W). According to Lemma 4.7 we
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may suppose that m|»’. So there are words X and Y such that
I X|+ Y| <pand U* is a subword of A(XV**'Y). Hence XV*'Y
is not kth power-free. But since V* is almost kth power-free, this
is a contradiction and the corollary is established.

By means of this corollary and the results of section one it is
now simple to construct periodic almost Ath power-free words with
arbitrarily large poriods on small alphabets.

5. Problems. We gather here problems which have arisen
during our investigations and which we have not yet been able to
resolve.

1. Theorems 1.0 and 1.9 provide useful sufficient conditions for
a homomorphism to be kth power-free. Characterize kth power-free
homomorphisms in a similar manner.

2. For every avoidable word W is there an endomorphism (of
a large enough alphabet) which is “W-free”? [That is, is there an
endomorphism h such that A(U) avoids W whenever U avoids W?].

3. For an arbitrary avoidable word W determine the smallest
alphabet on which W is avoidable.

4%, For an arbitrary ordinal o, determine the smallest cardinal
£ such that a has a square-free (cube-free) partition & with
| | = k.

5. Is it effectively decidable whether an arbitrary word is
avoidable on an n letter alphabet? (Here = is regarded as fixed.)
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3. See footnote 2.
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