
PACIFIC JOURNAL OF MATHEMATICS
Vol. 86. No. 2, 1980

EXISTENCE OF EIGENVALUES FOR SECOND-ORDER
DIFFERENTIAL SYSTEMS

S. C. TEFTELLER

The paper is concerned with establishing the existence
of eigenvalues for the second order differential system yf =
k(x, λ)z, zf = g(x, λ)y, together with boundary conditions
y{a) = A(λ)y(b) + B(λ)z(b), z(a) = C(λ)y(b) + D(λ)z(b). A general
theorem is obtained establishing the existence of eigenvalues
for both self-adjoint and nonself-adjoint boundary problems.
This result is then simplified for nonself-adjoint problems,
extending the previous work of H. J. Ettlinger and E.
Eamke.

1* Introduction* Second-order differential systems involving a
parameter, together with boundary conditions at two points, have
played a fundamental role in many physical and mechanical processes.
The mathematical study of these boundary value problems "began"
with the fundamental work of Sturm and Liouville and has flourished
ever since.

In this paper, the differential system

Vr = k(x, X)z ,

z' = g(x, X)y ,

is considered, where k(x, X) and g(x, X) are real-valued functions on
X : - o o < α ^ x ^ δ < o o , L: λ# - η < λ < λ# + η, 0 < ^ o o , The
system (1) is studied together with the boundary conditions

(2a) a&Ma, X) - ft(λ)s(α, λ) = Ύ&Mb, X) - δ^zφ, X) ,

(2b) az(X)y(a, X) - β2(X)z(a, X) = Ύ2(X)y(b, X) - δ2(X)z(b, X) .

The problem (1, 2a, 2b) has been studied H. J. Ettlinger [3, 4, 5]
and E. Kamke [6, 7]. G. D. Birkhoff [1] also studied this problem,
but he considered a second-order differential equation rather than a
system. However, his equation may be written as a system and the
results remain intact.

Under the hypothesis that the boundary problem be self-adjoint
and that the coefficient of the differential equation satisfy a monoto-
niety condition with respect to the parameter, Birkhoff established
the existence of an infinite sequence of characteristic values for the
boundary problem and determined the oscillatory behavior of the
associated solutions.

Later, H. J. Ettlinger, in a series of papers, considered both
the self-adjoint and nonself-adjoint boundary problems. By assuming
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monotone behavior of coefficients in the boundary conditions and
that the coefficients of the system satisfy a limiting condition with
respect to the parameter, Ettlinger established results analogous to
those of Birkhoff for the self-ad joint problem. For the nonself-
adjoint problem, he established the existence of at least one charact-
eristic value under the hypothesis that determinants of the boundary
condition coefficients satisfy certain inequalities.

Generally speaking, the techniques used by Birkhoff and Ettlinger
are similar. Contrasting these techniques are those of E. Kamke,
who also studied both the self-adjoint and nonself-adjoint versions
of (1, 2a, 2b). By means of the polar coordinate transformation, he
was able to obtain results complementing those of Birkhoff and
Ettlinger. The results of this paper will be obtained by techniques
similar to those of Kamke.

In [6], Kamke considers the matrices of coefficients for the
boundary conditions. Using the rank of these matrices, he shows
that the problem falls into one of four categories. The first category
is where only one point is involved and the second category contains
the usual Sturmian boundary conditions. The fourth category
consists of conditions studied by W. M. Whyburn [11, 12] and G. J.
Etgen and the author [2]. Kamke's third category is the problem
investigated in this paper.

Specifically, we suppose that a2βx — a^β2 Φ 0 and 72§i — 7A Φ 0
and moreover, that we can normalize to obtain a2βx — aγβ2 = 1 on
L. Since premultiplication of the coefficient matrices,

a2(X) - /S2(λ)

by any 2 x 2 matrix with determinant equal to 1 will not alter the
set of eigenvalues and corresponding eigenfunctions, we can write
the boundary conditions as

(3a) y(a) = A(X)yφ) + B(X)z(b) ,

(3b) z(a) = C(X)y(b) + D(X)z(b) .

It will be in this latter form that we consider the boundary
conditions.

This work will generalize that of Kamke, Birkhoff, and Ettlinger
by establishing the existence of sets of characteristic numbers for
the boundary problem and determining the oscillatory behavior of
the associated solutions for both the self-adjoint and nonself-adjoint
problems. The techiques used here are applicable to both problems
simultaneously. Since the distinction between problem-types does
not need to be made, this approach may be considered to be more
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general. In addition, an interesting application is made to a class
of nonself-adjoint problems. For such problems the results of this
paper indeed extend the work of the forementioned authors.

2. Preliminary definitions and results* The following hy-
potheses on the coefficients involved in the boundary problem (1,
3a, 3b) will be assumed throughout:

(H-0) All involved functions in (1) and the boundary conditions are
assumed to be real-valued.

(H-l) For each x e X, each of k(xf X) and g(x, X) is continuous on
L.

(H-2) For each λ e L, each of k(x, X) and g{xf X) is measurable on
X.

(H-3) There exists a Lebesgue measurable function M(x) on X such
that \k(x, λ)| <; M(x) and \g(x, X)\ <: M(x) on XxL.

(H-4) k(x, λ ) > 0 o n l x L.
(H-5) Each of the functions A(X), B(X), C(λ), D(X) is continuous on

L.
(H-6) A2(X) + B2(X) > 0, C\X) + Z>2(λ) > 0, and A(X)D(X) - B(X)C(X) Φ 0

on L.
(H-7) Let o-(λ) be a function defined on L by

σ(X) - (AD - 5C)/[(A2 + C2)(£2 + D2)]1/2 .

From (H-6) we have that σ(X) Φ 0 on L. We will assume that
0 < arcsin σ(X) <π if AD - BC > 0 and -TΓ < arcsin σ(λ) < 0 if
AD- BC< 0.

Hypotheses (H-0)-(H-3) are the familiar Caratheodory conditions,
which allow the application of fundamental existence theorems for
differential systems to obtain the existence of two unique solution
pairs {u^x, λ), v^x, λ)}, £ = 1, 2, of (1) satisfying the initial conditions

u^a, X) = 1; u2(a, X) = 0
( 4 )

Vi(α, λ) ΞΞ 0; t;2(α, λ) =" 1

on L. It follows that these pairs are linearly independent and any
solution pair {y, z] of (1) must be of the form

(5) y = c1u1 + c2u2 , z = C& + c2v2 ,

where cx and c2 are real numbers. Hence {y, z} will be a solution
of ίl) satisfying (3a, 3b), if and only if

cΛ _ ΓAuάb) + Bv.φ) Aiφ) + Bvt{b)Ίfcι

cj ~ LC χ̂(δ) + ^ ( 6 ) Cu2(6) + Dv2(b)i\c2
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Therefore, {y, z) is a nontrivial solution pair (i.e., y2+g2>0 on XxL)
if and only if

6 Aux{b) + Bv,(b) + Cu2φ) + Dv2(b)

1

In particular, {y, z) is a nontrivial solution if not both cx and c2 are
zero, and if

. Cux(6) + 2)^(5) = Au2(δ) + 5^(6) - 0 ,

Cu2(b) + 2^,(6) A^(6) + BvM 1 a Π

It is not clear that either (6) or (7) can generally be satisfied
for any X e L. We seek to establish the existence of such values of
λel/. The values of λ for which (6), but not (7), holds are called
simple eigenvalues, and for these values, there corresponds exactly
one solution pair of (1). The existence of simple eigenvalues will
be our primary concern.

Let us define functions φt and ψif i = 1, 2, on X x L as follows:

φi(x, X) - AW^ίx, λ) + B(X)vt(x, λ) ,
ψ&x, λ) = C(λ)tt,(:c, λ) + D(X)vt(x9 λ) i = 1, 2 .

W. M. Whyburn [10], has shown that the pairs {φif ψ%) each satisfy
the differential system

φί = [(ACk - BDg)φi + (£2<7 - A*k)ψJzΓ1 ,
( } ^ [(C2Λ 2 ) 2 ^ + (BDg - ACk)ψJzΓ1

where Δ = AD — BC. (Note that the existence of A~ι is guaranteed
by (H-6).) Define the functions Φ, Ψ, K, G, and ft) by

, λ) = φ(x, X)e-ωM) , y(a?, λ) = ψ(x, X)eωM) ,

(10) K = (JBfff - A%)zΓV2ω , G = (C2fc - D2g)J-ιe2ω ,

, λ) = Γ (AC^ - BDk)Δ~ιdt .

In terms of these functions, the system (9) is equivalent to the
system

Φ' - K{x, X)Ψ ,
( } W = G(x, X)Φ .

Let {Φif Ψt] be the solution pairs of (11) corresponding to the
solution pairs [φit ψi}, i = 1> 2, of (9). We apply the polar coordinate
transformation to these pairs to obtain
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t(Xt λ) = pi(xf X) s in θΛ(x, X) ,
(\-ί*)

Ψ&X, X) = pt(x, X) cos θt(x, X) ,

where pt and 0* are solutions of

Pi = fttK" + G) sin 0, cos θ{ ,
( # Kcotfθi- Gain 1*, , ί = l , 2 ;

satisfying the initial conditions

A(α, λ) - [A2(λ) + C2(λ)Γ , ft(α, λ) = [B\X)

0t(α, λ) = arctan A(λ)/C(λ) , 08(α, λ) = arctan B(X)/D(X) ,

- π < ^(α, λ) , Θ2(a, X) < π .

Hypothesis (H-6) insures that pt(a9 X) > 0 on L, i — 1, 2.

LEMMA 1. The following inequality holds on X x L:

0 < θx(x, X) - Θ2(x, X)<π if AD - BOO on L ,

or

-π < θx{x, X) - Θ2(x, X) < 0 if AD - BC < 0 on L .

Proof. Using equations (8) and (10), we have

= (AD -

on XxL. Differentiating and evaluating at x=a, we see that uxv2 —
U ^ Ξ I on XxL. Hence Φ^2—Ψ1Φ1 = AD — BC on XxL. Applying
the transformation (12), it follows that p±(x9 X)p2(x9 X) sin [θ^x, X) —
Θ2(x, X)] == AD — JBC on XxL. Hence sin [^(α, λ) — Θ2(x, X)] > 0 or
sin [ex(%, X) — θt(x9 λ)]<0 on XxL, depending on whether AD — BC is
positive or negative on XxL, respectively. The desired inequalities
follow from (H-7) and the initial conditions for px and p2.

It should be noted that (H-7) is made only for convenience.
Since sin (θ1—θ2) Φθ on XxL, there is some integer n so that nπ<
θγ(x, X) — Θ2(x9 X)<(n + Ϊ)π on XxL. As a simplification, (H-7) provides
that n = 1 if AD - BC > 0 and that n = - 1 if AD - BC < 0 on L.

COROLLARY. For eαcfc xeX, the zeros of Φ^x, X) and Φ2(x,X),
and the zeros of Ψ^x, X) and W2(x, X) separate each other on L.

LEMMA 2. Suppose that either of the following conditions holds
on X x L:

( i ) [' \K(t, X) + Git, X)\dt < In |l/<τ(λ)| ,

(ii) Γ \K(t, X) + G(t, X)\ dt < Inπ - In |2 arcsin σ(X)\, (σ(λ) defined
Jα
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by (H-7).) Then 0 < \θ^x9 λ) - Θ2(x, λ)| < π/2 or π/2 < \θγ(x, X) -
X)\ <π on Xx L.

Proof. Let J(X) = A(X)D(X) - C(X)D(X). If zf(λ) > 0 on L, then
from Lemma 1, we know that 0 < sin [θ^x, X) — Θ2(x, X)] =
J(X)/p1(xt X)p2(x9 X)' In (13), we can solve the first order equation in
Pi(x, λ), i = 1, 2, to obtain

11 (-K" + G)(sin #x cos θx + sin 02 cos Θ2)dt\ .

Now

p^x) = o exp 1 - Γ (JBΓ + G) sin (^ + θ2) cos (β2 - ^)

Since - Γ (if + G) sin (0X + ^2) cos (θ2 - ΘJdt ^ \* \K + G\dt, then if

condition (i) holds, AjpJ^p^x) < 1 and 0 < sin [θ^x, X) — Θ2(x, X)] < 1

on X x L. Hence the desired inequality follows from (H-7).
To apply condition (ii), we again use equation (13) to obtain the

equation {θx — Θ2)
f — — (K + G)(sm2θ1 — sin2#2), which can also be

written as τ' + H(x, X)τ = 0, where τ(x, X) = θ^x, X) — Θ2(x, X) > 0,
and H = [(K + G) sin (θ, + θ2) sin {θ1 ~ Θ2)]l{θι - θ2). Solving this

ί fx )
first-order equation, one obtains τ(x, X) = τ(α, λ) exp j — 1 ίί(ί, λ)dίk
Since exp | - Γfί(ί, λ)dίi ^ exp Γ |ίΓ(t, λ) + G(ί, λ)|dί, and τ(α, λ) =

I Jα ) Jα ^ Γz \

arcsin σ(X), then if (ii) holds, we have exp j — I H(t, X)dtγ < π/2τ(a, X).
Therefore, 0 < τ(x, X) < π/2 on X x L.

The case where J(λ) < 0 is handled exactly as above by noting
that 0 < sin [Θ2(x, X) - θ^x, X)] = -Δ{X)lρ1{xJ X)ρ2(xf X).

COROLLARY. For each xeX, the zeros of Φ^x, X) and Ψ2{x,x),
and the zeros of Φ2(x, X) and Ψx{x9 X) separate each other on L.

Consider now equations (6) and (7). Applying (8) and (10), we

have

(14) <Z\(6, λ)eω ( M ) + φtφ, λ)<Γω(M) = ξ(X) ,

or

^(6 , λ)e-^2> = Φ2(b, \)er™ = 0 ,
( } Ψ2(b, X)e-ω{h'λ) = 0,(6, X)eω{b>λ) = 1 .

Here we define the function ξ(X) by

(16) ξ = 1 + (AD - BCXuM - utvx) = 1 + (AD - BC) .
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3* Existence of eigenvalues* Using the results of the previous
section, we are now in a position to be able to specify conditions
which will guarantee the existence of eigenvalues for the system
(1, 3a, b). Our first theorem is a result which holds for both the
self-adjoint and nonself-adjoint problems. This result will then be
specialized to consider a class of nonself-adjoint problems only.

THEOREM 1. Let {y(x, λ), z(x, X)} be a nontrivial solution pair
of (1). Suppose that either condition (i) or (ii) of Lemma 2 holds,
and that K(x, λ)>0 on XxL. In addition to hypotheses (H-0)-(H-7),
assume conditions so that there exist integers m and n having the
property that inf θ^b, X) < mπ and sup 0A(&, λ) > nπ. If n ^ m + 1,
and if

(17) [pl(b, X)pt(b, λ) - J»(λ)]ι^-(*'2Vft(δ, λ)

then there exist p, p = n — m, nonempty sets of simple eigenvalues
Jo> Ji> •"> Jp-i for the system (1, 3a, 3b). Moreover, the number of
distinct eigenvalues for the system (1, 3a, 3b) is at least p/2 if p
is even and at least (p + l)/2 if p is odd.

Proof. Let {yf z) be a solution pair of (1) and let {uit vj, i — 1, 2,
be the solution pairs of (1) defined by (4). As seen above, {y, z) is
of the form (5), and the eigenvalues of (1, 3a, 3b) will be those
values of X for which (14) or (15) is satisfied. Let Φi9 Wif i = 1, 2,
be defined as above. By assuming that either hypothesis (i) or (ii)
of Lemma 2 holds, we see that (15) cannot be satisfied on L. Hence
all eigenvalues will be simple.

Supposing that K(xf λ)>0 on X x L insures that θ'i(x,X)>0 when
φ.(xf x) = 0 and hence θ^x, X) = 0(mod π) iί and only if Φ^x, λ) — 0.

Let m and n be integers with the properties described in the
hypothesis. Then there are values of λ, say λ and λ*, such that
θiΦ, λ) = mπ and ^(6, λ*) = nπ. Clearly, λ Φ λ*, so assume that
λ < λ*. Since K(x, λ) > 0 on I x L, we have that ^(δ, λ) > mπ on
(λ, λ*]. It follows from the continuity of θγφ, λ) on L and the fact
that p = n — m ^ 1, that there exist p + 1 values of λ, λ = λ0 <
λx < < Xp = λ*, on [λ, λ*] such that 0X(&, λ ; ) = (m + j)π, j =
0,1, « , p .

Choose any integer i, 0 ^ j <; p, and without loss of generality,
assume that cos^^δ, λy) = + 1 and cosθ^b, Xj+1) = — 1. Now
pβ2 sin (^ — 02) = AD — βC Ξ A on XxL implies that sin θΛ(b, Xj) =
-Δ{Xά)lρ1{b, Xj)p2(b, Xj) and sin θt(b, λi+1) = 4(λi+ι)/ft(δ, λi+1)ft(δ, λ i+1).
It is a consequence of Lemma 2 and the usual trigonometric identi-
ties that cos02(δ, λy) = [^(δ, XύplΦ, *i) - ^(λ i)]1/a/ft(δ, λyJftCβ λ̂y),1 and
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cos02(6, λ i + ι) - -[pl(b, Xj+1)pl(b, λ i + ι) - Λ2(λi+1)]1/2/ft(&, λ i+ι)ft(δ, λy + ι)
(It may be that the signs in the last two equations may be reversed.)
Define the function s(λ) on L by

(18) s(X) = 0,(6, λ)e- (6 i } + Ψt(b, X)e~ω(b,λ)

We have from above that s(Xj) = p2φ, x^e'****** cos#2(δ, \s), and
*(λ, +1) = ft(δ, λ i + 1)e~ω ( M '+ l ) cos 02(δ, λy + 1). Hence if condition (17) holds
then s(λy) ^ £(λ, ) and s(λy+1) <£ ζ(λi+1), or vice versa. Since s(λ) and
<J(λ) are continuous on L, it follows that there is at least one value
of X on [X3 , λJ+1] such that s(λ) = ξ(X), and therefore equation (14)
is satisfied. Let J3 = {Xe [Xj9 Xj+ι] | (14) is satisfied}, j — 0,1, ,
p-1.

The work above establishes that the continuous curves s(X) and
ζ(X) must intersect at least once on each of the intervals [Xjf λ i + 1],
j = 0, 1, , p — 1. It could happen that these curves intersect only
at alternate endpoints, Xίf λ3, , with λ2i+1 serving as the eigen-
value for both [X2j, X2j+1] and [λ2i+1, X2j+2\. Therefore there will be
at least p/2 or (p + l)/2 distinct eigenvalues for (1, 3a, 3b) depending
on where p is even or odd. This completes the proof of the theorem.

REMARKS. It should be noted that a similar result to Theorem 1
can be established by supposing that G(xf λ ) < 0 o n I x L , that m and
n are integers such that inf Θ2(b, X) < (2m + l)τr/2 and sup Θ2(b, X) >
(2n + ΐ)π/2, and that condition (17) be replaced by the condition
that

(19) [plφ, X)pl(b, X) - J>(\)Y<*e«b »/pt(b, X) ^ |£(λ)| .

In Theorem 1 we allude to conditions which would insure the
existence of integers m and n such that ^(6, λ) goes from less than
mπ to more than nπ on L. Conditions on K(x, X) and G(x, X) (and
hence k(x, λ), g(x, λ), A, B, C, D) which insure this behavior may
be found in Ince [8, pp. 231-248] or Ettlinger [3, 4, 5], or Whyburn
[10, p. 852]. It should also be noted that if both K(x, λ) > 0 and
G(x, λ)< 0 on XL, then the eigenvalues are distinct. Furthermore,
by assuming that A(X) ^ 0 or D(X) :> 0 on L insures that the integer
m ^ 0, i.e., the polar angle Φ^x, X) is nonnegative on L. As a final
remark, we note that either conition (17) or (19) concerns the am-
plitudes of the pairs {Φif ?FJ, i — 1, 2, and the function α>(6, λ). This
is consistent with results obtained for other boundary problems with
nonzero right hand sides (see e.g., [2, 11, 12]).

4* A nonself-ad joint problem* We will now specialize the
results of the preceding section to a class of nonself-adjoint problems.
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Consider the boundary conditions (3a, 3b). It is readily verified
that this boundary problem is self-adjoint if and only if J(X) ==
A(X)D(X) — B(X)C(X) Ξ= 1 on L. Since we are interested in the non-
self-ad joint problem, assume the problem has the property that
A(χ) = - 1 on L. Using this specialization, we see that λ will be a
simple eigenvalue of (1, 3a, 3b) if and only if

(20) s(X) = Φx(6, λ)e (6 i } + Vt(b, λ)e"ω ( M ) = 0 .

Based on this assumption we now have the following result.

THEOREM 2. Let {y(x, λ), z(x, X)} .be a nontrivial solution pair
of (1). Suppose that either condition (i) or (ii)-o/ Lemma 2 holds
and that K(x, λ)>0 on XxL. In addition to hypotheses (H-0)-(H-7),
suppose A(X) ^ 0. Then θ^b, X) > —π on L. Assume m ^ 0 is the
least integer such that inf θx(by X) < mπ and let n be any integer
such that sup θ^b, X) > nπ. If n ^ m + 1 then there exist p, p =
n — m, nonempty sets of simple eigenvalues Jo, Jly , Jv-X for the
nonself-adjoint system (1, 3a, 3b). The number of distinct eigen-
values for the system is p/2 if p is even and (p + l)/2 if p is odd.

Proof, This proof is a simplification of Theorem 1. Using the
statements and notions of that proof, we see that if A(X) ^ 0 on
L, then 0 ̂  θx{ay X) < π on L. Since K(x, X) > 0 on X x L , θγ{x, X)
passes through integer multiples of π in the positive direction only
as # increases on X, and therefore θ1(b,X)> —π on L. Defining
λ0, Xlf —-,Xp as in Theorem 1, we see that β(λy) = ΨΛ(b, \j)e~ω{btλ^.
From the corollary to Lemma 2, we know that the zeros of Φx(&, X)
and Ψ2(b, X) separate each other on L. Hence s(Xj) > 0 and s(Xj+1) < 0
or vice versa. The continuity of s(X) guarantees the existence of a
value of X on [X3f λi+1] such that s(X) = 0, and therefore equation
(20) is satisfied. The remainder of the proof follows as in Theorem 1.

COROLLARY. Suppose, in addition to the hypotheses of Theorem
2, that k(x, X) ̂ > K(x, X) and g(xy X) :g G(x, X) on I x L. Then there
exist p nonempty sets of simple eigenvalues Lo, Llf , Lp-λ for
(1, 3a, 3b), such that if σάeL5, then θγφ, σ5) > (m + j)π. Moreover,
if 3 > 2, then the corresponding solution {y(x, σ5), z(x, σ5)} has the
property that y(xf σό) has at least j ~- 2 zeros on X.

Proof. From the continuity of 0X(&, λ) and the fact that θx(b, X)
increases from less than mπ to more than nπ, select λ,- such that
for X > Xjf θx(b, X) > (m + j)π, j = 0,1, , p — 1. Let Lά be the
set of all eigenvalues on [λ̂  , λ i + 1]. From the proof of Theorem 2,
each Lά is nonempty.
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Suppose σά e Lif j > 2. Then θ^b, σs) > (ra + j)π ^ jπ and
0iΦ, σό) — θ^a, as) > (j — l)π, so that θfa, σά) = O(mod π) at least
j — 1 times on X and Φ^α, σs) has at least i — 1 zeros on X. If
Jk(a?, λ) ^ iΓ(x, λ) and G(x, λ) ^ flr(a;, λ) on XxL, then the Sturm com-
parison theorem can be applied to see that between two zeros of
Φx(xf σ5) there is at least one zero of y(x, σ/).
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