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LARGE INDECOMPOSABLE CONTINUA WITH
ONLY ONE COMPOSANT

MICHEL SMITH

David P. Bellamy has shown that there exist indecom-
posable Hausdorff continua with only one or only two com-
posants. The continua that he constructs are small in the
sense that they do not have more than 2C points. In this
paper his results are generalized; in particular it will be
shown that if X is a Hausdorff continuum then X is a retract
of an indecomposable continuum with exactly one composant
and of an indecomposable continuum with exactly two com-
posants.

Definitions and Notations. A continuum is a compact connected
tusdorff space. Suppose λ is an ordinal, Ia is a topological space

for each a < λ, and if a < b then rb

a is a mapping from Ib onto Ja

so that if a <b <c < λ then rb

aoT

r

b = rc

a. Then the space 1 =
lim {Ia, r}a<λ denotes the space which is the inverse limit of the
inverse system {Ia, r

b

a}a<b<λ. Each point P of I is a function from λ
into \Ja<x la such that Pa e Ia. ΓL denotes the function from I into
Ia such that Π.CP) = -P. I f R^Ja then R = {x | xa e B}. If S = HaeA Sa

is a product space then x = {xa}aeA denotes a point of S so that
xa 6 Sa and πa denotes the function from S into Sa so that πa(x) = xa.
The composant of the continuum M containing the point P of M is
the set of points Q of M such that there is a proper subcontinuum
of M containing P and Q, it is denoted by Cmps (M, P).

Construction. The following construction employs techniques
used in [1] and [4]. The continuum will be constructed as an inverse
limit lim{/α, r}a<Q)1 such that for each a < ωί Ia is a subset of the
cartesian product of Io and ωt copies of [0, 1] so that if b is an
ordinal with a < b < ωλ then Ia will be homeomorphic to a subset
of Ib; in fact it will be convenient to identify Ia with this subset
so that {Ia}a<ω1 will be a monotonic collection of continua, Ia may be
considered to be a subset of Io X ELsα [0,. 1] x IL^-^ίO}, and if
x 6 7α+1 then πa+1(x) e [0, 1], πά(x) = 0 if j > a + 1, and IL<α+i fafa)} x
Πi>α+i {0} i s a point of Ia. In general the space ]Jj<a [0, 1] may be
considered to be the space Π;<α [0, 1] x Iίa<i<ω1W-

Construction of Io: If X is a continuum then there exists a con-
tinuum Io containing X as a retract which is irreducible from some
point l0 to X so that: there exists a sequence of points {αί}Γ=i and
a monotonic sequence of proper subcontinua of 70, {Al}T=i such that
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(1) {α?}Γ=i converges to a point a in X, (2) A? is irreducible from l0

to al and 4 J c 4 +1 for each positive integer i, and (3) Cmps (70, l0) =
\JT=iA°i. (The existence of Io follows from [4] or from [2] and the
construction for Ix used below.)

Construction of I^: Let Ix be the subcontinuum of I0X[0, 1] defined
as follows: for each positive integer n let a\ = (αί, l/(2n — 1)) ,

A{ = Alx {1} ,

Al = Al U ({α?} x [1/2, 1]) U (A? x {1/2})

U

U^AL-Jx ^_-iL_ΠU({lo} x

u (AI >

and let I, = (Io x {0}) U Uϊ=i ^ . Let lx = (l0, 1) and identify Io with
IQ x {0} using the natural mapping. Thus {aι

n}Z=ι converges to (α, 0)
which has been identified with α, Ai is irreducible from a\ to lx,
and AJ, c A1^. Let rj be the projection πλ of /x onto Jo, thus rj(ili) =
A°w, rUα1,) - αi, and Cmps^, lx) = U^=1 A

1,.
Construction of Ik for each positive integer k > 1: Let Jfc be a

subcontinuum of /fc_1 x [0, 1] defined as follows: for each positive
integer n let

al = (α£-\ 1) if n ^ k

i f ^ > & '

A^ = Ar 1 x {1} if n ^ fc ,

and if n > k Ak

n is defined by recursion,

Xi« = A! U ((«i-| x [A., l]) U (A!- x {A.

(«•-••>
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u

At x {1/4} A\ x {1/2}

4
a\

" x ίl/3}

a\x [1/2,1]

Λ

*-ivί_i

at1

It-l

ta

Λ-2

Then let Ik = (1^ x {0}) U U«=i ^t, 1* = (U-u 1) and identify 74_x

with Jife_1 X {0} using the natural mapping; let rL i be the projection
of I* onto !*_!. Thus {α*}"=i converges to α = (α, 0), A* c A*+1, and
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The following properties of the construction will be used in the
proofs:

(PI) Ik is irreducible from lk to 1^;
(P2) no point of Ik — 1^ is mapped by rJLi into Ik_2 and each

point of Ik — /fc_i is mapped into CmpsC/^, lfc_!);
(P8) for each n and β < a r%al) = at and r%Al) = At;
(P4) if k^n then πn{At) = {1}, if k>n then π,(Aί) = [l/(2fc--l), 1],

and π~\l) = Al;
and

(P5) every point of {ak+l}x[l/(2k — 1), 1] separates /fc. Let 7^ =
lim {In, r}n<0)Q, and let lωo be the point x such that xn = ln. Then

for each integer n, In can be identified with lim {Inj rk

+1}n<k<ωo since
rk

k

+1 is the identity on Ik for k > n. Let Jw be so identified using
the natural mapping. So Jn c Io x Π?=i [0, 1] and IωQ is identified with
the subset (J^ΰX of Io x Π^i [0, 1]. Further define A?0 for each
positive integer ΐ by Af° = lim {AΓ, r}ϊ=1, property P3 insures that

Af° is well defined. Note that it follows from the construction that
if x e IωQ and a < b then πt(xa) = πt(xb) for all i <^ a.

Claim 1. IωQ is indecomposable.

Proof. Suppose not and that H and K are two proper subcon-
tinua of Iωo whose union is Iωo. Then there exist open sets R and S
such that R c H\K and S c K\H and hence are mutually exclusive.
There exists an integer j and two open sets Rό and S, in Is such
that i ζ c R and Sy c S. Since Iό = U?=i -̂ -ί there is an integer ϊ so
that both Rj and S3 intersect A\. Therefore Rό x [0, 1] and Ss x
[0, 1] both intersect A(x{l/(2i- 1)}. So each of Πy+iOB) and Πi+i(S)
intersect both /̂  and A|+1, hence each of H(H) and Π(^) intersect
both Ij and A{+1. By the irreducibility of Ij+1 from l i + 1 to Ii it
follows that Iά is a subset of both ΐlJ+1(H) and Πy+iί-K") (recall that
Ij = Ijx{0}) and hence Iά = Πiί H") = Π i W which contradicts the
fact that βy and Sy must be mutually exclusive. Thus Iωo is in-
decomposable.

Claim 2. If xelωo and there is a positive integer j such that
7Cj{Xj) = 0, then π^^) = 0 for all i > j .

Proof. Suppose x e IωQ, xa e Ia and πa(xa) Φ 0. Then there exists
an integer n such that xaeA^ But rα_x(Aΰ = AT1 and either
TΓα-iCAΓ1) = [l/(2w - 1), 1] or ^.^AΓ 1 ) = 1, and in either case
Ka-iitoa-ύ Φ 0 so πa^{xa) Φ 0. So if πά{x3) = 0 then πj+1(xj+1) = 0 and
the claim follows by induction.
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Claim 3. If K is a proper subcontinuum of Iωo containing lωo

then there exists an integer β so that if 7 > β then πa(ϊlr(K)) = 1
for all a so that β < a <* 7.

Proof. Suppose that there is a proper subcontinuum K of Iωo

for which the claim is not true. Then if /3 is an integer there
exists an integer 7 > β so that πr(J\.r{K)) is nondegenerate. Suppose
in addition that for each β there is a 7 > /5 so that τrr(Πr(^)) = 0.
Then by Claim 2 since 16 πJJlr(K)) for all a < 7 it follows that I M c
Πr(J^). But then K~ IωQ which is a contradiction. So the supposition
is false and there exists an integer b so that if 7 > b then 0 g
π«(ίl«(K)) for all α such that 6 < a < 7.

Suppose β > 6, where 6 is defined above. Then from the negation
of the claim, for each positive integer n there is an integer yn with
β + n < yn so that πvΛ(Πr»CδΓ)) *s nondegenerate. But then (αj;""1, 1) 6
ΠrJiΌ. So αfH e Uβ(K) (by P3), thus if yn = /3 + ΛΛ for some positive
integer &%>w then aξ+kn e Πr^W and thus α ^ e Π/̂ (-K") (by P 3 ) So
there is unbounded sequence in {&Jϊ=i so that aβ

β+kn e ~Π.β(K), but α is
the sequential limit of {αf}Γ=i and hence is a limit point of the set
{aβ

β+kn\n is a positive integer}, so aeJ\β(K). Now τrα(α) = 0 for all
a > 1 so 0 6 πa(Π.β(K)) for all 0 < a <; β which contradicts the choice
of β > δ. So the claim has been established.

Claim 4. Cmps(/ωo, lωo) = LΛ~=i A?°.

Proof. Suppose flceCmps(Jβo,.lωo). By Claim 3 there exists an
integer β so that if 7 > β and a is an integer so that β < a <; 7
then ττα(scr) = 1. Let 7 > /S, then α?re Â  (by P4). Thus xaerr

a(Ar

r)
and rί(A0 = τrα(A °̂). So xe A*?0. So Claim 4 has been established.

The construction of Iμ for jW an ordinal greater than ω0 follows.
Suppose δ is a limit ordinal and that {AJΓ=i, W Li, Ĉ , rj, and /̂  have
feen defined for all λ ^ δ so that:

(1) For each positive integer i the continuum A\ is irreducible
from a\ to 1̂ .

(2) Ca = USBiA{.
(3) If β < λ then rjK-AJ) = Af, r̂ (α )̂ = aβ

if and {α<}S=i converges
to α.

(4) If /S < λ then rx

β{Ix - Iβ) = Cβ.
(5) Cx = Cmps(J;, 1;) = {PI there exists a /3 < δ such that π^P^) =

1 for all 7 > β).
Then construct Jδ+?ι for all positive integers n by substituting Iδ for
Jo, A' for A*, a\ for α?, and lδ for l0 in the construction of In above.
Compare condition 4 with a similar condition in Bellamy [1].
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Suppose that μ is a limit ordinal and Ir has been defined for all
7 < μ. Let Iμ = lim {7r, r}r<μ, A? = lim {A$, r}r</,, αf = lim {α,, r}r<μ,
and for each /3 < μ let rj be the projection of Iμ onto Iβ. As above
identify Ir with lim {Ir, r}r<a<μ and a with α. The argument of Claim

1 can be used to prove that Iμ is indecomposable. Claim 2 also
generalizes for Iμ as follows:

Claim 5. If x e Iμ and there is an ordinal j < μ which is not a
limit ordinal such that πά{xά) = 0 then πt(Xi) — 0 for all ordinals
i, 3 < i < μ, which are not limit ordinals; and hence x e I3.

Proof. Suppose x e Iμ and j = X + q for some limit ordinal λ
and positive integer q. If α = λ' + r for some limit ordinal λ' ^ λ
with λ' + r > λ and r > 0 and it is true that πa(xa) Φ 0, then there
exists an integer n so that xa e AJ. But ry(-Ai) = Ai and either
π/Aί) = [l/(2n - 1), 1] or π, (Ai) = 1 (by P4). In either case πά(xa) Φ
0. But πj(Xj) = τc3 (xa), so that τri(ίci) ^ 0, which is a contradiction.

Claims 6, 7, and 8 are concerned with the continuum Iμ.

Claim 6. If K is a subcontinuum of /„ and a e ILC^O then α € ίΓ.

Proo/. If α e Πi(^) then (α, 0) 6 Π 2(^) so α 6 Π 2(^). Prom Claim
5 it follows that a e ΠrCK") for all yeμ since α is identified with
a x {0}r. Thus a must belong to K.

Claim 7.

Cmps(/,, 1,) = [JA!.
ΐ
J

ΐ = l

Proof. Suppose that if is a proper subcontinuum of Iμ containing
1,,. If it% is true that there is an integer n so that if 7 < μ then
ar

n £ lίr(K), then it would follow that lίr(K) c AS for all 7 < μ, and
so if c Am. So suppose that this is not true. Thus for each integer
n there exists an ordinal yn < μ such that ar

n

n 6 ΐ[rn(K). But then
ai 6 ΠiOK") f o r a 1 1 ^^ s i n c e ^ϊΛ(αiw) = αi So α e Πi(^) and α 6 i ί by
Claim 6. But then K — Iμ since Iμ is irreducible from a to I/,. So
the claim is true.

Claim 8. Iμ satisfies the following for each ordinal β, β < μ,
and each positive integer i:

(1) A? is irreducible from αf to 1̂ .
( 2 ) C = Cmps(I,, 1,) = Uι-i At.
( 3) r?(Af) = Aξ, r';(α?) = αf, and {αf}Γ=i converges to α.
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( 4 ) rμ

β(Iμ - Iβ) = Cβ.

Proof. Part (1) follows from the irreducibility of ΠrCA?) for
each Ί<μ, and part (2) follows from Claim 7. Since for each ordinal
7 < μ the sequence {Πr(«O}Γ=i converges to α, it follows that {α£}Γ=i
converges to a which is identified with α. The rest of (3) follows
from the definitions of r% Aβ

u and αf. To prove (4) suppose that
x 6 Iμ — Iβ. Then by Claim 5, πβ+1(xβ+1) Φ 0 so xβ+1 e Aβ

n

+1 for some

integer n, b u t rβ

β

+1(Aβ

n

+1) a Cβ, t h u s rβ

β

+\xβ+1) e Cβ so τμ

β{x) e Cβ; equality

follows from parts (2) and (3).

Claim 9. The continuum Iωi = lim {/;., r}λ<0)1 has exactly two com-

posants.

Proof. From the construction, {Ir}r<ωί is a monototic collection
of continua. (a) If β > 7 then Iγ does not intersect Cβ because Ir

does not intersect Cr+1 and if β > 7, Cϊ+1 = r^Λ(Cβ). (b) From (4)
of Claim 8 it follows that r%Ia - Iβ) = Gβ for α > β. Let W - {x\
there is a γ so that if a > 7 then πα(#α) = 0}. If x e ΫFand 7 is the
ordinal specified in the definition of W then x e Ir. So x lies in the
same composant as a.

Now Iωi is irreducible from a to lωi, it will now be shown that
if y is a point of Iωi not in W then ?/ lies in Cmps(/ωi, lω i). Suppose
yg W. The following two conditions need to be established: (i) if
a > β then yaί Iβ, and (ii) yaeCa. If a > β there exists an ordinal
δ > a such that τ/α Φ yδ or else 2/ e W (in particular yela). Suppose
that ya£lβ, then t/α £ Cα by (a) above. But rδ

a(Iδ - Iα) c Ga so #δ g
Iδ — Ia, so yδ£la. But ? J|7 α is the identity which contradicts the
fact that yδ Φ ya. Thus (i) has been shown, also it has been shown
that if a > β then there exists a δ > a such that τ/δ g Iα. So i/δ e
I5 — Zα, r«(Zδ — Ia) a Cα, and so (ii) has been shown.

Suppose that y £ W. By (i) if a > 1 then #α £ Λ, and by (ii)
ya e Oα. Thus by (2) of Claim 8 there exists an integer na so that
ya 6 Ala. There exists an uncountable subset J of ω1 and an integer
n so that na = n for all a e J. But since ra

β(Al) = Aβ it follows that
ye\im{Ai, r}β<0)ι which is a proper subcontinuum of /containing lωi.
Thus it has been shown that if y g W then y e Cmps(7ωi, lωi) = Cωι.
So Iωi has exactly two composants W and Cωi.

One can see that X is a retract of each In and hence of Iωχ. In
order to construct a continuum with only one composant which has
X as a retract it is only necessary to construct Io and a retraction
r from Io onto X that maps l0 onto α, then by identifying a and
the point lω i the continuum Iωi satisfies the desired condition.
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