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TCHEBYCHEFF SYSTEMS AND BEST PARTIAL BASES

OVED SHISHA

This is a contribution to the partial basis problem and,
in particular, to the case where the basis elements are cosigns
or consecutive powers cosines. We contribute also to the
general theory of Tchebycheff systems to which the partial
basis problem is strongly related.

1. Introduction. The partial basis problem was formulated
and studied by J. T. Lewis, D. W. Tufts and the author in 1975 in
connection with their study of optimization of multichannel pro-
cessing. Let X be a normed linear space, let f, h, hy -+, hye X
and let » be an integer, 1 <n < N. For every sequence g = {t}7
of integers, with 1 < ¢, < g, --- < ¢, £ N, consider

o(p) = min| £ — 33 e4h,

where the minimum is taken over all possible choices of the scalars
¢, *+*,C,. The problem is to minimize e(yg). It is of particular
interest when X is one of the standard function spaces.

Subsequently, progress has been made both in theory and in
the computational aspect. An algorithm, numerical examples and
some theoretical results have been given by K. M. Levasseur and
J. T. Lewis in [6]. G.G. Lorentz [5] has observed that, for X=
LX0, 1), h, the funetion z**(k =1,2,---, N) and f the function 27,
e(rt) is minimized by g={N—n+1, N—n + 2, ---, N} and con-
jectured the same to be true for X = C[0, 1]. This was proved by
I. Borosh, C. K. Chui and P. W. Smith [1, Theorem 1].

In Theorem 4 below we give a sufficient condition for a real
function f, continuous on [a, b](0 < a < b < =), that e(x) be minim-
ized(only) by g ={N—n+ 1, N—n+2, :.-, N}, where X = L?(a, b),
1<p=<c and h, is the function z**(k =1,2, ---, N). For such
a function f (with a = 0, b = 7), Theorem 17 gives such a sufficient
condition with the same X, where each h, is a function of the form
cos az.

In proving Theorems 4 and 17 we use Theorem 1 which, together
with Lemma 2, is due to A. Pinkus. The author is very grateful
to him for that as well as for other valuable remarks. Cf. also
[8, §3].

The partial basis problem turns out to be very much interrelat-
ed with the theory of Tchebycheff systems and this paper is a con-
tribution to both. Thus in Theorem 8 we characterize certain tri-
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gonometric sequences which are extended complete Tchebycheff
systems. Lemmas 9-13 are used later: they are quite straight-
forward and are stated with their proof mainly for the convenience
of the reader. We then state and prove Theorem 14 (used later)
though much of it is known [2, Example 7, p.42; it should read
there T =(0,7), not T'=1[0,7)]. A previous work in the same
direction is [7], whose starting point was a conjecture made by L.
Collatz in an Oberwolfach conference.

Some of the development in §4, and in particular Lemma 16, is
due to R. A. Zalik. His help and interest are greatly appreciated.

Let I be a real interval and f,, f;, ---, f, real functions defined
on I. The sequence {f}, ---, f.} is called a Tchebycheff system or a
T-system on I iff whenever x, <z, < --- <z, and all z, €I, the de-

terminant of the » X » matrix whose kth row (k=1,2, ---, n) is
Fu(®) ful®,) - - - fulx,) is >0. The sequence is called a complete Tche-
bycheff system or a CT-system on I iff {f,, ---, fi} is a T-system on
I for k=1,2,---,n. This is the case, e.g., if I = (0, ) and
Sul@) = 2’ where A<\, <---<\, [4, p. 9]. Suppose each f,eC**(I).
Then {f,, ---, f.} is called an extended complete Tchebychelf system
or an ECT-system on I iff, for k=1,2, ---, n, the following pro-
perty holds. If z, <z, <..- <z, and if z;€el for j=1,2,---,k,
then the determinant of the %k x %k matrix whose jth row
G=12---,k is fi@) fF2@)- - fF¥@) is >0. For
j=12 ---,k we denote by r; the smallest integer » for which
T, = Xj.

Finally, many thanks are due to the referee for his helpful
suggestions.

2. A general result concerning best partial bases.

THEOREM 1. Let
(1) fo:fu"'ny—nf

be real fumctions on [a,b] (—~ <a<b< ) and let n be an
integer, 1 <n < N. Let ¢,, €,+, be each 1 or —1 and suppose that,
for k=mn,n + 1, every subsequence of (1) of length k, after multi-
plying its last element by e, becomes a T-system on [a, b]. Let
0N < Nros <N, < N be integers, {M, Ny, +++, N} #{N —n, N—
n+1 -, N—1}. Let 1<p = and let fo, fy, -+, fv_1, f be con-
tinuwous on [a, b]. Then

=3 ah

= kZ:; Ckfz,,i

< min
LP(a,b) ¢, real

min

¢, real LP(a,b)

We shall need for the proof the following
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LEMMA 2. Assume the first two sentences of Theorem 1. Let
0=M<N: - <N, <N and j be integers, L=j=mn. Assume
that if j <m, then N; + 1 < Njiy, while if j =n, then \; + 1 < N.
Let a <z, <z, --- <, <b,z€[a, b] — {x, ---, x,} and set

S (@) - - - S (@a) 2, (%) S @) - - S (,)

fzn(%) """ fz,,(x%)fzn(w) : .
VACHREEEREE fx,) f(@) fi@) - fo ()

Let @' be obtained from @ by replacing N; by N; + 1. Then
o' < |@].

Proof of Theorem 1. Let f=f— 3 ¢ f1,, the ci being real
constants satisfying [|Fllirw.sn = ming, real|f — 2= 6 f3 llzp@n. It i§
known that there are z, <z,:--- <w,, all in (a, b), at which f
vanishes. The right hand side of (2) is of the same form as f and
vanishes at z,, - -, 2,, hence it is=F. By repeated use of Lemma 2,
for every z€la, b] — {x, - -, 2.},

fN—n(xl) """ fN—n(xn)fN—n(x) fN—n(ml) """ fN—n(xn)

|F@)>1] : : :
fN—-l(xl) """ fN—l(x'n)fN—l(x) : :
Sl -oeeees flx,)  f@) o fya(@) - Sra(@a)

and so, ||fllzrwn is larger than the L*(a, b) norm of the last ratio,
which in turn is =min,, .. [|f — S8 Cofillown-

Proof of Lemma 2. For definiteness assume 1 < j <n. Then
(—D*(@w — ®') is a ratio whose numerator is

Sa (@) - oeee e S (o) PG RERREREE flx,)  flx)
: : Sa (@) «oeeeen Fu,)  fi(®)
Sy @) e Sa;_ () : : :
S @) oo Srpn@a) | o Sy @) e S;_ (@) fa;_, (@)
: : Jaj (@)eeeeee S50 @) [, (@)
ANCHRERRERE S, () : : :
ﬁj+1(x1) """ £ x,—+1(90n) ENCALEEERRE I Z,,,(xn) J2,()

Saj @) eeeeees faf @) fr,(x)
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Ja (@) oveeeee S () N(CHREEERERE flz,)  fl2)

: : Fau(@) = oeeeee fu@a) @)
PCATERREY fiy (@) : : :
N P P CALERREE Sa;,(20) Jajy (@) e eeeee Sa;_ (@) fa;_, (%)

: : D P CAREREER: S (@) Sa;,(®)
RCARTEREE fr (@) : : :
bERCARERERRE S (®,) FENCHREEERRE S, (@) S, (@)
fl;+1(w1) """ flj+1(xn) f2j+1(x)
and whose denominator is
S (@) eeeeeet Sa, (@) Sa (@;) ceeenee i, (@)
@) Fy@) | | fara@dee e Fy @)
flj(xl) """" flj(x'rb) flj+1(x1) """ .fij-i'l(x")
NP CATERRRR: Saj (@) NP CAHRERRER S (@)
@) <o Fuwd | L@y eeeee Finle)
By a determinant identity [3, (0.19), p. 8] the numerator equals
DiCAREEEERRE f@,) Ja (@) eveeees H@,) i)
Sa (@) eoeeeee Sa (@)

“ J; xi_l(%) """ S x,-_l(xn) J; x,-_l(x)
fi,'_l(x1) """ flj_l(wn) flj-]»l(xl) """ fzjﬂ(xn) fzj+1(x)
flj_H(xl) """ flj+1(xn) E E E

pEMCARERERRE S (@) fr,(®)
FENCHRERERRE 2, (@) ﬁj+1(w1) """ flj'l‘l(x'n) .fl,-ﬂ(w)

Sa (@) eeeeees fa (@) fa,(®)

Hence, w — @’ is a ratio whose denominator is as above and whose

numerator is

Ful@) oeeeens Ful@)
Froa@)eeeeee foy (@)
ﬁj+1(x1) """ f1j+1(xn)
Fr@)eennes F(a)
VCHARSEEEE fla,)

X CAREREREE fix,) @)
Fros@) e foy (@) Frs@)
.fl,‘(wl) """" .flj(xn) flj(m)
flj+1(x1) """ f2j+1(xn) flj+1(x)
P CHRERERE SFaj @) Sa,,(®)
Fua@)eeennns Fule)  fu@
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Let o be n, 0 or » if, respectively, s <a,x>2, 0or 2, , <z <
Tor1,A =7 <m). Then sgn(w — @’) =¢,6,.,(—1) =sgnw = sgnw'.
Hence |0'| < |w].

3. On best partial power bases. Our main result here is
Theorem 4 which will follow immediately from

THEOREM 3. Let 0<a<b<ew and let N, n be integers,
1<n < N. Let fbe a real function, continwous in |[a, b] and as-

sume that, for k=0,1, ---,m, @ f)* exists and is =0 in (a, d),
with strict imequality there fork=mn. Let 0 <N < Np-+- <\, < N
be integers. Then {x™, x’2, -, &', f} is a T-system on [a, b].

THEOREM 4. Assume the hypotheses of Theorem 3 and also that
@ V"D >0 on (a,b), and that {u, Ny -o, M) = (N —
N—n+1 -, N—1}. Let 1<p < . Then

. kid |
< min !f(x) -3 c,,x‘k/
LP(a,b) cp real || k=1

10— 3 o

min

cj real

LP(a,b)

Proof of Theorem 4. Set fy(x)=2*k=0,1,---, N—1, and
observe that every subsequence of f, f, ---, fv_, is a T-system on
[a, b]. If m>1, then the first two sentences of Theorem 1 hold,
with ¢, = ¢,+, = 1. Hence, by that theorem, the result. Examining
the proofs of Theorem 1 and Lemma 2, we see that if n =1, we
do not need for the conclusion of Theorem 4 the hypothesis f> 0
on [a, b] but merely our hypothesis /> 0 on (a, b).

To prove Theorem 3 we need

LEMMA 5. Let f be a real function, » a real number and s an
integer =0. Suppose, at some x > 0, f° exists. Then, at that x,

(xrf>(s) =q gk! < :; >(xr~1—kf)(s—k) .

Proof of Theorem 3. Let a =t, <t, < - --+ <t,, <b. Suppose
we have proved that

ti‘l e e e t‘i&‘+1

S@) - oo fasn)

For every tel0, 1], ¢f(x) + (L — t)x¥ satisfies the hypotheses made
on f. Hence A(tf(x) + (1 — t)x™) is either >0 for all £€][0, 1] or <0
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there. Since 4(z") > 0, also 4(f) > 0. Let ¢, ---, ¢,+; be reals not
all 0. Suppose G, ¢x**) + ¢,+.f(®) vanished at = + 1 points of
[a, b]. We shall reach a contradiction which will prove the theorem.
For j=1,2,---,n, let

gj(x) = (x1+lj_1—1_,,~(x1+2_,,~_2——2_,,~_1_ .. (x1+21—12(x—11f(x))1)l. . .)I)I

(meaning (x~%f(x))’ if j =1). Using induction on j, one readily
shows by Rolle’s theorem that, for 7 =1,2, ---, n,

L3 affion - e+ @),

=7+1 r=

where the 5 means 0 if 7 = », vanishes at some » + 1 — j points
of (a, b). In particular, since ¢,;, # 0, g, must vanish somewhere in
(a, b). We shall reach the desired contradiction by showing that
g, > 0 throughout (a, b). This, in turn, follows from the fact that,
for k=1,2, ---,n, (*) throughout (a, b),

k
(@) = @ 3 6 (@Y )0
P

where ¢, ; are constants =0 and ¢,, = 1.
Now (*) holds for k& = 1, since on (a, b),

@) = @ @A) = 2 Y+ (N == e

Suppose it holds for some %k, 1 <k < n. Then throughout (a,d), by
Lemma 5,

k
Guis = @Hiikng,) = x[Z 6 5( I f)
7=0

k k41
=m0 B 5 0101 (77 Jerrpyeeen],
=0 p=j+1 »— 1— J J

which establishes (*) for ¥ + 1 and completes the proof of the
theorem.

Proof of Lemma 5. We may assume s =1. For 0<n<s—1,
n /s
(**) (xff)(s) p— I:xkz_“ k[( k> (xr—l—kf)(s—k):l
+ ('n 4+ 1)'( 8 >(wr—1—nf)(s~n—l) .
\n+1

Indeed, for n = 0, (**) reduces to

) @£ = @) + s@ )
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which is true. Assuming (**) holds for some n, 0 < n < s — 1, (***)
yields

(xrf)(a) — l: @ kz:‘) k! < ]sc >(xr—1—kf)(e—k):]
+ (n + 1)! (n i 1) [x(wr—s—ﬁf)(s—n—l) + (8 —_n — 1)(x‘r—2—‘nf)(c—n-—2)]‘

= [xg k! < Z >(xr—1—kf)(s-—k)} + (,n + 2)! (n j— 2)(xr—2—nf)(s—u-2) .

Take now, in (**), n =s — 1.

REMARKS 6. Theorem 1 continues to hold if [a, b] is replaced
by (@,b),l=p = by L=p< oo, and if f, ---, fy_i, f belong to
L?(a, b). Similarly, Theorem 4 continues to hold if 0 <a < b < o
is replaced by 0 £ a<b < o, 1P < ~ by 1= p < =, and “con-
tinuous in [a, ]’ by “in L*(a, b).” As to the casea =0, » = «, we
have the following result: Let 0 < b < « and let N, n be integers,
1<n<N. Let f be a real function, continuous in [0, ], with
f(0) = 0 and assume that, for k=0, 1, ---, n, (@* Y f)*® exists and is
=0 in (0,b) with strict inequality there for k=% — 1, n. Let
0= <N <A, <N Dbe integers, {\yNy -+, N} #={N—n,
N—-—n+1,---, N—1}. Then

N-1 ”
min max | f(x) — >, ¢x* | < min max| f(x) — >, ¢t
=N k=1

¢ real 0<z<b k=N-n cp real 0szs<b

Finally, Theorem 3 continues to hold if a = 0, in case \, = 0.
4. Trigonometric Tchebycheff systems and partial bases.

THEOREM 7 [4, p.376]. Let —co<a<b<co and let uy, U, «--, U,
be real functions in C*[a, b]. Then {u,}; 1s an ECT-system on [a, b]
iff, for each k=0,1, --- m and each x¢<]a, b],

Uo(®) Ug() <+ - -+ 4P (%)
Wy, - - -, w)(@) = Uy () Uy (X) o v v e u® (x) S0,
0n(@) W) -+ -+ - u (@)

In what follows we shall use the following fact. Let a,, ---, a,
(m = 1) be reals and consider the matrix

(3)
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By adding to the last column a suitable linear combination of
the previous ones, we can obtain the matrix

1 Qg oovoveccsses az""l O
. 0
(4)
La, cooeveeees ar-! 0
n—1
la,-cocecececes a1 (@, — a;)
' 3=0

THEOREM 8. Let 0 < a, < a,++- < a,m=0). A necessary and
sufficient condition that

cos a,x, sin ax, —cos ax, —sin a,x, - -+, (—1)"cos a,x, (—1)"sin a,

be an ECT-system on [0, 7] is a, < 1/2.

Proof. Necessity. If o, =1/2, then =x/(2a,) € (0, ], cos a,(x/
(2a,)) = 0, contradicting our hypothesis. Thus we can assume n > 0.
For k=1,2,---,n, consider the differential equation [[]%z} D*+
]y = 0 having the linearly independent solutions cos a2, sin o, - - -,
(—1)*cos a;_,x, (—1)*'sin a,_,x and the (never vanishing in (— o, «))
Wronskian

COS A, — @ SIN QL s v (—D*ad* 'sin a,x
sin ax G COS QLY =+ v oeveee (—1)**a*'cos oy
—COoS A, O SIN QL o vvvenes (— 1) o 'sin a,x
Wios@) =
(—1)*cos a;_,x (—D*a,_,sina,_x --+- —a¥'sin a,_,x
(—1)*sin a,_,x (—D* ', _,COS Q2 ===+ a7t cos a,_,x|.

By Theorem 7, U,(x) >0 on [0, 7] where U,(x) is the determinent
of the (2k + 1) X (2k + 1) matrix whose (27 + 1)th row (4 =0,1, ---, k)
is (—1)7 times the row cosa;x —a;sina;x —acosa;x---(—aj)cos a;x
and whose (25 + 2)th row (=0,1, ---, k — 1) is (—1)’ times the row
sina;x a;jcosa;x —aisinax --- (—aj)*sina;x.

By performing on the odd (Ist, 3rd, --.) columns of the last
matrix, operations similar to those transforming (3) into (4), we
obtain that
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(5) Uyx)
cos ax - -+ (—1)*a?* ' sin a,x
sin agx - -+ (—1)* a2 cos ax
—cos a,x - -+ (—1)* ot sin a2

—sinax - -+ (—1)*a¥** cos ax

O O O O

= W,_,(x)(cosa,x) ,_cl:f(ai —aj)

(—=1)*teos & --- —ayFitsina,_x 0
(—L*'sina,_x --- afitcos a,_,x 0
(—D*cos e ----- oaFlsinoxy  a

where a = (—1)*(cos a,x) [15= (a0 — ai).
Thus, cos o,z has to be 0 on [0, 7] and hence «a, < 1/2, and in
particular, a, < 1/2.

Sufficiency. For 1 < k < n consider again

COS Q,x —a,sin o - - - (—ad)(— o, sin a,x)
sin a,x 0, COS A, - - - (—ad)*(a, cos a,x)
W) =| : :
(—=D¥cos a,x  (—1)* e sin e - - - (—ap)*((—1)*'a, sin a,x)
(—D*sin ez  (—1)*a,cos a,x - - (—ap)*((—1)*a, cos a,x)

By performing on the even (2nd, 4th, ---.) columns of the last
matrix operations similar to those transforming (3) into (4), we
obtain that

COS QG =+ +===+ (—1)kas* cos ayx 0
sinag «+----- (—1)*a2* sin ax 0
: : 0
W) =| . : 0
k—1
(—D*cosax ------ o cos ax (—1) ', (sina,x) Ho(a,?—a,i)
i=
k—1
(—D*sin o «+---- o sin a,x (—1)*a,(cos a,r) 1"% (a2 — ap)
i= .

Therefore W,(0) = U,(0)a, I1%2 (@i — aZ) and by (5),
sgn W,(0) = sgn W,_,(0) .
As Wy(x) = a, > 0, we have, using (5), that W,(x) and U,(x) are >0

on [0, 7]. By Theorem 7 the desired conclusion follows.

LEMMA 9. Let —c <a<b< oo and let Y, Yy *+*, Y. be real
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Junctions defined on (a, b) and Lebesgue integrable on each (a, x),
a<x<b. Suppose each y,cC"a,bd) and that {y,)* is an ECT-
system on (a, b). Then so is {z,}', where
(6) z,,(x):S”yk(t)dt;k:Lz,---,n;a<x<b.

Proof. Follows from Theorem 7, as for such k=2 and for
xz € (a, b),

. %:(t) (@) -+ - YO (@)
W, - m@ =1 1 : dt>0.
1) vu(®) -+ - yiF P ()

LEMMA 10. Assume the first two sentences of Lemma 9 and let
(7)) zx) =c¢, + Szy,,(t)dt; ¢, real constants; k = 1,2, ---,n,a<x<b.
Then {1, z,(x), - -+, 2,(®)} is an ECT-system on (a, b).

Proof. For k=1,2, ---,m and a <z < b,

1 Qeeeevenenenns 0
W(l, 2 -, z,,)(w) _ zl(g(,-) ............... z:i’”(m)
Z() ceeeveieeennann z‘,‘!"(x)
Yu(@) woveeennens y{k—l)(x)
_ ........... oo
y.k(x) ........... y;(;"_l’(x)

LEMMA 11. Assume the first sentence of Lemma 9 and suppose
{yu}t is a T-system on (a, b). Then with (6), so is {z.}7.

Proof. We may assume 7 >1. Let a<t, <t,--- <t,<b.
Then

zl(tl) zl(tZ) """"" zl(tﬂ)
Zz(t1) zz(tz) """"" zz(tu)

2a(t) Zalts) < oeeeeee 2a(t)
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ty ty tn
§ y,(s,)ds; St Yi(S)d8y v veveenens St Yi(s,)ds,
e 1 n—1
t ) ty ) ty )
S Ya(8)ds, St Ya(8)dSyr e evvveenns S, Yau(8,)d8,
a 1 n—1
ty tn
Yy(sy) §t Yi(8)d8y s s vseennns St Y:(8,)ds,
1 n—1
= Stl dsl"
S L
Ue) | Valoddsys oo [ walonds,
1 n—1
y1(31) .......... yl(sn)
it ty . .
:Sg ooo§ : : dsn”'dsl>0‘
a Jig tp—1
yn(sl) """"" yn(sn)

LEmMMA 12. Assume the first sentence of Lemma 11. Then,
with (1), {1, z,, +--, 2,} 18 a T-system on [a, b).

Proof. Let a <t <t, < +++ <t,4; <b. Then

S IPP PP 1 1 0 covvennonnnenns 0
21(t1) f'zx(tz) """" zl(t'n'H) zx(tx) zl(t2)_zl(t1) """" zx(tnﬂ)_‘zx(tn)
zn(tl) zn(tz) """ z‘n(t'nrl-l) zn(tl) zn(tz)_zn(tl) """" zw(tn+1)—z%(tn)

t2 t3 tnt1

gt Y,(x,)dw, St ACAL S AEEEEEEEEE St yi(@,)dz,

t2 | t3 ’ tnt1 )

St Ya(@)d@, St Yu(8)ATy = v oveveens St Yu(@,)d,

1 2 n

, , ACAREREEERR Yu(,)

=S§+ : C o |dw, oo dz > 0.
¢ tn
1 URCAREEERE V()

LEMMA 138. Let — < a <b < « and let u, u, -+, u,(n = 0) be
real functions in C*[a, b] such that {u,}r s an ECT-system on [a, b]
and u > 0 there. Then {uu,r is an ECT-system on [a, b].

Proof. By an identity for Wronskians and by Theorem 7, as
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on [a, b], for k=0, 1, ---, n, W(uu,, ---, ui,)=u""Wlu, u,, ---, u;)>0,
the result follows.

THEOREM 14. Let 0 < a, < --- < &, The following statements
are equivalent: (a) a, = 1/2. (b) {cos @, x}] is a T-system on [0, 7)
for every subsequence {m,, ---, m,} of {0, ---, n}. (c) {cos a,x}; is an
ECT-system on (0, 7) and a CT-system on [0, 7).

Proof. (a)=(c). True for n = 0. Suppose true for some
n—1=0. So {cosa,x}? is an ECT-system on (0, 7) and a CT-system
on [0, 7). Set

(8) Yu(@) = (@ — a)ecos awcosae , k=1,2 ---,n.

Then {y,)F is a CT-system on [0, 7) and an ECT-system on (0, 7).
For k=1,2,---, n, let

(9) z,(x) = a sin a,x cos o — @, COS QX Sin X
so that

(10)  zi(x) = yul(®); zu(@)

i

= S:yk(t)dt = cos’ax[(cos a)/cos ax] , 0 <z <m.

By Lemma 9, {2} is an ECT-system on (0, ) and, in particular,
it is a CT-system there. By (10) and Lemma 13, {[(cos a,x)/cos a,x]'}i=,
is an ECT-system on (0, 7). By Lemmas 10 and 12, {1, (cos a,x)/
cos a,x, - -+, (cos a,x)/cos ax} is an KECT-system on (0,7) and a
CT-system on [0, 7). Hence {cos a,x}; is an FKECT-system on (0, @)
and a CT-system on [0, 7).

Clearly, now, (a) = (b). Trivially (b) and likewise (c), implies
(a) for if {cos ayx} is a T-system on [0, ), @, must be <1/2.

LEMMA 15. Let 0=, <, --- <o, =1/2. Let y be a real
Sfunction with y* continwous in [0, w); y*™10) =0,k=1,2, -+, n
(if n > 0), and suppose (cos a,x) [[[:=5 D* + aily (meaning (cos a,x) 'y
if m = 0) is strictly increasing on (0, ) (hence on [0, 7). Then

{cos ax, -+, cos a,x, y} is a T-system on [0, 7).

Proof. True for » = 0. Suppose true for some n —1=0.
Applying it to a, ---,a, and to %" + ajly, we obtain that
{eos ay, - -+, cos a,x, ¥y’ + aly} is a T-system on [0, 7). Hence, with
®), so is {yy, -+, Yn (¥ + afy)cos aw}. Let, on [0, 7), 2z,.(2)=
oy sin ax + y' cos axz. We have there, z,..(x) = (¥ + aiy)cos ayx,

Z,1(2) = S:(y" + aty)cos aedx.  Hence, with (9), we have by (10)
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and Lemma 11 that {z,}*' is a T-system on (0, #). By (10) and the
fact that [y/cos a,x] = (cos™ax)z,+.(%), 0 < <z, so is {[(cos a,x)/
cos ax]’, « - -, [(cos a,x)/cos ax]’, [y/cos ayx]’}. By Lemma 12, {1, (cos o)/
cos a,x, - - -, (cos a,x)/cos a,x, y/cos a,x} is a T-system on [0, 7). Hence
so is {cos a,x, cos a.x, - - -, COS @, %, Y}.

LEMMA 16. Let 0=, < a,_; -+ <a,=1/2(n = 0). Let y be a
real function with y*+0) =0,k=0,1, ---, n; y**+t? continuous at
0 from the right and y*® >0o0n (0,7), for k=0,1,---,n + 1.
Then, for every subsequence {m, m,, ---,m;} of {0,1,---, n},
{cosa, 2, ---, cos a,, @, y} is a T-system on [0, 7).

Proof. Consider [[IiziD* + ai]ly (meaning y if s=1) =

ita,D%y; all a, are =0,a,_, =1. By Lemma 15, it is enough to

show that, for ¥ =0,1, ---, 5 — 1, 2,(x) = (cos a,, . ) 'y®* is strictly
increasing on (0, 7). But there,

zi(®) = cos® a, w[y** V) (x)cos a, & + a, y*F(x) sin a,, ] >0 .

THEOREM 17. Let O =ay, < ay,---<aq <12 and le
1 <n <N, n an integer. Let f be a real function with f**+9(0) =0,
k=01 ---, N—1, and f*® (@) >0 on (0,7] for k=0,1,---, N.
Assume PV V(x) 4s continuous from the right at 0. Let
0sm<my,--- <m, <N be integers, {m, m, ---, m,} + {N — n,
N—n+1 -, N—1}. Let 1=<p = o. Then

|

ILP(0,7)

N-—1
f@) — 3, ccos ax
k=N-—n

11) min |

¢, real i

< min

¢y real

n
f(@x) — >, ecos a,, @ .
k=1 LP(0,7)

Proof. Let {m, ---, m,} be a subsequence of {0, ---, N — 1}.
Then, by Theorem 14, {cos(2a,)”'a,x}; is a T-system on [0, x), and
therefore {cost, x}; is a T-system on [0, (2a,)"'7) and hence on
[0, z]. Redefine f, for = > =, as X%, f¥9(x)(x — n)//j! and observe
that now f®* >0 on (0, ) for k=0,1, ---, N. By Lemma 16,
{cosay)'a,®, - - -, cos2ay) ', 2, f((2a,) @)} is a T-system on [0, 7),
and therefore {cos a,, x, - - -, cos 0, @, f(x)} is a T-system on [0, (2a,) ')
and hence on [0, z]. We can use now Theorem 1 to obtain (11),
observing (as in the proof of Theorem 4) that if » = 1, our posi-
tivity hypothesis on f suffices for our purpose.

ExAMPLE. Let 0 Zay , <y, < a,<1/2,1 <n < N,n and
M(=2N) integers. If 0sm<-.--<m, <N are integers,
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{mlymb "'9mn}${N_'n,N—'n+1,"‘,N—l} and 1§p§ oo,
then

. N—1 . n |
mim ||z¥ — >, c¢,co8 a,x < min||z” — 3 ¢, cos amkwl .
¢y, real k=N-n LP(0,7) ¢y real k=1 LP(0,x)
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