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TCHEBYCHEFF SYSTEMS AND BEST PARTIAL BASES

OVED SHISHA

This is a contribution to the partial basis problem and,
in particular, to the case where the basis elements are cosigns
or consecutive powers cosines. We contribute also to the
general theory of Tchebycheff systems to which the partial
basis problem is strongly related.

l Introduction* The partial basis problem was formulated
and studied by J. T. Lewis, D. W. Tufts and the author in 1975 in
connection with their study of optimization of multichannel pro-
cessing. Let X be a normed linear space, let f,huh2, ---,hNeX
and let n be an integer, 1 <; n < N. For every sequence μ — {μk}?
of integers, with 1 <; μx < μ2 < μ% <̂  N, consider

e(μ) = min

where the minimum is taken over all possible choices of the scalars
cu -- ,cn. The problem is to minimize e{μ). It is of particular
interest when X is one of the standard function spaces.

Subsequently, progress has been made both in theory and in
the computational aspect. An algorithm, numerical examples and
some theoretical results have been given by K. M. Levasseur and
J. T. Lewis in [6]. G. G. Lorentz [5] has observed that, for X—
L2(0, 1), hk the function xk~\k = 1, 2, , N) and / the function xN,
e(μ) is minimized by μ — {N — n + 1, N — n + 2, , N} and con-
jectured the same to be true for X = C[0, 1]. This was proved by
I. Borosh, C. K. Chui and P. W. Smith [1, Theorem 1].

In Theorem 4 below we give a sufficient condition for a real
function /, continuous on [α, 6](0 < a < b < oo), that e(μ) be minim-
ized (only) by μ = {N - n + 1, N - n + 2, , N), where X = Lp(a, 6),
1 ^ P ^ °° and hk is the function xk~\k = 1, 2, , N). For such
a function / (with a — 0, b = π)f Theorem 17 gives such a sufficient
condition with the same X, where each hk is a function of the form
cos ax.

In proving Theorems 4 and 17 we use Theorem 1 which, together
with Lemma 2, is due to A. Pinkus. The author is very grateful
to him for that as well as for other valuable remarks. Cf. also
[8, §3].

The partial basis problem turns out to be very much interrelat-
ed with the theory of Tchebycheff systems and this paper is a con-
tribution to both. Thus in Theorem 8 we characterize certain tri-
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gonometric sequences which are extended complete Tchebycheff
systems. Lemmas 9-13 are used later: they are quite straight-
forward and are stated with their proof mainly for the convenience
of the reader. We then state and prove Theorem 14 (used later)
though much of it is known [2, Example 7, p. 42; it should read
there T = (0, τ), not T = [0, τ)]. A previous work in the same
direction is [7], whose starting point was a conjecture made by L.
Collatz in an Oberwolfach conference.

Some of the development in §4, and in particular Lemma 16, is
due to R. A. Zalik. His help and interest are greatly appreciated.

Let I be a real interval and flf f2, ••-,/„ real functions defined
on I. The sequence {fu •••,/»} is called a Tchebycheff system or a
T-system on I iff whenever x1 < x2 < < xn and all xk e /, the de-
terminant of the n x n matrix whose fcth row (fc = 1, 2, , n) is
Λ0*α) fkiPύ' 'fkfan) ίs >0. The sequence is called a complete Tche-
bycheff system or a CT-system on I iff {fu , fk) is a T-system on
/ for k = 1, 2, , n. This is the case, e.g., if I = (0, ©o) and
fk(x) = χ*k where λ x<λ 2< <Xn [4, p. 9]. Suppose each fh e Cn~\I).
Then {fu •••,/»} is called an extended complete Tchebycheff system
or an ECT-system on I iff, for k = 1, 2, , %, the following pro-
perty holds. If x1 ^ #2 ̂  <̂  xk and if as,- e / for j = 1, 2, •••,&,
then the determinant of the k x k matrix whose j t h row
(j = 1, 2, , fc) is /Γ r i )fe) /Γr2)fe) fΓrk)(xk) is >0. For
i = 1, 2, ••-,&, we denote by r̂  the smallest integer r for which
a?r = xd.

Finally, many thanks are due to the referee for his helpful
suggestions.

2* A general result concerning best partial bases*

THEOREM 1. Let

( 1 ) Jθ9 Jit ' ' * > JN-lf J

be real functions on [α, 6] (— °° < a < 6 < °°) and ϊeί w δe an
integer, 1 ̂  n < N. Let εn, εn+1 be each 1 or —1 and suppose that,
for k = n, n + 1, everi/ subsequence of (1) o/ length k, after multi-
plying its last element by sk, becomes a T-system on [a, &]. Let
0 ^ λx < λ2 <Xn < N be integers, {κu λ2, , λ J ^ {iV — n, N —
n + 1, , N — 1}. Lei 1 ̂  p ^ °° and let fQ, fl9 , /^_i, / 6e ccm-
tinuous on [a, &].

mm
cΛ real

N-ί

f- Σ < min
LP(a,b) ck real

/

We shall need for the proof the following
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LEMMA 2. Assume the first two sentences of Theorem 1. Let
0 <Ξ λj < λ2 < λw < N and j be integers, 1 ^ j sΞ n. Assume
that if j < n, then λy + 1 < λi+1, while if j = n, then X3- + 1 < N.
L e t a < * j < Λjj < *» < δ, * 6 [a, b] — {xlf ••-,#„} a m i s e ί

( 2 )

• /(«.)

Let <£>' be obtained from ω by replacing λ, by Xj + 1.
\ω'\<\ω\.

Proof of Theorem 1. Let / — / — Σ£= 1 c*/^, the ct being real
constants satisfying .||/||LP(β,5> = minCA; r e a l | | / - ^l^ckfh\\Lv{ath). It is
known that there are xί < x2 < xnf all in (a, b), at which /
vanishes. The right hand side of (2) is of the same form as / and
vanishes at xu , xn, hence it is=/. By repeated use of Lemma 2,
for every x e [a, b] — {xu , xn},

!/(*)!>

fix,)

and so, ||/|Up(β,5) is larger than the Lp(α, 6) norm of the last ratio,
which in turn is ^minc/,reai | |/ - Σ L 1 - . okfk\\LPUtb).

Proof of Lemma 2. For deίiniteness assume 1 < j < n. Then
( — l)n(ω — ωf) is a ratio whose numerator is

fxi+ι(ίB.)

/..(*)
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•A.GO

/.,(*)

fxi+ι(x.)

fφj

and whose denominator is

AGO

AGO

By a determinant identity [3, (0.19), p. 8] the numerator equals

Hence, ω — α)' is a ratio whose denominator is as above and whose
numerator is

flXXl)

fxi-Xxd fi,-Xx.)

fxi+X%i) fxί+Xx»)

•f(χ«)

• fh(χ.) fιXχ)

AGO ΛXx)
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Let σ be n, 0 or r if, respectively, x < χlf x > xn or xn_r < x <
a?Λ+1_r(l ^ r < n). Then sgn(ω — ω') = enεn+1(—ΐ)σ = sgn ω = sgn <*>'.
Hence |Λ>'| <

3* On best partial power bases* Our main result here is
Theorem 4 which will follow immediately from

THEOREM 3. Let 0 < a < b < °o and let N, n be integers,
1 <; w < N. Let f be a real function, continuous in [a, b] and as-
sume that, for k = 0, 1, , n, (xk~Nf){k) exists and is ^0 in (a, b),
with strict inequality there for k — n. Let 0 rg \ < λ2 < Xn < N
be integers. Then {xh, x*2, , xλn, /} is α T-system on [a, b].

THEOREM 4. Assume the hypotheses of Theorem 3 and also that

N-n + l,- ,N-l}. Let l^p<, oo. Then

mm
ck real

- Σ okx
k

< min
LV{a,b) cereal

- Σ
11,^(0,6)

Proof of Theorem 4. Set fk(x) Ξ a?*, A; = 0, 1, , JV - 1, and
observe that every subsequence of /0, /x, , fN_x is a Γ-system on
[α, 6]. If n > 1, then the first two sentences of Theorem 1 hold,
with en = 6n+1 = 1. Hence, by that theorem, the result. Examining
the proofs of Theorem 1 and Lemma 2, we see that if n = 1, we
do not need for the conclusion of Theorem 4 the hypothesis / > 0
on [a, b] but merely our hypothesis / > 0 on (α, 6).

To prove Theorem 3 we need

LEMMA 5. Let f be a real function, r a real number and s an
integer ^0 . Suppose, at some x > 0, / ( s ) exists. Then, at that x,

(xrf){s) = a? (xr"1-kf)ι''-k) .

Proof of Theorem 3. Let a ^ t, < t2 <
we have proved that

< tn+1 <̂  b. Suppose

ΛQ f(tn+1)

Φ 0 .

For every t 6 [0, 1], tf{x) + (1 — t)xN satisfies the hypotheses made
on /. Hence Δ{tf{x) + (1 - t)xN) is either >0 for all t e [0, 1] or <0
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there. Since Δ(xN) > 0, also Δ(f) > 0. Let cl9 , cn+1 be reals not
all 0. Suppose (ΣE=i <*&Xk) + Cn+if(%) vanished at n + 1 points of
[α, 6], We shall reach a contradiction which will prove the theorem.
For j = 1,2, --,n, let

(meaning {x~hf(x))r if i = 1). Using induction on j, one readily
shows by Rollers theorem that, for j = 1,2, — ,n,

Σ
ii

) J

where the Σ means 0 if j = n, vanishes at some w + 1 — j points
of (α, 6). In particular, since cn+1 Φ 0, 5fw must vanish somewhere in
(α, 6). We shall reach the desired contradiction by showing that
gn > 0 throughout (a, 6). This, in turn, follows from the fact that,
for k = 1, 2, , n, (*) throughout (α, 6),

Λ ( ) ^ j / )

where cktj are constants ^ 0 and ckf0 — 1.
Now (*) holds for fc = 1, since on (α, 6),

(aΓ V ) ' = (a?^"""'1^"^/))' = a?y" ";i[(» " Λ r /) / + (N - n - X^x%-N~lf] .

Suppose it holds for some k, 1 ^ k <. n. Then throughout (α, 6), by
Lemma 5,

Λ-λJfc+1 + fc)ΣcJk.i Σ ( p - l - i )

which establishes (*) for k + 1 and completes the proof of the
theorem.

Proof of Lemma 5. We may assume s ^ 1. For 0 <̂  n <; s — 1,

(**) (α-/)< > = Γ a? g

if
W + 1

Indeed, for ^ = 0, (**) reduces to

(***) (xrf)(s) = x{xr-xf){s)
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) holds for some n, 0 ^ n < s — 1, (***)which is true. Assuming (**
yields

(xrf)w = xΣ, k\
ft=o

+ (n + 1)!
U + 1

*+i / S

fc=o \ k

Take now, in (**),

,(s-ft)

= s — 1.

15 + (s — n —

+ 2)! β-Λ-2)

REMARKS 6. Theorem 1 continues to hold if [a, b] is replaced
by (α, Z>), 1 ^ p <£ oo by 1 ^ p < oo, and if /0, , /^.x, / belong to
Lp(a, b). Similarly, Theorem 4 continues to hold i f 0 < α < 6 < c o
is replaced b y 0 ^ α < 6 < o o ? l ^ p ^ o o by 1 ^ p < oo, and "con-
tinuous in [α, 6]" by "in Lp(α, 6)." As to the case a = 0, p = oo, we
have the following result: Let 0 < b < oo and let JV, w be integers,
1 <* n < N. Let / be a real function, continuous in [0, 6], with
/(0) = 0 and assume that, for k = 0, 1, , n, (xk~Nf){k) exists and is
^ 0 in (0, b) with strict inequality there for k — n — 1, n. Let
0 ^ \ < λ2 < Xn < N be integers, {λ^ λ2, , Xn} Φ {N — n,
N-n + 1, •••, J V - 1}. Then

mm max
c^ real O â ̂ δ

/(*)- Σ
kN

ckx
κ

< min max
C£ real 0^a;^6

Finally, Theorem 3 continues to hold if a = 0, in case λx = 0.

4* Trigonometric Tchebychefϊ systems and partial bases*

THEOREM 7 [4, p. 376]. Le£ — oo<α<6<oo and let uQ, uu , un

be real functions in Cn[a, b]. Then {uk}% is an ECT-system on [α, 6]
iff, for each k = 0, 1, , n and each x e [a, b],

uQ(x) uΌ(x) u{

o

k\x)

W(u . . . 77 )M - U l ( x ) u ^ u'k)W

•
•

uk(x) uk(x) uk

k)(x)
In what follows we shall use the following fact. Let α0,

(n ^ 1) be reals and consider the matrix
/I α0 α? \( 3 )
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By adding to the last column a suitable linear combination of
the previous ones, we can obtain the matrix

πn-l

( 4 )

0
0

\

:ί 0
n—l

—1 TΓT / \

II ( a — a»)
3'=0

THEOREM 8. Let 0 < α0 < aγ < αn(w ^ 0). A necessary and
sufficient condition that

, ( —l)*cos αw#, ( — l)*sin anxcos aQx, sin αo#, —cos α̂ cc, —sin aλx

be an ECT-system on [0, π] is an < 1/2.

Proof, Necessity. If α0 ^ 1/2, then π/(2a0) e (0, TΓ], COS ao(π/
(2α0)) = 0, contradicting our hypothesis. Thus we can assume n > 0.
For k = 1, 2, , w, consider the differential equation [Πi=o £)2 +
α|]τ/ = 0 having the linearly independent solutions cos aox, sin aox, ,
( — l)fc"~1cos otk-1%, ( — l^^sin αfc_!X and the (never vanishing in (— °°, °°))
Wronskian

C O S <

sin aox

- cos α ^

— aQ sm αoίc ( — ΐ) a0 si

α 0 cos αoα? ( — I) f c"1αf~1cc

ax sin α ^ ( — l ^ ^ α p ^ s i n <

{ — l)k xcos αjb.iίc

( — l ^ s i n ak_γx

-afs,1 sin

fji1 cos

By Theorem 7, Uk(x) > 0 on [0, π] where Uk(x) is the determinent
of the (2k + 1) x (2fc + 1) matrix whose (2j + l)th row (j = 0, 1, , fc)
is (— 1)J* times the row cos α^ x — aά sin αya; — a) cos α ^ (— a})k cos aάx
and whose (2j + 2)th row (j = 0, 1, , fc — 1) is ( — I)5' times the row
sin aόx a3- cos aάx — a) sin aάx (— af)k sin αj x.

By performing on the odd (1st, 3rd, •••) columns of the last
matrix, operations similar to those transforming (3) into (4), we
obtain that
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(5

=

) Uk{x)
cos aox

sin aox

— cos axx

— sin aλx

( —l)^"1 cos c

. ( - l )*α

•(-I)*"1

•(-I)*'1

. (-l)*α

xk_xx -

( — I)*" 1 sin ak_xx

( —l)fccos akx

f 1 sin aox

af"1 cos aox
a2k-i s j n a ^ χ

I16'1 c o s axx

— at~i sin α^..^

at-i cos αfc_!X

α?" 1 sin akx

0

0

0

0

0

0

a

Π
3=0

where a = (-l)\cosakx) Π*=ί(αy - «*)•
Thus, cosαfeα? has to be ^ 0 on [0, π] and hence

particular, α n < 1/2.

< 1/2, and in

Sufficiency. For 1 ̂  A; ̂  w consider again

Wk(x) =

cos
sin

— α0 sm aQx

a0 cos

(-αS)*(-α 0 sin αoa?)

( — al)k(a0 cos aox)

— ΐ)kcosakx ( —l)fc

— l)k sin α^x (— l)kak cos (-al)\(-l)kakcosakx)

By performing on the even (2nd, 4th, •••) columns of the last
matrix operations similar to those transforming (3) into (4), we
obtain that

Wk(x) =

cos aox

sin aox

• (—l)kaf cos aox

• ( — ΐ)kalk sin aox

0

0

— l)k cosakx

fci akx

af cos

• at sin

0
0

fc-1

( — l ) f c α f c ( c o s α Λ α ? ) Π (OL) — (

Therefore Wk(0) = Uk(0)ak ΠJ=J (αi - αj) and by (5),

sgn Wk(0) = sgn Wk^(0) .

As W0(ίc) = &o > 0, we have, using (5), that Wjb(a?) and Uk(x) are > 0
on [0,7r]. By Theorem 7 the desired conclusion follows.

LEMMA 9. Let — o o < α < δ < o o and let yu y2, , yn be real
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functions defined on (α, 6) and Lebesgue integrable on each (a, x),
a < x < δ. Suppose each yk e Cn~\a, b) and that {yk}l is an ECT-
system on {a, b). Then so is {zfe}?, where

(6) zk(x) = [' yk(t)dt; k = l,2, ---,n;a <x <b .
Ja

Proof. Follows from Theorem 7, as for such k ^ 2 and for
x 6 (α, 6),

W(zly . . ,

Vi(t)

> 0 .

LEMMA 10. Assume the first two sentences of Lemma 9 and let

( 7 ) zk(x) = ck + l yk(t)dt; ck real constants; k = 1, 2, ••-, n, a^x <b .

Ja

Then {1, ̂ (α?), , «»(»)} is cm EGT-system on (α, 6).

Proo/. For fc = 1, 2, , n and α < a? < δ,
1 0

zx(x)

zk{x)

0

. z[k\x)

LEMMA 11. Assume the first sentence of Lemma 9 and suppose
{Vk)ι is a T-system on (a, δ). Then with (6), so is {zk}?.

Proof. We may assume n > 1. Let a < ^ < t2
< £Λ < δ.

Then

«.(*.)
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a J*

Vn{s1)ds1 \ 2yn(s2)ds2

S h
yi(s2)ds2

Vn(sn)d

Vi(sn)dsn

S h

= ΓΓ-Γ

"L1

dsn ds1 > 0

LEMMA 12. Assume the first sentence of Lemma 11. Then,
with (7), {1, 2X, , zn) is a T-system on [α, 6).

Proof. Let a £ tx < t2 < < tn+1 < b. Then

1 1 1 1 0 0

ί iy1(x1)dxί [ *yί{x2)dx2 \ ^

V»(a?i)da?i \ 3yn

ti Jί2

\ n+1y»

Ch f*»4
dxn dxλ > 0

LEMMA 13. Let — o o < α < 6 < c o α^ώ let u, u0, , un(n ^ 0) δβ

real functions in Cn[a, b] such that {uk}% is an ECT-system on [α, 6]
and u > 0 there. Then {uuk}o is an ECT-system on [α, δ].

Proof. By an identity for Wronskians and by Theorem 7, as
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on [a, b], for k = 0, 1, , n, W(uu0, , uuk) = uk+1W(u09 ulf

the result follows.

THEOREM 14. Let 0 ^ an < < a0. The following statements
are equivalent: (a) α0 ̂  1/2. (b) {cos amkx}l is a T-system on [0, π)
for every subsequence {mu •• , m , } o / {0, ••-,%}. (c) {cos αfc#}<? i s an
ECT-system on (0, TΓ) and a CT-system on [0, TΓ).

Proof, (a) ==> (c). True for n = 0. Suppose true for some
w — 1 ^ 0. So {cos αfcx}Γ is an JJCΓ-system on (0, TΓ) and a CΓ-system
on [0, TΓ). Set

( 8 ) 2/fc(#) = (̂ o — «l)cos αox cos akx , fc = 1, 2, , n .

Then {τ/fc}Γ is a CT-system on [0, π) and an .E/CΓ-system on (0, π).
For fc = 1, 2, •••, w, let

( 9 ) zk(x) = a0 sin aox cos α^x — αfc cos aox sin αfcx

so that

(10) z&x) = yk(x); zk(x)

= cos2α0#[(cos α*ίc)/cos αox]' , 0 < cc < TΓ .= \
Jo

By Lemma 9, {«fc}Γ is an ECT-system on (0, π) and, in particular,
it is a CΓ-system there. By (10) and Lemma 13, {[(cos akx)/cos aox]'}k=i
is an ECT-system on (0, TΓ). By Lemmas 10 and 12, {1, (cos a±x)/
cos aox, , (cos anx)/cos aox} is an jEϋT-system on (0, TΓ) and a
CΓ-system on [0, TΓ). Hence {cos akx}% is an iJCT-system on (0, TΓ)
and a CΓ-system on [0, TΓ).

Clearly, now, (a) => (b). Trivially (b) and likewise (c), implies
(a) for if {cos aQx} is a Γ-system on [0, TΓ), a0 must be r̂

LEMMA 15. Let 0 ^ an < an_x < a0 <̂  1/2. Lei y be a real
function with y{2n) continuous in [0, TΓ); ^""""(O) = 0, k = 1, 2, , n
(i/ ^ > 0), and suppose (cos ^ ^ " ^ Π ^ o 1 L)2 + αl]i/ (meaning (cos αo^)"1^/
ifn = 0) is strictly increasing on (0, TΓ) (hence on [0, TΓ)). Γfeew
{cosα0x, •••, cosanx, y) is a T-system on [0, TΓ).

Proof, True for n = 0. Suppose true for some w — 1 ^ 0.
Applying it to alf -—,an and to y" + a\y9 we obtain that
{cos otiX, , cos anx, y" + α^} is a Γ-system on [0, TΓ). Hence, with
(8), so is {yu --,yn, (y" + aly)zos aox}. Let, on [0, TΓ), zn+1(x) =

aoy sin aox + yr cos αox. We have there, z'n+1(x) = (?/" + α ^ c o s αox,
(?/" + a2

0y)cos aoxdx. Hence, with (9), we have by (10)
0
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and Lemma 11 that {zk}ΐ+1 is a T-system on (0, π). By (10) and the
fact that [yjcos aox]' = (co$~2a0x)zn+1(x), 0 < x < π, so is {[(cos aλx)l
cos aQx\', , [(cos anx)/cos aox\', [?//cos aox]'}. By Lemma 12, {1, (cos axx)l
cos αo#, , (cos anx)lzo$ αo#, ?//cos αo#} is a T-system on [0, π). Hence
so is {cos aox, cos axx, , cos α%#, y}.

LEMMA 16. Let 0 ^ an < an_λ <ao<*l/2(n ^ 0). Let y be a
real function with y{2k+1)(Q) = 0, k = 0, 1, , w; τ/(2w+1) continuous at
0 from the right and y{2k) > 0 on (0, π), /or & = 0, 1, , n + 1.
Then, for every subsequence {mly m2, , m j o/ {0, 1, , n},
{cosamix, •••, cos αmsx, ?/} is α T-system on [0, TΓ).

Proof. Consider [ΠCί -O2 + amk]y (meaning y if 8 = 1) =
Σϊ=o a<kDzky; all ak are ^ 0 , as_λ = 1. By Lemma 15, it is enough to
show that, for k = 0, 1, , s — 1, zk(x) = (cos ocmxY1y[m is strictly
increasing on (0, TΓ). But there,

zk(χ) = cos" 2 ams#[7/(2fc+1)(#)cos ^m&.^ + ^m82/(2fe)(^) sin amx\ > 0 .

THEOREM 17. Let 0 ^ α^.x < aN_2 < a0 < 1/2

1 ^ ^ < N, n an integer. Let f be a real function with f(2k+u(β) = 0,
k = 0, 1, , N - 1, <md /(2fc)(x) > 0 on (0, π] /or k = 0, 1, , JV.
Assume f{2N~1](x) is continuous from the right at 0. Lei
0 ^ mt < m2 <mn < N be integers, {mu m2, , mn) Φ {N — n,
N - n + 1, , N - 1}. Lei 1 ^ p ^ oo. Then

(11) min
c/c real

N-l

— Σ c^cos
k=N-n lLP(0,π)

< min
cu real

~ Σ f̂cCos amjx
Λ=l LP(0,z)

Proof. Let {mlf , ms} be a subsequence of {0, , N — 1}.
Then, by Theorem 14, {cos(2aQ)~1amkx}l is a Γ-system on [0, π), and
therefore {cos amix}{ is a Γ-system on [0, (2αo)~

17r) and hence on
[0, π\. Redefine /, for x > π, as Σ ΐo / ( i ) (π)O - τr)Vi! and observe
that now /(2fc) > 0 on (0, oo) for k = 0, 1, , N. By Lemma 16,
{cos(2α0)-1αmiα;, - - , cos(2α0)-1αWsx, /((2αo)"1ί»)} is a T-system on [0, π),
and therefore {cos αmia?, , cos amx, f(x)} is a jΓ-system on [0, (2α0)""1^)
and hence on [0, π]. We can use now Theorem 1 to obtain (11),
observing (as in the proof of Theorem 4) that if n = 1, our posi-
tivity hypothesis on / suffices for our purpose.

EXAMPLE. Let 0 <: αyV_1 < aN_2 < a0 < 1/2, 1 <: n < N, n and

integers. If 0 ^ m1 < < mn < N are integers,
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{mlf m2, , m j Φ {N — n, N — n + 1, , N — 1} and 1 <: p
then

mim
Cfc rea l

J V - 1

- Σ < mm
LP(0,τr) c f c rea l
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