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DIFFERENTIAL SYSTEMS WITH IMPULSIVE
PERTURBATIONS

S. G. PANDIT

Properties of solutions of measure differential equa-
tions are investigated with emphasis on the impulses. A
variation of parameters formula, expressing solutions of
nonlinear measure differential system in terms of the solu-
tion of linear measure differential system and the strength
of the impulses, is developed and a result on the asympto-
tic stability is established.

1* Introduction* Measure differential equations have been
investigated by Das and Sharma [3], Leela [4, 5], Raghavendra and
Rao [6] and Schmaedeke [7], among others. These equations provide
good models for many a physical and biological system. The fact
that their solutions are discontinuous renders the conventional
methods of ordinary differential equations unapplicable, and thus
their study becomes interesting. In [3-6], the equation

(1.1) Dx = F(t, x) + G(ί, x)Du

is studied as an impulsively perturbed system of the ordinary
differential equation

x' = F(t, x)
dt

In [7], it is investigated from the view point of optimal control
theory, that is, G is assumed to be independent of x. In this paper,
we are concerned with the system

(1.2) Dx = f(t, x) + AxDu + g(t, x)Du ,

which is treated as a perturbed system of the linear system

(1.3) Dx = AxDu .

This gives a more clear picture of the effect of impulses on the
behavior of solutions. Deviations from the conventional theory,
which are obviously expected, are noted in particular.

Theorem 2.1 indicates the possible abrupt behavior of solutions
of (1.3) at the points of discontinuity of u (see also Remark 2.3
and Example 3.1). Theorem 3.1 is a "variation of parameters
formula" for the system (1.2). Using Theorem 3.1 and an auxilliary
result (Lemma 2.1), we obtain in Theorem 3.2, asymptotic stability
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of the null solution of (1.2), employing the techniques of Brauer
[1] and Strauss and Yorke [8]. When the impulses cease to act,
that is when u is an absolutely continuous function, our results
reduce to the corresponding ones known for ordinary differential
equations [2].

2* Preliminaries and basic results* Let J — [t0, °o), t0 ^ 0 and
Rn denote the ^-Euclidean space with any convinient norm | |. The
same symbol will be used to denote the norm of an n by n matrix.
Consider (1.2) where xeRn, A is an n by n matrix, u:J-+R is a
right-continuous function of bounded variation on every compact
sub-interval of J, f:JxRn-^Rn is Lebesgue integrable, g:JxRn->Rn

is integrable with respect to the Lebesgue-Stieltjes measure du
and Dx, Du denote the distributional derivatives of x and u re-
spectively.

A function x(t) = x(t, t0, x0) is a solution of (1.2) on J if and
only if it satisfies the integral equation

(2.1) x(t) = Xo + [* f(s, x(s))ds + Γ [Ax(s) + g(s, x(s))]du(s) .

For the proof of this and for the definition of solution of (1.2),
along with other relevent details, see [3].

REMARK 2.1. In equation (1.2), f(t, x) + AxDu + git, x)Du is
identified with the derivative (in the sense of distributions) of

f(s, x(s))ds + Γ [Ax(s) + g(s, x(s))]du(s) .

When u is an absolutely continuous function, it has the identifica-
tion f(t, x) + [Ax + g(t, x)]u', where u' is the ordinary derivative
(which exists a.e. on J) of u. In particular, if u' Ξ 1, (1.2) reduces
to the conventional system x' = f(t, x) + Ax + g(t, x).

Let tλ < t2 < denote the discontinuities of u such that ί 1>ί 0

and tk —» oo as k —> oo. Suppose further that these discontinuities
are isolated. Throughout this paper, except in Lemma 2.1 (in which
u may be any function of bounded variation), we assume that u
has the form

(2.2) u(t) = t + Σ αA(«); Hk{t) = \°' l I ^
k=1 (1, for t ^ tk

where ak are real numbers. Generally, a right-continuous function
of bounded variation contains an absolutely continuous part and a
singular part. The latter usually resembles ^ΣS^akHk{t) when the
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discontinuities (which are obviously countable) are isolated. The
above assumption is thus reasonable. Moreover, in this case, the
predominent effect of the impulses can be visualized. It follows
from (2.2) that

where δ(tk) is the Dirac measure concentrated at tk. Note that
vf = 1 a.e. on /. For any t e J, it is clear that there is a unique
integer k ^ 1 such that t e [tk_u tk).

Let Bk — E — akA, k = 1, 2, where E is the identity n by
n matrix. From the assumptions on u, it is easy to establish the
following.

THEOREM 2.1. Let Bk be nonsingular for each k = 1,2 .
Then, for t e [tk_u tk) and any x0 e Rn, the {unique) solution x(t) =
x(t, t0, x0) of (1.3) is given by

(2.3)

(Here the product Πί=ί is to be understood as E if k — 1.)

REMARK 2.2. If ak = 0 for all k, then Bk(=E) is clearly
invertible. In this case, (2.3) reduces to x(t) — e{t~to)Λxo, which
obviously solves xf = Ax. On the other hand, if ak Φ 0 for some
k, then a sufficient condition for Bk to be invertible is that ak

ι is
not an eigenvalue of A.

REMARK 2.3. Suppose ai1 is an eigenvalue of A for some k.
Then, in general, the solution x(t) of (1.3) does not exist at t — tk.
If x0 = 0, then x(t) is arbitrarily determined at t = tk.

We need the following lemma which is similar to Lemma 2 in
[1] or Lemma 3.6 in [8], when u is an absolutely continuous func-
tion.

LEMMA [2.1. Let u be a scalar function of bounded variation
on [t0, T] and let v denote the total variation function of u. Sup-
pose that r and p are non-negative, scalar functions such that r is
integrable and p is dv-integrable on [t0, T]. Then, for any positive
constants c and M, the inequality

(2.4) r(t) ^c+[t Mr(s)ds + Γ p(s)dv(s), t e [ί0, T]
j ί 0 Jί0

implies
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(2.5) r(t) ^ ce™-**' + Γ eM«-8)p(s)dv(s), t e [t0, T] .

Proof. Clearly, r(t) ^ y(t), where y(t) is the maximal solution
of the integral equation

(2.6) y(t) = c+\* My(s)ds + Γ p(s)dv(s), t e [ί0, Γ] .

Therefore, it is enough to show that any solution of (2.6) satisfies
the inequality

(2.7) y(t) < (c + d)eM{t~to) + Γ eM(ί-s)^(s)dt;(s) = z(t)
Jί0

for ί 6 [t0, T] and for every d > 0. This will obviously follow if we
show that z(t) in (2.7) is a solution of the equation

(2.8) z(t) = (c + S) + Γ ilf^(s)ds + Γ

Here, for the right hand side of (2.8), we obtain

(c + δ) + Γikfφ)ds + [ p(s)dv(s)

(2.9) =(c + δ)+ Γ M(c+ δje'^-^dβ + Γ ikfê 8 f(8 e-
J*o J<o ^J fo

S i

p(s)dv(s) .

Denote the first two integrals on the right hand side of (2.9) by / '
and 7" respectively. Then

(2.10) Γ = (c + 8)eMW - (c + δ) ,

and, integration by parts yields

1" = Γ \[ e-Mτp(τ)dv(τ)d(eMs)
Jί0 U ί 0

(2.11) = Γ eM ( t-8 )i)(s)^(s) - Γ

= [ eMlt~s)p(s)dv(s) -

From (2.9)-(2.11), it follows that the equation (2.8) reduces to
identity, which of course, was our objective. This completes the
proof of the lemma.

3* Variation of parameters formula and a stability result*
It is well known that an important technique in obtaining the
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qualitative properties of solutions of linear and nonlinear ordinary
differential equations under perturbations, is through the use of
the variation of parameters formula. The theorem that follows
gives an analytic expression for solutions of (1.2) in terms of solu-
tion of (1.3) and the strength of the impulses ak. In the absence
of the impulses, the result reduces to the well known formula for
ordinary differential equations [2].

THEOREM 3.1. Let the conditions of Theorem 2.1 hold. Then,
for t e [tk_lt tk), any solution y(t) — y(t, tQ, xQ) of (1.2) is given by

y(t) = x(t) + [ e{t-s)Af(s, y{s))ds + Γ e{t-s)Ag(s, y{s))du{s)

+ e" Σ at( Π BϊlΛA(It + Jt)
1 = 1 \ j = l /

where x(t) is given by (2.3) and

I. = (V s Y(s, y(s))ds; J, = \he~sAg(s, y(s))du(s), 1 £ i ^ k - 1 .

Proof. Since u(t) = t for t e [ί0, tx), we have

y(t) = e{t~^AxQ + [ e{t-s)Af(s, y(s))ds
(3.2) f 7

+ e{t~s)Ag(s, y(s))du(s), t e [tQ, tx) .
Jίo

At t = ίlf (2.1) gives

y(«i) = »(*i - λ) + Γ1 /(β, y(s))ds
(3.3) ;;

I [Ay(s) + g(s, y(s))]du(s)

where h > 0. Letting h —» 0+ and using the fact that

lim i ι f(s, y{s))ds = 0 ,

we obtain from (3.2) and (3.3),

l/(ίi) - ^ 4

(3.4)
AiQ +

Now,

» + a!fif(i1;
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Therefore, in view of the facts that Bλ is inverticle, and Br1 and
ehA commute with each other, (3.4) yields

( ' } = x(tx) + e'Uft + Jx + a

For ί 6 [*!, ί2), we know that

y(t) = ev-wyfo) + ( V - u / ( * , ί/(s))ώs

+ [ e{t-s)Ag(s,y(s))du(s) ,
J*i

where ^(ίj is determined by (3.5). Thus

y(t) = x(t) + Γe(*"βM/(β, y(8))d* + Γe ( ί" s )^(s, y(s))du(s)

+ JJ, t e [tl912) .

As above, it can be shown that

+ g α<( ΠΠ

In general, for t e [tk-lf tk), (3.1) follows by induction, completing
the proof of the theorem.

Assume the following hypothesis:
(HJ given any ε > 0, there exist δ(e) > 0 and T(ε) > t0 such that

|/(ί, a?) I ̂  ε I a? I, for \x\ ^ δ(ε) and t ^ Γ(ε)

(H2) g satisfies

\g(t, x)\ ^ p(t), for t ^ ί0 and \x\^r, r > 0

where p is a dv-vntegrable (v(t) is the total variation function of
u(t) on [ί0, ί], teJ) function such that

(3.6) \~p(s)dv(s) < oo ;

(H3) there exist constants P and Q such that

and Σlα.A

are bounded by P and Q respectively, as k -
Note that, for each c > 0, (3.6) implies

(3.7) lim β"β'Γ ββ p(β)dt;(8) = 0 .
ί->oo J ί 0
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THEOREM 3.2. Let (H^-ίHa) hold. Suppose that all the charac-
teristic roots of A have negative real parts. Then, under the
conditions of Theorem 3.1, there exist To and δ > 0 such that for
every t0 ^ To and x0 with \xo\ < δ, any solution y(t) = y(t, t09 a?α) of
(1.2) satisfies |#(ί)|—>0 as t—>oo. In particular, if (1.2) possesses
the null solution, then it is asymptotically stable.

Proof. Let te J be arbitrary. Then there is an index k such
that t e [ίfc_i, tk). Since all the characteristic roots of A have negative
real parts, there are positive constants K and a such that \etA\ ^
Ke'a\ for all t > 0. Let 0 < ε < min (αΛT1, r), where M = K(Q+ΐ).
By (HJ, choose T(ε) and <5(ε) so that T(ε) > t0 and 5(s) ^ ε. Select
To ̂  Γ(e) so large that (by (3.7)),

[* e-{a-MεHt-s)p(s)dv(s) < (2M)~1δ(ε), for t ^ To .

Let δ~(2PK)~1δ(e)} and consider any to^To and x0 satisfying \xo\<δ.
From (2.3), (3.1) and the conditions of the theorem, we then have

\y(t)\ <: PKδe a(t *o} + I Mεe a[t s) \y(s)\ds

+ Γ Me-a{t-s)p(s)dv(s) ,
Jί 0

as long as \y(t)\ < δ(ε). By Lemma 2.1, this gives

\y(t)\ S PKδe-{a-m){t-^ + M[e~{a-Mε){t-s)p(s)dv(s) ,

from which the conclusion of the theorem follows in the usual way
(see [1, 8]).

Theorem 3.2 remains valid if the condition (3.6) in (H2) is
replaced by a more general condition

S ί+l
p(s)dv(s) as t

EXAMPLE 3.1. Let J = [0, c^). Consider the system (1.3) where

"2 5~
x —

A Λ

and A = 0 2

Let tk = k and ak = k 1 for k — 1, 2, . Then α̂ "1 is an eigenvalue

of A but ar1 is not. Choose x0 = \ + L It can be verified that the

solution of (1.3) through (0, x0) on the interval [0, 2) is given by
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5te2t,

5(1 - t)ι

0

S. G. PANDIT

^ ί < 1
^ t < 2 ' ~ [-e2/

0

• 1
^ ί

^ t

<

<

1

2

However, α?(ί) does not exist at £ = 2. If we choose x0 = L I then

a?(ί)= Q for 0^£<2, whereas x(2)= K , c an arbitrary constant.

EXAMPLE 3.2. Let J = [1, oo). Choose A = —1, tfc = & and αfc =
2(&3 - I)" 1 for fc = 2, 3, . Then the hypothesis (H3) is satisfied.
Indeed, we have

= Π (1 - + = 2/3

and

fc=2
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