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FINITE HEREDITARY NEAR-RING-SEMIGROUPS

PATRICIA JONES AND STEVE LIGH

We generalize the concept of a ring-semigroup to that
of a near-ring-semigroup, thus obtaining a much larger
class of semigroups. Our main result will be the classifica-
tion of finite hereditary near-ring-semigroups.

A multiplicative semigroup (S, -) is called a ring-semigroup if
addition, +, can be defined on S so that (S, +, -) is a ring. It is
clear that not every semigroup is a ring-semigroup, thus, one seeks
to study ring-semigroups with additional restrictions. Some of the
recent activities along this direction are as follows: Ligh classified
in [8] all the ring-semigroups in which each subsemigroup contain-
ing 0 is also a ring-semigroup. On the opposite end of Ligh’s work,
H. J. Shyr [12] showed that every subsemigroup of a free semi-
group with zero is not a ring-semigroup. Using Ligh’s result in
[8], the present authors [5] determined all the semigroups that are
not ring-semigroups but each proper subsemigroup containing zero
is a ring-semigroup.

For a survey of ring-semigroups, see [9].

2. Preliminaries.

DEFINITION 1. A (left) near-ring R is a system with two binary
operations, + and -, such that (i) (R, +) is a group, (ii) (R, -) is
a semigroup, (iii) 2(y + 2) = zy + a2z for all z, y, z€ R, and (iv) Ox=
0 for all xeR.

For basic facts about near-rings, see [10]. Note that (right)
near-rings are considered in [10].

DEFINITION 2. Let (S, -) be a multiplicative semigroup. Then
S is called a near-ring-semigroup (NR-semigroup) if addition, +, can
be defined on S so that (S, +, +) is a near-ring. An NR-semigroup
is said to be hereditary if every subsemigroup containing 0 is an
NR-semigroup.

REMARK 1. Suppose S is a hereditary NR-semigroup and T is
a subsemigroup of S. The near-ring T need not be a sub-near-ring
of S. The problem of characterizing all the rings (R, +,-) in
which each subsemigroup of (R, -) is a subring was begun in [3]
and a complete solution is given in [6] and [8]. Motivated by the
above problem, Ligh [8] obtained a complete classification of here-
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ditary ring-semigroups.

PROPOSITION 1. [8] Let S be a ring-semigroup. Then S is
hereditary if and only if S is either a zero semigroup or S\0 is
a cyclic group of order, n, where n =1,2 4,6,8, 12,16, 24, 48 and
a Mersenne prime.

The above result was instrumental in obtaining a classification
of those semigroups which are not ring-semigroups but each proper
subsemigroup is a ring-semigroup. For details, see [5].

REMARK 2. Since a zero, 0, can be adjoined to any semigroup
S, we shall adopt the convention that all semigroups will contain
the zero element.

ExAMPLE 1. Let S be a semigroup with the property that
ab =10 for each a #0,6¢S. Then S is an NR-semigroup. But S
is a ring-semigroup if and only if S has one element or two elements.

ExAMPLE 2. Let G be any group and T(G) be the set of func-
tions from G into G which leave the identity of G fixed. Under
the operation, *, of composition, (T(G@), *) is an NR-semigroup where
addition is pointwise. Clearly T(G) is a ring-semigroup if and only
if the order of G is one or two.

ExamMpPLE 3. Let S be the semigroup consisting of four elements
0, a, b, ¢ with the defining relation: 0z = ax = 0, bx = cx = « for all
2 in S. Then S is a ring-semigroup with (S, +) = K, where K is
the Klein group. On the other hand, S can be considered as a
near-ring semigroup, where (S, +)=Z,. But the near-ring (S, +, -)
is not a ring.

ExAMPLE 4. Let S be a commutative semigroup with no
nilpotent elements. If S is an NR-semigroup, then S is necessarily
a ring-semigroup. This follows from the fact that a commutative
near-ring with no nilpotent elements is a ring.

Since an infinite eyclic semigroup (or group) is not a ring-semi-
group, the following result is a consequence of Example 4.

PROPOSITION 2. An infinite cyclic semigroup (or group) is not
an NR-semigroup.

3. Finite near-rings with no zero divisors. All near-rings
considered in this section are finite. We wish to discuss briefly the
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three different types of near-rings with no zero divisors.

Let (R, +, -) be a near-ring with no zero divisors. If ab =125
for each a # 0 in R, then R is called trivial. If R has at least
one nonzero element that is not a left identity, then R is called a
near integral domain. If R has a unique left identity, then R is a
near field.

We now \summarize some of the results concerning near integral
domains which will be needed later.

Let R be a near integral domain and 2 be an element of R.
Since R has no zero divisors, there is a positive integer » such
that 2 = x and (#"') = ¢ = ¢*. For each idempotent ¢ in R* = R\0,
let G, = {re R*: re = r}.

ProposITION 3. [1] Let (R, +, :) be a mnear integral domain.
Then

(1) each (G, ) is a group with identity e;

(2) the family {G,}, e€ R*, is pairwise disjoint,

(3) R*= UG, ecR

(4) G,=G,,e, e eR";

(5) each e is a left identity for (R, +, -).

4. Finite hereditary NR-semigroups (trivial and mnear-field
cases). Let S be a finite hereditary NR-semigroup. There are four
cases to consider: (i) (S, +, -) is trivial, (il) (S, +, -) is a near-field,
(iii) (S, -+, -) is a near integral domain and (iv) (S, +, -) has proper
zero divisors.

If the near-ring (S, +-) is trivial, then any subset of S is a
subsemigroup. Since this multiplication, i.e., ab =5b for a = 0,6 in
S, can always be defined on any group to get a near-ring, it follows
that there is no other restriction on S.

Suppose the near-ring (S, +, -) is a near-field. Recall that
(S\0, -) is a group and any subsemigroup of S is indeed a subgroup.
By a previous paper |7], S is called a hereditary near-field group
and a complete classification was obtained in [7].

PROPOSITION 4 [7]. A finite group G is a hereditary NR-semi-
group if and only if G is one of the following:

(i) G 4s cyclic of orders 1,2 4,6,8 12 16,24, 48 and a
Mersenne prime,

(i) G = Qy
(iii) G = M,
(iv) G = N.

NOTE. @ is the quaternion group of order 8 The non-com-
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mutative group M is metacyclic of order 24 and all the subgroups
of M are cyclic of orders 2,3, 4, 6,8 and 12. The noncommutative
group N is of order 24 and all the subgroups are either cyclic of
orders 2, 3,4 and 6, or Q..

Henceforth Z, will denote the cyclic group of order .

5. Finite hereditary NR-semigroups (near integral domain
case). Let S be a finite hereditary NR-semigroup and (S, +, -) be
a near integral domoin that is not a near-field. Recall from § 3 that
for each idempotent ¢ in S* = S\0, the set G, = {s€S*:se =s} is a
group. Furthermore S* = UG, and there are at least two such
G.’s, say G, and G,. The idempotents e and ¢ are left identities
of S and G, = G,.. Since S is hereditary, each G, is the multiplica-
tive semigroup of a near-ring F,. Thus F, is a near-field and by
Proposition 4, we know precisely what each G, can possibly be.
Since there are at least two such @G,’s, our task now is to determine
exactly the structure of G, and how many pieces.

REMARK 3. Let (N, +, -) be a finite near-ring and x € N such
that « is not a zero divisor. The map z2*: (N, +) — (N, +) defined
by z*(y) = xy for each y in N is an automorphism of (N, +).

LEMMA 0. Let (G, +) be a group. If the order of G is 10,
then G does mot have an automorphism of order 3. If the order

of G 1s 33, them G does mot have an automorphism of order either
8 or 16.

Proof. The two groups of order 10 are Z,, and D,, and their
automorphism groups are of order 4 and 20 respectively. There is
only one group of order 33, namely, Z,, and its automorphism group
is of order 20. Hence the result follows.

LEMMA 1. The group G, cannot be Qg Zy; 01 Z.

Proof. Suppose G, = Q,. Since there are at least two such
G,’s, let N* =G, UG, where G, = G,. by Proposition 3. It can be
checked that N* is a subsemigroup of S*, thus, N=N*UO0 is a
near-ring. Hence (N, +) = Z,, and the automorphisms of (N, +)
commute with each other. Suppose a, b are in G,. Define the maps
a* and b* as in Remark 3. Hence (a*ob*)(e) = (b*-a*)(e) and it
follows that abe = bae and ab = ba, contradicting @, being a non-
commutative group.

Suppose G, = Z,;. As in above, let N*=G,UG,. Thus N =
N*UO0 is a near-ring of order 33. If x is a generator of Z,;, then
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x* is an automorphism of (N, +) of order 16, contradicting Lemma 0.
Suppose G, = Z,,. Let A be the subgroup of order 16 of G..

Then Ae’ is the subgroup of order 16 in G,. Thus AU A¢' is a

subsemigroup of order 32. From above this is impossible.

LEMMA 2. The group G, cannot be the group N described in
Proposition 4.

Proof. Recall that the group N has Q; as one of its subgroups.
Since there are at least two G.’s, say G, and G,.,, then Q,U Q4 is
a subsemigroup of order 16 that supports a near-ring. Follow the
first part of the proof of Lemma 1; this is impossible.

LEMMA 3. If the order of G, is a Mersenne prime p = 27 — 1,
then p = 3.

Proof. Let R*=G,UG,. Thus R* is a subsemigroup of S*
and hence R = R* U 0 is a near-ring of order 2p + 1 = 2(2? — 1)+ 1.
Suppose 29+* — 1 = pi1---p? where each p, is an odd prime. There
is an element w of order p, in (R, 4+). Without loss of generality,
suppose w is in G,. Since G, is cyclic, w is a generator, hence each
element in G, has additive order p,. Also (—w) has order p, and
since —w # w, there are an even number of elements of order p,.
Since G, has an odd number of elements, there is an element z of
order p, in G,. By the above argument, each element in G, has
order p,. Thus (R, +) is a p,-group and the order of (R, +) is pyi.
Hence 2** —1=p}. By [7, Lemma 1], #,=1 and ¢+ 1 is a
prime. Consequently, ¢ =2 and p = 3. )

Now we are ready to determine the number of G,’s in each
S*. From the above lemmas and Proposition 4, we see that the
only possible choices for the G,’s are: Z,,n =2, 3, 4,6, 8,12, 24 and
the metacyclic group M of order 24.

LEMMA 4. Suppose G, = Z,,n=3,6,12, 24, or G, = M. Then
S* = G,U G, where G, = G,..

Proof. Suppose G, = Z,. Recall that UG, is a subsemigroup
of S*, and if there were at least three idempotents, then N = G, U
G, U G, supports a near integral domain N that has 10 elements.
Let z be a generator of G,. Then the map z* is of order 3 and
this is impossible by Lemma 0.

Next suppose G, = Z,, n = 6,12, 24 or G, = M. Observe that in
each case, G, has a cyclic subgroup of order 3. The above argument
shows that S* ecan have only two pieces.
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LeEMMA 5. Suppose G, = Z;. Then S* can have at most three
G,’s.

Proof. If there were four G,’s, then B = U G, has 32 elements
and the near-ring (B, +, -) has 33 elements. If x is a generator
of G,, then the automorphism z* is of order 8. This is not possible
by Lemma 0.

LEMMA 6. Suppose G, = Z,. Then S* can have at most four
@,’s.

Proof. If there were five G,’s, then B= UG, has 20 elements
and the near-ring (B, +, -) has 21 elements. Thus (B, +) has a
normal Sylow subgroup W of order 7, so W is a characteristic
subgroup. Let x be the generator of G,. The automorphism z* of
(B, +) has to be an automorphism of W = Z,. But this is not
possible since Z, does not have an automorphism of order 4.

LEMMA 7. Suppose G, = Z,. Then S* can have any number
of pieces.

Now summarizing the above lemmas we have the following
necessary conditions for a finite semigroup to be a hereditary NR-
semigroup.

THEOREM 1. Let S be a finite hereditary NR-semigroup. ILf
(S, +, ) is a near integral domain, them S* = S\0 is a union of
isomorphic groupns G, with the mumber m of possible pieces given
as follows:

(i) Go=Z,n=2,8, ---,

(i) G,=Z,, Zs, Zy, Z,, and M, n = 2,

(i) G, =Z,n =238, 4,

(iv) G,=Z,n =2, 3.

6. Finite hereditary NR-semigroups (with zero divisors). Let
S be a finite hereditary NR-semigroup and (S, +, -) be the near-
ring. We have already considered the cases where (S, +, -) has no
proper zero divisors. Thus the only case left is the existence of
proper zero divisors in (S, +, -). Our first goal is to show that
2S =S or S =0 for each z in S. This will follow from a series
of technical lemmas.

LEMMA 8. If x is a nilpotent element of S, then x* = 0.
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Proof. Suppose n > 2 is the smallest positive integer such that
2" = 0. Consider the cyclic semigroup C(x) generated by z. Then
A=C)UO0 is a NR-semigroup. Since A is commutative, every
element in A is right distributive and hence (—zx)* = 2* for each «
in A. If x +a*=0, then 2° = —z and 2*-2* = (—2)* =2 Let ¢t =
n — 2. Then 0 = 2" = x2'+* = . This contradicts the minimality of
n., If x+22%0, then 2 +2>=2%,7 >2. Let t+2=mn. Then
o + 2% =227 =0 and 2 + 2" = 0. Thus ' =0, a contra-
diction. Hence a* = 0.

LEMMA 9. If ¢ =¢ # 0, then ex = = for each x in S.

Proof. First suppose ey =0 for some y %= 0. Consider the
subsemigroup A(e, y) generated by ¢ and y. Thus A(e, y) = {0, e} U
{y*: ke N} U {ye: j € N}. Since Ale, y) is an NR-semigroup, ¢ — y =
y* or e — y = y’e for the appropriate & or j. But ¢ —y=y* implies
that ele — y) = ey*=0. That is, ¢*=0. Similarly, e — y = y'e
implies e = 0. This contradiction establishes that ey + 0 for any
y#0in S.

If x is any element in S, then e(x — ex) = 0. From above 2 —
ex =0 and x = ex.

LemMMA 10. If xz = 0 for some z # 0, then x* = 0.

Proof. If 2*+ 0, then xz* =0 for all » by Lemma 8. Thus
there is an integer k such that z* = 2%; let e = 2*. Then ¢ s 0 and
by Lemma 9, ez = 2. But ez = a*z = ¥ ez = 0, a contradiction.
Hence 2* = 0.

LemMmA 11. If * = 0 for all © in S, then xy = 0 for each x,y
in S.

Proof. Let =z, be in S. Then (x + y)*=0 implies that
(+y)xe + (@ + 9y =0 and z@x + ¥)z + 2 + ¥)y = -0 = 0. Thus
xyxr + xyy = 0 and 2yx = 0. By symmetry, yxzy = 0.

Now assume that z-y # 0. Then N = {0, z, y, xy, yx} is an NR-
semigroup with five elements. But according to the tables given
in [2], each near-ring on Z;, has a left identity. A quick check
shows that none of the elements in N can be a left identity. Thus
x-y = 0.

LeMMA 12. If xz =0 for some z # 0, then xy =0 for each y
in S.
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Proof. By Lemma 10, 2> = 0. If there is an element 7 in S
such that 7+ 0 for all »n, then r* = »* for some k. Let e = o
Then xe = 0. For if not, the set {0, x, ¢, xe} is an NR-semigroup.
Thus ¢+ =0 or ze. In either case, (¢ + 2) = 0 and it follows
that xe = 0, a contradiction. New let ¥y be in S. By Lemma 9,
ey = y and it follows that zy = x(ey) = (xe)y = 0y = 0.

On the other hand, if every element in S is nilpotent, then
2y = 0 by Lemma 11.

Summarizing the above, we have the following:

THEOREM 2. For each x in S, either xS = S or 2S = 0.

Let e2=¢+#0 be in S. As before, define the set G, = {s€S*:
se = s}. Each G, is a group and G, = G,. for nonzero idempotents
e and ¢. Before we can describe S, we need to show that the
order of G, except G, = Z, is the same as the order of G.a =
{ga: g € G,}, where o’ = 0.

LEMMA 13. Suppose a>=0,a %0 and x* =0 for each m. If
xa = a, then either x is an idempotent, say © = e, or x* = e.

Proof. Suppose x # e. Let k be the minimal integer such that
x* =e and es = s for all s in S by Lemma 9.

Case 1. k is odd and k= 3. Using Lemma 12, the set B=
{0, a, z, a>, ---, ¥} is a subsemigroup with % + 2 elements. Since
k+2is odd, a + @ # 0 in the near-ring (B, +, -). Hence a + a =
23, 1< 7 <k. But z(a + a)=2z-2/ = 27+, Since za = a, it follows
that a + ¢ = 2?**. Thus 2/ = 27+!, a contradiction.

Case 2. k is even and k = 4.

(i) k= 2t. Suppose there is an odd prime p such that p|k.
Then there is an integer 7 such that ' is of order p. Let ' = y.
Following the argument in Case 1, considering the subsemigroup
0, a,y, 9 -+, ¥}, we reach a contradiction.

(ii) % = 2™. Since k = 4, there is an element, say «°, of order
4. Let y=x‘. Then the subsemigroup B={0, a, v, ¥* ¥°, ¥'} supports
a near-ring. The map f: B— B defined by f(w) = yw is an automor-
phism of (B, +) of order 4. But (B, +) is either Z, or S; and
neither one has an automorphism of order 4.

Combining Cases 1 and 2, we see that 2* = e.

LEMMA 14. Suppose ¢ = ¢ and a* = 0. Let the group G,={se
S: se = s} be any one of the groups in Proposition 4 except Z, If
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wa = ya for w,y€@G,, then w=1y. Hence the orders of G, and
G.0 are the same.

Proof. wa = ya implies that y'wa =a. If y7w =e, then
y=w. If y7w +# e, by Lemma 13, (y~'w)* = e.

Since the group G, supports a near-ring, it follows that (G,, +, -)
is a near-field. By [10, p. 239], 2* = ¢ in a near-field implies that
x=e¢or x = —e. Thus y7'w=-¢ or —e.

Suppose y'w = —e. Then w = y(—e) and y(—e)a = wa = ya.
Thus (—e)a = a.

There is an element z in G, such that z* =¢ with & > 2. Now
if 2za +# a, then {0,¢, —e, a, za} is a subsemigroup that supports a
near-ring. Examining all the semigroups of the near-rings that are
defined on (Z,, +) [2], the above semigroup is not one of them.
Hence za = a. By Lemma 13, either z = ¢ or z* =¢, a contradic-
tion.

Thus y*w = ¢ and y = w.

REMARK 4. If the group G, = Z, = {z, ¢}, then it is possible
that za = ea = a for some nilpotent element a. One such example
is [2, 2.1, #7].

Let us summarize and see what is happening at this point. Let
S be a finite hereditary NR-semigroup. Then for each z in S, either
xS = S or S = 0. Clearly if S = 0 for each x in S, then S is a
zero semigroup. If S is not a zero semigroup, for e = ¢* = 0 in S,
the set G, = {s€S:s¢ = s} is a group and G, = G, for ¢ = (¢')* = 0.
If a is a zero divisor, then a®> = 0 and the order of &, is the same
as the order of G.a = {ga: g€G,} with the only exception of G,
being isomorphic to Z, Clearly the intersection of G, and G.a is
empty. Since each G, is a hereditary NR-semigroup, the structure
of G, is given by Proposition 4. In §5 we have determined how
many pieces of G,’s S can have in case that S is a near integral
domain. Now applying the same techniques, we can determine the
number of pieces for S in the case that S has proper zero divisors.
The following lemma eliminates a few possibilities.

LEMMA 15. Suppose S is a finite hereditary NR-semigroup and
S is mot a zero semigroup. Let e —=¢e* be in S. Then the order
of G, cannot be 6,12, or 24.

Proof. Let a + 0 be a zero divisor of S. By Lemma 14, the
two sets G, and G,a have the same number of elements. If the
order of G, is either 6, 12, or 24, then G, has a subgroup T of
order 6. Thus T has a 'subgroup B of order 3, and BU Ta is a
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subsemigroup with 9 elements. But this implies that the additive
group (BU Ta, +) has an automorphism of order 3, contradicting
Lemma 0.

THEOREM 3. Let S be a finite hereditary NR-semigroup such
that the near ring (S, +, ) is not a mear integral domain. Then
either S 1s a zero semigroup or S is a union of groups and zero
semigroups as follows:

(i) IfG,= Z, then S* is a union of any number of G,’s and
G.a where a* = 0.

(ii) If G, = Z,, then S* =G, U G,a, a* = 0.

(i) If G, = Z,, then S*=G,UG,a or S* =G, UG,aUGb or
S*=G UG, UGaUG,b or S*=G,UG.a UGb U G,c where a*=b*=
¢t =0.

(iv) If G,=2Z, them S*=G,UG,a or S*=G,UG.aUG,b,
a® = b= 0.

7. Sufficient conditions. In the previous sections we have
determined the necessary conditions for a finite semigroup to be a
hereditary NR-semigroup. In this section we shall provide the
sufficient conditions. This will be accomplished, with a couple of
exceptions, by applying the following result to our construction of
NR-semigroups.

Let (@, +) be a group of order n and f be a fixed-point-free
automorphism of (G, +) of order m. Suppose there is a positive
integer k& such that n =km + 1. Let e¢,€G. Then the set 4, =
{file):3=1,2, ---, m} has m distinct elements. There is ¢,€G such
that e, ¢ A,. Define A, in a similar manner. Then it follows that
the family {4;:¢t=1,2, ---,k} is pairwise disjoint and (G\0) =
Uk, A, = Uk file), 5 = 1,2, ---, m. Define the operations, * and
#, on G as follows:

file)xflle,) = file), L=, t=k; 1 <4, l=m.
Let ¢ be a fixed integer such that 1 < q < k.

' fiHe), 1Ss=q<k 1=i, l=m.
i l —
f(es> # f(et) {0, q<s§k.

THEOREM 4. Let (G, +) and the operations, = and &, be defined
as above. Then (G, +, *) 1s a near integral domain where each e,
is a left idenmtity and (G\0) is a union of cyclic groups of order
m. Also, (G, +,8) is a mear-ring and (G\0) is a wunion of cyclic
groups of order m and a zero semigroup of order (k — q)m + 1.
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Proof. The proof is straightforward so will be omitted.

Since Lemma 14 (see Remark 4 also) did not treat the case
when G, = Z,, the following result fills the gap. That is, we shall
show how to construct a near-ring from a semigroup S which is a
union of Z,’s and zero semigroups. This is the sufficiency of (i) of
Theorem 3.

LEMMA 16. Suppose S is a union of Z,’s and zero semigroups
of the form Z,a with a* = 0. Then S is an NR-semigroup.

Proof. Recall from Remark 4, it is possible that za = a for
x = e in Z, So we have two cases to consider:

Case 1. Suppose there is an element « in S such that o* = 0,
and xa = a, 2 * ¢ is in Z,. Then S cannot have another element b
such that 5 =0 and zb = b. This follows from the fact that no
near-ring can be defined on the semigroup {0, z, ¢, a, b}. Thus S is
a union of {0, z, ¢, a} and any number of Z,’s and Z, b* = 0. This
shows that S is of order 2k. Let (S, +) = (Z,, +). Then (S, +)

has a unique element of order two and using the map f(z) = —u,
and the operation # as defined in Theorem 4, it is easy to check
that (S, +, %) is a near-ring. Hence S is a NR-semigroup.

Case 2. Suppose za = a for each a in S satisfying a*=0. Then
S is a union of Z,)s and zero semigroups Z,a’s; thus the order of
(S, +)is 2k + 1. Let (S, +) = Z,,+, and the map f(x) = —= satisfies
Theorem 4. This completes the proof.

Recall from Theorem 1 that if S is a finite hereditary NR-semi-
group and if (S, +, -) is a near integral domain, then S\0 is a union
of isomorphic groups G,. If G, = M, the metacyclic group of order
24, then S\O0=M UM with M= M', MNM = ¢, hence (S, +)
must be a group with 49 elements. Since the automorphism group
of Z, is commutative, it follows that (S, +) = Z, X Z,. If a near
integral domain can be defined on S = Z; X Z; so that S\0=MU M’,
it is necessary for the automorphism group of S to contain a sub-
group isomorphic to M. The next result will show that such a near
integral domain cannot exist.

First recall [4, Theorem 9.4.3], the metacyclic group M is
generated by x and y of orders 3 and 8 respectively with the rela-
tion zy = yx*. Let S = Z, x Z,. Then the automorphism group of
S is isomorphic to GL (2, 7), the 2 by 2 nonsingular matrices over
Z. [11, p. 130].
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THEOREM 5. If S = Z, X Z, then the automorphism group,
A(S), of S does not contain a subgroup isomorphic to the metacyclic
group M of order 24.

Proof. Suppose x and y are in A(S) = GL (2, 7) such that z*=
y* =1 and xy = yx’. Since the Jordan normal form of a matrix of
order 3 in GL (2, 7) is diagonal, «# could be taken in diagonal form.
If the two diagonal entries of « were equal, * would be central in
GL (2,7), and it follows that «* =1, a contradiction. If the two
diagonal entries are different, then the centralizer of x in GL (2, 7)
would consist of all the diagonal matrices and thus be isomorphic
to Z; X Z;. From the relation xy = y«?, it follows that y*xy* =
y oty = yeyy ey = ' = x. Hence xy*=yx and %* is in the
centralizer of x. Since y® is of order 4, we arrive at a contradic-
tion.

The above proof, due to the referee, is a considerable improve-
ment over that of the authors.

Finally we have the classification of finite hereditary NR-semi-
groups.

THEOREM 6. Let S be a finite semigroun. Then S is a here-
ditary NR-semigroup if and only if S is one of the following:

(I) S is a zero semigroup.

(II) S is trivial (i.e., ab = b for a,beS).

I (i) S=42, n=24,6,8,12,16, 24,48 and a Mersenne
prime;

(ii) S=Qy

(iii) S = M, (see Proposition 4);

iv) S= N

aAV) S is a union of groups G, with the number of pieces m:
(i) G, = Zz, n=Fk=2, any positive integer;

(i) G,=Z, Z, Z,, and Z,, n = 2;

(i) G, =Z,n = 2,3, 4;

iv) G, =Z,n=2,3.

(V) S is a union of groups G, and zero semigroups G.a, where
a* =0, and n is the total number of pieces of G, and G.a:

(1) G, =Z,,n=Fk =2, any positive integer;

(ii) G, =Z;,n = 2;

(i) G, =2Z,n=2,3,4;

iv) G, =Z,n=2,3.

Proof. The proof of (I) and (II) are obvious. The proof of
(III) is given by Proposition 4. The necessities for (IV) and (V) are
given by Theorem 1 and Theorem 3 respectively. The sufficiency
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for (i) of Theorem 3 is given by Lemma 16; while Theorem 5
demonstrates the nonexistence of a near integral domain with 49
elements whose nonzero elements are the union of two isomorphic
groups, the metacyclic cyclic group M of order 24. For the suffici-
encies of the rest of (IV) and (V), we shall employ Theorem 4. For
convenience, we present it in the table below. Column one denotes
the structure of G,, while columns two and three denote the number
of pieces in (IV) and (V) respectively. Column four lists the addi-
tive group required by Theorem 4. Finally column five exhibits the
required fixed-point-free automorphisms dictated by Theorem 4.

We shall use 1 as the generator of Z,, and any matrix repre-
sentation of the automorphisms of Z, x Z, is relative to the basis
(1,0) and (0,1). The automorphism f in column five is of order
equal to that of @, as required by Theorem 4. The number k%
denotes any positive integer.

av
G, n n S, +) feA(S)
Z, k k ng, YA f(l) = —1
Z, 2 2 Z; F@Q) =2
01
7, 2 2 Z, X 7, =
) d (2 0>
Z, 3 3 Z, f=5
Z, 4 4 Zy; f) =4
Zg 2 none 7, f =4
Zs 2 2 Z f@) =2
01
Zs. 3 3 Zy X Z, f= <2 O>
/. 2 none Zs X f= <O l>
12
Z,, 2 none Zy X Z, = (2 3>
6 4

8. Concluding remarks. Hereditary ring-semigroups were
classified completely in [8] and there were no infinite nontrivial ones.
The situation in hereditary NR-semigroups is quite different: (1) it
is not known whether there are infinite hereditary near-field groups
[7]; (2) there exists infinite hereditary NR-semigroups S. This can
be seen by taking (S, +) = (Z, +) and defining = on Z as in Theo-
rem 4, using f(x) = —x. Hence we may conclude this paper with
the following:
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ProBLEM: Classify all the infinite hereditary NR-semigroups.
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