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FINITE HEREDITARY NEAR-RING-SEMIGROUPS

PATRICIA JONES AND STEVE LIGH

We generalize the concept of a ring-semigroup to that
of a near-ring-semigroup, thus obtaining a much larger
class of semigroups. Our main result will be the classifica-
tion of finite hereditary near-ring-semigroups.

A multiplicative semigroup (S, •) is called a ring-semigroup if
addition, + , can be defined on S so that (S, +, •) is a ring. It is
clear that not every semigroup is a ring-semigroup, thus, one seeks
to study ring-semigroups with additional restrictions. Some of the
recent activities along this direction are as follows: Ligh classified
in [8] all the ring-semigroups in which each subsemigroup contain-
ing 0 is also a ring-semigroup. On the opposite end of Ligh's work,
H. J. Shyr [12] showed that every subsemigroup of a free semi-
group with zero is not a ring-semigroup. Using Ligh's result in
[8], the present authors [5] determined all the semigroups that are
not ring-semigroups but each proper subsemigroup containing zero
is a ring-semigroup.

For a survey of ring-semigroups, see [9].

2 • Preliminaries •

DEFINITION 1. A (left) near-ring R is a system with two binary
operations, + and , such that ( i ) (22, + ) is a group, (ii) (22, •) is
a semigroup, (iii) x(y + z) = xy + xz for all x, y, zeR, and (iv) 0x =
0 for all xeR.

For basic facts about near-rings, see [10]. Note that (right)
near-rings are considered in [10].

DEFINITION 2. Let (S, •) be a multiplicative semigroup. Then
S is called a near-ring-semigroup (NR-semigroup) if addition, + , can
be defined on S so that (S, + , •) is a near-ring. An NR-semigroup
is said to be hereditary if every subsemigroup containing 0 is an
NR-semigroup.

REMARK 1. Suppose S is a hereditary NR-semigroup and T is
a subsemigroup of S. The near-ring T need not be a sub-near-ring
of S. The problem of characterizing all the rings (22, + , •) in
which each subsemigroup of (22, •) is a subring was begun in [3]
and a complete solution is given in [6] and [8]. Motivated by the
above problem, Ligh [8] obtained a complete classification of here-
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ditary ring-semigroups.

PROPOSITION 1. [8] Let S be a ring-semigroup. Then S is
hereditary if and only if S is either a zero semigroup or S\0 is
a cyclic group of order, n, where n = 1, 2, 4, 6, 8, 12, 16, 24, 48 and
a Mersenne prime.

The above result was instrumental in obtaining a classification
of those semigroups which are not ring-semigroups but each proper
subsemigroup is a ring-semigroup. For details, see [5].

REMARK 2. Since a zero, 0, can be adjoined to any semigroup
S, we shall adopt the convention that all semigroups will contain
the zero element.

EXAMPLE 1. Let S be a semigroup with the property that
ab = b for each a Φ 0, b e S. Then S is an NR-semigroup. But S
is a ring-semigroup if and only if S has one element or two elements.

EXAMPLE 2. Let G be any group and T(G) be the set of func-
tions from G into G which leave the identity of G fixed. Under
the operation, *, of composition, (T(G), *) is an NR-semigroup where
addition is pointwise. Clearly T(G) is a ring-semigroup if and only
if the order of G is one or two.

EXAMPLE 3. Let S be the semigroup consisting of four elements
0, α, b, c with the defining relation: Ox = ax = 0, bx = ex = x for all
x in S. Then S is a ring-semigroup with (S, +) = K, where K is
the Klein group. On the other hand, S can be considered as a
near-ring semigroup, where (S, +) = Z4. But the near-ring (S, +, •)
is not a ring.

EXAMPLE 4. Let S be a commutative semigroup with no
nilpotent elements. If S is an NR-semigroup, then S is necessarily
a ring-semigroup. This follows from the fact that a commutative
near-ring with no nilpotent elements is a ring.

Since an infinite cyclic semigroup (or group) is not a ring-semi-
group, the following result is a consequence of Example 4.

PROPOSITION 2. An infinite cyclic semigroup (or group) is not
an Nil-semigroup.

3* Finite near-rings with no zero divisors* All near-rings
considered in this section are finite. We wish to discuss briefly the
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three different types of near-rings with no zero divisors.
Let (jR, +, •) be a near-ring with no zero divisors. If ab = b

for each a Φ 0 in R, then R is called trivial. If R has at least
one nonzero element that is not a left identity, then R is called a
near integral domain. If R has a unique left identity, then R is a
near field.

We now summarize some of the results concerning near integral
domains which will be needed later.

Let R be a near integral domain and x be an element of R.
Since R has no zero divisors, there is a positive integer n such
that xn = x and {xn~x) = e = <r. For each idempotent e in 12* = J?\0,
let Ge = {rel?*: re = r}.

PROPOSITION 3. [1] Z/βί (R, + , •) δe α %eαr integral domain.
Then

(1) eαcfc (Ge, -) is a group with identity e;
(2) the family {Ge}, eeR*, is pairwise disjoint;
(3) Λ * = UGβ,e6l2*;
(4) Ge=zGβΊe,e'eIl*;
(5) eαcfc e is a left identity for (R, + , •)•

4* Finite hereditary NR-semigroups (trivial and near-field
cases)* Let S be a finite hereditary NR-semigroup. There are four
cases to consider: (i) (S, +, •) is trivial, (ii) (S, +, •) is a near-field,
(iii) (S, +, •) is a near integral domain and (iv) (S, +, •) has proper
zero divisors.

If the near-ring (S, +•) is trivial, then any subset of S is a
subsemigroup. Since this multiplication, i.e., ab = b for a Φ 0, b in
S, can always be defined on any group to get a near-ring, it follows
that there is no other restriction on S.

Suppose the near-ring (S, +, •) is a near-field. Recall that
(<S\0, •) is a group and any subsemigroup of S is indeed a subgroup.
By a previous paper [7], S is called a hereditary near-field group
and a complete classification was obtained in [7].

PROPOSITION 4 [7]. A finite group G is a hereditary NR-semi-
group if and only if G is one of the following:

( i ) 6 is cyclic of orders 1, 2, 4, 6, 8, 12, 16, 24, 48 and a
Mersenne prime,

(ϋ) G = Q8,
(iii) G = M,
(iv) G - 1ST.

NOTE. Q8 is the quaternion group of order 8. The non-com-
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mutative group M is metacyclic of order 24 and all the subgroups
of M are 'cyclic of orders 2, 3, 4, 6, 8 and 12. The noncommutative
group JV is of order 24 and all the subgroups are either cyclic of
orders 2, 3, 4 and 6, or Q8.

Henceforth Zn will denote the cyclic group of order n.

5* Finite hereditary NR-semigroups (near integral domain
case). Let S be a finite hereditary NR-semigroup and (S, + , •) be
a near integral domoin that is not a near-field. Recall from § 3 that
for each idempotent e in S* = S\0, the set Ge = {s eS*: se — s} is a
group. Furthermore S* = U Ge and there are at least two such
Gr/s, say Ge and Gv. The idempotents e and e' are left identities
of S and Ge = Ge>. Since S is hereditary, each Ge is the multiplica-
tive semigroup of a near-ring Fe. Thus F e is a near-field and by
Proposition 4, we know precisely what each Ge can possibly be.
Since there are at least two such Gβ's, our task now is to determine
exactly the structure of Ge and how many pieces.

REMARK 3. Let (JV, +, •) be a finite near-ring and xeN such
that x is not a zero divisor. The map x*: (JV, + )—>(.W, +) defined
by x*(y) — ## for each y in iV is an automorphism of (N, +) .

LEMMA 0. Let (G, +) be a group. If the order of G is 10,
then G does not have an automorphism of order 3. If the order
of G is 33, then G does not have an automorphism of order either
8 or 16.

Proof. The two groups of order 10 are Z10 and D10 and their
automorphism groups are of order 4 and 20 respectively. There is
only one group of order 33, namely, ZS3, and its automorphism group
is of order 20. Hence the result follows.

LEMMA 1. The group Ge cannot be Q8, Z16 or Zi8.

Proof. Suppose Ge = Q8. Since there are at least two such
Gβ% let iV* = Ge U Gv where Ge ^ Gv by Proposition 3. It can be
checked that N* is a subsemigroup of S*, thus, N= iNP U 0 is a
near-ring. Hence (JV, +) = Z1Ί and the automorphisms of (N, +)
commute with each other. Suppose α, 6 are in Ge. Define the maps
α* and δ* as in Remark 3. Hence (α*°6*)(e) = (δ*oα*)(e) and it
follows that abe — bae and ab = ba, contradicting Q8 being a non-
commutative group.

Suppose Ge = Z16. As in above, let iV* = Ge U Gv. Thus JSΓ =
iV* U 0 is a near-ring of order 33. If a; is a generator of Zm then
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x* is an automorphism of (N, +) of order 16, contradicting Lemma 0.
Suppose Ge ~ Z4Q. Let A be the subgroup of order 16 of Ge.

Then Ae' is the subgroup of order 16 in Ge/. Thus A U Aef is a
subsemigroup of order 32. Prom above this is impossible.

LEMMA 2. The group Ge cannot be the group N described in
Proposition 4.

Proof. Recall that the group N has Qs as one of its subgroups.
Since there are at least two Ge's, say Ge and Ge>, then Q8 U Q8e' is
a subsemigroup of order 16 that supports a near-ring. Follow the
first part of the proof of Lemma 1; this is impossible.

LEMMA 3. If the order of Ge is a Mersenne prime p — 2q — 1,
then p = 3.

Proof. Let R* =Gβ\jGβ>. Thus i2* is a subsemigroup of S*
and hence R = #* U 0 is a near-ring of order 2p + 1 = 2(2* - 1 ) + 1 .
Suppose 29+1 — 1 = p?1- p** where each ^ is an odd prime. There
is an element w of order pt in (iϊ, +). Without loss of generality,
suppose w is in Ge. Since Ge is cyclic, w is a generator, hence each
element in Ge has additive order pt. Also ( —w) has order pt and
since — w Φ w, there are an even number of elements of order pit

Since Ge has an odd number of elements, there is an element z of
order pi in Ge,. By the above argument, each element in Ge, has
order pt. Thus (R, +) is a ^-group and the order of (R9 +) is pp.
Hence 2Q+1 — 1 = pp. By [7, Lemma 1], nt = l and q + 1 is a
prime. Consequently, # = 2 and p = 3.

Now we are ready to determine the number of G/s in each
S*. From the above lemmas and Proposition 4, we see that the
only possible choices for the Ge's are: Zn9 n = 2, 3, 4, 6, 8, 12, 24 and
the metacyclic group M of order 24.

LEMMA 4. Suppose Ge = Zn, n = 3, 6, 12, 24, or Ge ̂  ikf.

Proof. Suppose Ge ~ Zz. Recall that U Ge is a subsemigroup
of S*, and if there were at least three idempotents, then N= GeU
Ge/ U Gβ// supports a near integral domain N that has 10 elements.
Let a; be a generator of Ge. Then the map x* is of order 3 and
this is impossible by Lemma 0.

Next suppose Ge ~ Zn, n — 6, 12, 24 or Ge = M. Observe that in
each case, Ge has a cyclic subgroup of order 3. The above argument
shows that S* can have only two pieces.
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LEMMA 5. Suppose Ge = Z8. Then £* can have at most three
G/s.

Proof. If there were four Ge's, then B = (J Ge has 32 elements
and the near-ring (B, +, •) has 33 elements. If $ is a generator
of Ge, then the automorphism x* is of order 8. This is not possible
by Lemma 0.

LEMMA 6. Suppose Ge = Z4. Then S* can have at most four

Proof. If there were five G/s, then B = U Ge has 20 elements
and the near-ring (B, +, •) has 21 elements. Thus (B, + ) has a
normal Sylow subgroup W of order 7, so W is a characteristic
subgroup. Let x be the generator of Ge. The automorphism x* of
(B, +) has to be an automorphism of W = Z7. But this is not
possible since Z7 does not have an automorphism of order 4.

LEMMA 7. Suppose Ge ^ Z2. TTiew S* can have any number
of pieces.

Now summarizing the above lemmas we have the following
necessary conditions for a finite semigroup to be a hereditary NR-
semigroup.

THEOREM 1. Let S be a finite hereditary NR-semigroup. If
(S, +, •) is a near integral domain, then S* = S\0 is a union of
isomorphic groups Ge with the number n of possible pieces given
as follows:

( i ) Ge = Z2,n = 2,3, . . . ,
(ii) Ge = ZZJ Zβ, Z12, Z2i and M, n = 2,
(iii) Ge = Z4, n = 2, 3, 4,
(iv) Ge ̂  ^8, % = 2, 3.

6* Finite hereditary NR-semigroups (with zero divisors)* Let
S be a finite hereditary NR-semigroup and (S, +, •) be the near-
ring. We have already considered the cases where (S, +, •) has no
proper zero divisors. Thus the only case left is the existence of
proper zero divisors in (S, +, •)• O u r firs* goal is to show that
xS — S or xS — 0 for each x in S. This will follow from a series
of technical lemmas.

LEMMA 8. If x is a nilpotent element of S, then x2 = 0.
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Proof. Suppose n > 2 is the smallest positive integer such that
xn = o. Consider the cyclic semigroup C(x) generated by x. Then
A = C(x) U 0 is a NR-semigroup. Since A is commutative, every
element in A is right distributive and hence ( — x)2 = x2 for each x
in A. If x + x2 = 0, then x2 = -a? and x2 x2 = (-a;)2 = x2. Let £ =
w — 2. Then 0 = xn = x ί+2 = a;1. This contradicts the minimality of
n. lΐ x + x2 Φ 0, then a; + x2 = x3', j > 2. Let £ + 2 = w. Then
x*(x + x2) = a* xJ' = 0 and x ί+1 + x ί+2 = 0. Thus x ί+1 = 0, a contra-
diction. Hence x2 — 0.

LEMMA 9. If e2 — e Φ 0, tf&ew ex = x for each x in S.

Proof. First suppose ey = 0 for some y Φ 0. Consider the
subsemigroup A(β, 2/) generated by e and /̂. Thus A(e, y) — {0, e} U
{i/fc: A; e N} U {2/̂ : i eiV}. Since A(ef y) is an NR-semigroup, e — y =
#fc or e — ̂ / = 2/ye for the appropriate k or j . But e — y = yk implies
that e(e — y) = eyk = Ό . That is, e2 = 0. Similarly, e — y = yje
implies e = 0. This contradiction establishes that ey φ 0 for any
y Φ 0 in S.

If E is any element in S, then e(# — ex) = 0. From above x —
ex — 0 and # = ex.

LEMMA 10. If xz = 0 for some z Φ 0, £Λ,ew x2 = 0.

Proo/. If x2 Φ 0, then xn φ 0 for all w by Lemma 8. Thus
there is an integer k such that xk = x2fe; let e = xfe. Then e Φ 0 and
by Lemma 9, e# = «. But ez = xkz = xk~~ιxz = 0, a contradiction.
Hence x2 = 0.

LEMMA 11. If x2 = 0 for all x in S, then xy — 0 /or eαcfe x, ?/
in S.

Proof. Let x, y be in S. Then (x + 2/)2 = 0 implies that
(x + y)x + (» + y)y = 0 and x(x + τ/)x + x(x + y)y = x O = 0. Thus
XT/x + x?/?/ = 0 and xyx = 0. By symmetry, yxy = 0.

Now assume that x-y Φ 0. Then iV = {0, x, j / , x̂ /, ̂ /x} is an NR-
semigroup with five elements. But according to the tables given
in [2], each near-ring on Zδ has a left identity. A quick check
shows that none of the elements in JV can be a left identity. Thus
x-y = 0.

LEMMA 12. // xz = 0 for some z Φ 0, ίfoew xy = 0 /or eαefo
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Proof. By Lemma 10, x2 = 0. If there is an element r in S
such that rn Φ 0 for all n, then rk = r2* for some fc. Let e — rk.
Then ccβ = 0. For if not, the set {0, x, e, αce} is an NR-semigroup.
Thus e + x = 0 or α?β. In either case, #0 + a) = 0 and it follows
that xe = 0, a contradiction. New let y be in S. By Lemma 9,
ey — y and it follows that xy = &(e#) = (a?e)y = 0y = 0.

On the other hand, if every element in S is nilpotent, then
xy = 0 by Lemma 11.

Summarizing the above, we have the following:

THEOREM 2. For each x in S, either xS = S or xS = 0.

Let β2 = e =£ 0 be in S. As before, define the set Ge — {s e S*:
se = s}. Each Ge is a group and Ge = Ge> for nonzero idempotents
e and e'. Before we can describe S9 we need to show that the
order of Ge except Ge ~ Z2, is the same as the order of Gea =
{ga: geGe), where α2 = 0.

LEMMA 13. Suppose a2 = 0, a Φ 0 and xn Φ 0 /or eαc/i ot. If
xa = α, ίfc^^ either x is an idempotent, say x — e, or x2 = e.

Proof. Suppose x ^ e. Let & be the minimal integer such that
xk = e and es = s for all s in S by Lemma 9.

Case 1. fc is odd and & ̂  3. Using Lemma 12, the set i? =
{0, α, α?, α?2, , xk) is a subsemigroup with k + 2 elements. Since
& + 2 is odd, α + a Φ 0 in the near-ring (B, +, •)• Hence α + α =
#'", 1<* j Sk. But a?(α + α) = x-x* = α i+1. Since #α = α, it follows
that a + α = $i+1. Thus a?5' = ίci+1, a contradiction.

Case 2. fc is even and k ^ 4.
( i ) fc = 2t. Suppose there is an odd prime p such that p | k.

Then there is an integer i such that x* is of order p. Let x* — y.
Following the argument in Case 1, considering the subsemigroup
{0, a, y,y2

f , 2/p}, we reach a contradiction.
(ii) k — 2m. Since A; ̂  4, there is an element, say x\ of order

4. Let y-x\ Then the subsemigroup I?={0, α, y, ?/2, ̂ /3, ?/4} supports
a near-ring. The map /: B —> J5 defined by /(w) = yw is an automor-
phism of (2?, +) of order 4. But (B, -f) is either Z 6 or S3 and
neither one has an automorphism of order 4.

Combining Cases 1 and 2, we see that x2 — e.

LEMMA 14. Suppose e2 = e and a2 = 0. Let the group Ge = {se
S: se = s} be any one of the groups in Proposition 4 except Z2. If
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wa = ya for w, y e Ge, then w — y. Hence the orders of Ge and
Gea are the same.

Proof, wa = ya implies that y~lfwa = a. If y~ιw = e, then
y — w. If y~λw Φ e, by Lemma 13, (y^w)2 — e.

Since the group Ge supports a near-ring, it follows that (Ge, +, )
is a near-field. By [10, p. 239], x2 — e in a near-field implies that
x — e oτ x — —e. Thus t/"^ = e or —e.

Suppose SΓHO =. — e. Then w = y( — e) and y{ — e)a = wa = ?/α.
Thus ( — e)α = α.

There is an element z in Ge such that zk — e with & > 2. Now
if za Φ a, then {0, e, —e, a, za} is a subsemigroup that supports a
near-ring. Examining all the semigroups of the near-rings that are
defined on (Zδ, +) [2], the above semigroup is not one of them.
Hence za — a. By Lemma 13, either z = e or z2 = e, a contradic-
tion.

Thus 2/-1w = e and y = w.

REMARK 4. If the group Ge ^ Z2— {x, e), then it is possible
that xa — ea — a for some nilpotent element a. One such example
is [2, 2.1, #7].

Let us summarize and see what is happening at this point. Let
S be a finite hereditary NR-semigroup. Then for each x in S, either
xS = S or xS = 0. Clearly if xS = 0 for each x in S, then S is a
zero semigroup. If S is not a zero semigroup, for e = β2 ̂  0 in Sf

the set Ge = {s e S: se = s} is a group and Ge = Ge, for β' = (e')2 Φ 0.
If a is a zero divisor, then a2 = 0 and the order of (?e is the same
as the order of Gea = {#α: ̂  6 Ge} with the only exception of Ge

being isomorphic to Z2. Clearly the intersection of Ge and Gea is
empty. Since each Ge is a hereditary NR-semigroup, the structure
of Ge is given by Proposition 4. In § 5 we have determined how
many pieces of Ge's S can have in case that S is a near integral
domain. Now applying the same techniques, we can determine the
number of pieces for S in the case that S has proper zero divisors.
The following lemma eliminates a few possibilities.

LEMMA 15. Suppose S is a finite hereditary Nil-semigroup and
S is not a zero semigroup. Let e — e2 be in S. Then the order
of Ge cannot be 6, 12, or 24.

Proof. Let a Φ 0 be a zero divisor of S. By Lemma 14, the
two sets Ge and Gea have the same number of elements. If the
order of Ge is either 6, 12, or 24, then Ge has a subgroup T of
order 6. Thus T has a [subgroup B of order 3, and B U Ta is a
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subsemigroup with 9 elements. But this implies that the additive
group {B U Ta, +) has an automorphism of order 3, contradicting
Lemma 0.

THEOREM 3. Let S be a finite hereditary NR-semigroup such
that the near ring (S, +, •) is not a near integral domain. Then
either S is a zero semigroup or S is a union of groups and zero
semigroups as follows:

( i ) If Ge ^ Z2, then S* is a union of any number of Gβ's and
Gea where a2 = 0.

(ii) If Ge = Zz, then S* = Ge{J Gea, a2 = 0.
(iii) // Ge ~ Z±, then S* = Ge U Gea or S* = Ge U Gea U Geb or

S* = Ge U Ger U Gea U Ge,b or S* = Ge U Gea UGeb U Gec where a2^b2 =
c2 = 0.

(iv) If Ge = Z8, then S* = Ge U Gea or S* = Ge U Gea U Gβb,
a2 = b2 = 0.

7* Sufficient conditions* In the previous sections we have
determined the necessary conditions for a finite semigroup to be a
hereditary NR-semigroup. In this section we shall provide the
sufficient conditions. This will be accomplished, with a couple of
exceptions, by applying the following result to our construction of
NR-semigroups.

Let (G, +) be a group of order n and / be a ίixed-point-free
automorphism of (G, +) of order m. Suppose there is a positive
integer k such that n = km + 1. Let e1eG. Then the set A1 =
{f'Xei): 3 — If 2, , m} has m distinct elements. There is e2eG such
that e2 g Ax. Define A2 in a similar manner. Then it follows that
the family {At: t — 1, 2, , k] is pair wise disjoint and (G\0) =
\Jί=ί At = Ut=ιfj(et), j = 1,2, - -, m. Define the operations, * and
#, on G as follows:

f\eM)*f\et) = fi+ί(et), 1 ^ s, t ^ k; 1 S i, I £ m .

Let q be a fixed integer such that 1 <; q < k.

( f ί + ι ( e t ) , l ^ s ^ q < k ; 1 ^ i , l ^ m .
/*(O # f(et) = .

(0, q <s<,k

THEOREM 4. Lei (G, +) cmeZ the operations, * αmϊ #, be defined
as above. Then (G, +, *) is a near integral domain where each et

is a left identity and (G\0) is a union of cyclic groups of order
m. Also, (G, +, #) is a near-ring and (G\0) is a union of cyclic
groups of order m and a zero semigroup of order (k — q)m + 1.
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Proof. The proof is straightforward so will be omitted.
Since Lemma 14 (see Remark 4 also) did not treat the case

when Ge = Z2, the following result fills the gap. That is, we shall
show how to construct a near-ring from a semigroup S which is a
union of Z2s and zero semigroups. This is the sufficiency of (i) of
Theorem 3.

LEMMA 16. Suppose S is a union of Z2s and zero semigroups
of the form Z2a with a2 — 0. Then S is an "NR-semίgroup.

Proof. Recall from Remark 4, it is possible that xa — a for
x Φ e in Z2. So we have two cases to consider:

Case 1. Suppose there is an element a in S such that α2 — 0,
and xa = a, x Φ e is in Z2. Then S cannot have another element b
such that b2 = 0 and xb = b. This follows from the fact that no
near-ring can be defined on the semigroup {0, x, e, α, b}. Thus S is
a union of {0, x, e, a} and any number of Z2's and Z2b, b2 — 0. This
shows that S is of order 2ft. Let (S, +) ~ (Z2k, +). Then (S, +)
has a unique element of order two and using the map f{x) — — x,
and the operation % as defined in Theorem 4, it is easy to check
that (S, +, #) is a near-ring. Hence S is a NR-semigroup.

Case 2. Suppose xa Φ a for each a in S satisfying α2 = 0. Then
S is a union of Z2s and zero semigroups Z2a's; thus the order of
(S, +) is 2fc + 1. Let (S, +) = Z2fc+1 and the map /(a?) = — x satisfies
Theorem 4. This completes the proof.

Recall from Theorem 1 that if S is a finite hereditary NR-semi-
group and if (S, +, •) is a near integral domain, then S\0 is a union
of isomorphic groups Ge. If Ge — M, the metacyclic group of order
24, then S\0 = M[jMf with M = M', MΓi M'= φ, hence (S, +)
must be a group with 49 elements. Since the automorphism group
of 4̂9 is commutative, it follows that (S, +) = Z7 x Z7. If a near
integral domain can be defined on S = Z7 x Z7 so that S\O = M\JM',
it is necessary for the automorphism group of S to contain a sub-
group isomorphic to M. The next result will show that such a near
integral domain cannot exist.

First recall [4, Theorem 9.4.3], the metacyclic group M is
generated by x and y of orders 3 and 8 respectively with the rela-
tion xy — yx2. Let S — Z7 x Z7. Then the automorphism group of
S is isomorphic to GL (2, 7), the 2 by 2 nonsingular matrices over
Z7 [11, p. 130].
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THEOREM 5. // S = Z7 x Z7, then the automorphism group,
A(S), of S does not contain a subgroup isomorphic to the metacyclic
group M of order 24.

Proof. Suppose x and y are in A(S) = GL (2, 7) such that x* =
y8 = 1 and xy = yx2. Since the Jordan normal form of a matrix of
order 3 in GL (2, 7) is diagonal, x could be taken in diagonal form.
If the two diagonal entries of x were equal, x would be central in
GL (2, 7), and it follows that x2 == 1, a contradiction. If the two
diagonal entries are different, then the centralizer of x in GL (2, 7)
would consist of all the diagonal matrices and thus be isomorphic
to Z6 x Z6. Prom the relation xy = yx2, it follows that y~2xy2 —
y~ιx2y = y~λxyy~xxy = x* = #. Hence #?/2 = ?/2# and ?/2 is in the
centralizer of x. Since ?/2 is of order 4, we arrive at a contradic-
tion.

The above proof, due to the referee, is a considerable improve-
ment over that of the authors.

Finally we have the classification of finite hereditary NR-semi-
groups.

THEOREM 6. Let S be a finite semigroup. Then S is a here-
ditary NR-semigroup if and only if S is one of the following:

( I ) S is a zero semigroup.
(II) S is trivial (i.e., ab = b for α, beS).
(III) ( i ) S = Zn, n = 2, 4, 6, 8, 12, 16, 24, 48 and a Mersenne

prime;
(ϋ) S = Q8;
(iii) S = M, (see Proposition 4);
(iv) S = N.
(IV) S is a union of groups Ge with the number of pieces n:
( i ) Ge = ^ 2, n = & ̂  2, cm̂ / positive integer;
( i i ) G e = Z3, Zβ, Z 1 2 cmώ ̂ 2 4, w = 2;
(iii) Gβ = ^ 4, n = 2, 3, 4;
(iv) G e = Z8, n = 2, 3.
(V) S is a union of groups Ge and zero semigroups Gea, where

a2 = 0, and n is the total number of pieces of Ge and Gea:
( i ) Ge = Z2, n = k ^ 2, any positive integer;
(ii) Ge = Z3,n = 2;
(iii) Ge = ^ 4 , ^ - 2 , 3 , 4 ;
(iv) Ge = Z6,n = 2, 3.

Proof. The proof of (I) and (II) are obvious. The proof of
(III) is given by Proposition 4. The necessities for (IV) and (V) are
given by Theorem 1 and Theorem 3 respectively. The sufficiency
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for (i) of Theorem 3 is given by Lemma 16; while Theorem 5
demonstrates the nonexistence of a near integral domain with 49
elements whose nonzero elements are the union of two isomorphic
groups, the metacyclic cyclic group M of order 24. For the suffici-
encies of the rest of (IV) and (V), we shall employ Theorem 4. For
convenience, we present it in the table below. Column one denotes
the structure of Ge, while columns two and three denote the number
of pieces in (IV) and (V) respectively. Column four lists the addi-
tive group required by Theorem 4. Finally column five exhibits the
required fixed-point-free automorphisms dictated by Theorem 4.

We shall use 1 as the generator of Zn, and any matrix repre-
sentation of the automorphisms of Zn x Zn is relative to the basis
(1, 0) and (0, 1). The automorphism / in column five is of order
equal to that of Ge, as required by Theorem 4. The number k
denotes any positive integer.

Ge

z,
zz

z,
z>
z,
z.
zh

z.

z,

zu

(IV)
n

k

2

2

3

4

2

2

3

2

2

(V)
n

k

2

2

3

4

none

2

3

none

none

OS

z2k:

zs

z>

zt

Z7

Zr

zn

z17
za

zw

X Z,

x Z,

x Z7

feA(S)

/(I) = - 1
/(I) = 2

/(I) = 5
/(I) = 4
/(I) = 4
/(I) = 2

/ = (° X)
3 \12J

(2 3\

' - 6 4

8* Concluding remarks* Hereditary ring-semigroups were
classified completely in [8] and there were no infinite nontrivial ones,
The situation in hereditary NR-semigroups is quite different: (1) it
is not known whether there are infinite hereditary near-field groups
[7]; (2) there exists infinite hereditary NR-semigroups S. This can
be seen by taking (S, +) = (Z, +) and defining * on Z as in Theo-
rem 4, using f(x) — — x. Hence we may conclude this paper with
the following:



504 PATRICIA JONES AND STEVE LIGH

PROBLEM: Classify all the infinite hereditary NR-semigroups.
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