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RECURSION FORMULAS FOR THE
HOMOLOGY OF Ω(X V Y)

G. DϋLA AND E. KATZ

A recursion formula for H(Ω(X V Y))f the homology of
the loop space of the wedge of the spaces X and Y is
established when ΩX sinά ΩY are connected, and have finite
dimensional homology. The recursion formula is expressed
in terms of H(ΩX) and H(ΩY), and applies to dimensions
higher than a fixed integer which depends on the dimension
of the highest nonvanishing homologies of ΩX and ΩY.
A similar but much simpler recursion formula for H(ΩX) Π
H(ΩY), the co-product of the two algebras H{ΩX) and
H(ΩY) is also formulated. If Gλ and G2 are topological
groups and Gx * G2 is their co-product in the category, then
our results definitely hold for if((?i * G2) by replacing 42Xby
Gί9 ΩY by Gu and Ω(X V Y) by Gx * G2.

1* Introduction. Over a field H(Ω(X V Y)) equals H(ΩX) II
H(ΩY) [1] [2], a fact which substantially simplifies the problem
of computing the homology of Ω(X V Y). Over a Dedekind domain
a torsion factor is added [5] [3] which significantly complicates the
situation. Taking a principal ideal domain as the coefficient ring,
H(Ω(XV Y)) was computed in [3]. However, even if ΩX and ΩY
are finite dimensional, those computations call for an increasing
number of manipulations as the dimension of the homology to be
computed gets higher. If n± and n2 are the highest dimensions of
non vanishing homologies of ΩX, Ω Y, then for any k > 3(% + n2) + 4
we introduce a recursion formula which expresses Hk(Ω(X V Y)) in
terms of Ht(Ω(X V Y)) i < k. The number of computations does not
increase with k. Of course Hi(Ω(X V Y)) with i <; 3(% + n2)+4 has
to be computed independently, for example by the method of [5].

In §2 we state the result of [5] in a generalized form which
will be used here. We also present in this section most of the
relevant notation of this paper. Recursion formulas in general are
introduced in §3. The recursion formula for the free component of
H(Ω(X V Y)) is presented in §4. In §5 we derive a recursion
formula for H(ΩX) U H(ΩY). The main result which is a recursion
formula for the torsion component of H(Ω(X V Y)) is proved in §6.
We close with an application by computing Jϊ(SO3*SO3).

The ring R will always be a principal ideal domain. The nota-
tion and terminology are those of [5].

2. The holomogy of Ω(X V Y) in dimension fc> Let Lj be
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free resolutions of t h e modules A', j = 1,2, ••-,%. Define
mult? (A1, •• ,An) = HIV <g> <g> L»). We have [3]:

Hk(Ω(X V Y)) = Σ Σ Σ mult? {Hrχ{ΩXd, ••-, Hrn(ΩXn))
n=l ΐ=i Σrt+i=k

where r = (rl9 * , Ό is a sequence of nonnegative integers, j =
(Jif "mt On) is a sequence alternating on 1, 2, and ΩX2 = ΩY. Thus
the next step is to express explicitly the elements in the above
summation. However, we first introduce some extra notation:

( i ) mult? (j, r) = mult? (Hri(ΩXh), , 8r%(ΩXJt)).
(ii) R(M) = the number of R direct summands in the module

M.
Rph{M) = the number of Rpk direct summands in M where p is

a prime in R and h is a nonnegative integer.
(iii) at = Ri&tψX)), bt = R{Ht{ΩY)),

c< = ΣΛ >kRMSt(ΩX)), e± = ZH'ZHR
d{ = Σ.^RMHiiΩY)), dt = Σ.^RM

(iv) mt(l) = the number of times that Ht(ΩXt) appears in
mult? (j, r), t = 1, 2, I = 1, 2, , fc.

( v ) φ(su •••,sk,tί, -,tk) = EL, et'dV - Π?=x
f(Su ••;8t,t1,' ;ti) = Π t x ( ι(")αί i<''-» Π?-i G?(l)δ
where 0 ^ s, ^ m^i), 0 ^ ί, ^ m2(i) and

2 > \ _ ( 0 9 > P or g < 0

q j \l q = p or 0 = q <p

Pi
(P - «)!<?!

With this notation we have [3]:

otherwise .

THEOREM 1. i?(mult? (j, r)) = Πf=i «Γl(" bT2°\

Rph(rau\t7 (j, r ) ) = Σ ψ(su •• ,tk) φ(su • • •, tk)(ί§ ( S ' +

We close this section with some further notation:

H(Ω(X V Y)) = mult0 {ΩX, ΩY)® mult1 (ΩX, ΩY)

where mult°(AX, ύ Γ ) = Σ i r mult? (j, r)

mult1 (ΛJSΓ, fiΓ) = Σ Σ Σ mult? (j, r) .
n=l i=ί j,r

Note that multo(i2X, ΩY) is exactly H(ΩX) U H(ΩY).
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3* Recursion formulas* In this section we will make the general
preparation for setting up the recursion formulas mentioned in the
introduction.

Let {cr}~=1 be a sequence of numbers, and q(x) = 1 — uλx —
u2x

2 — . . . — UιXι a polynomial. We define a new sequence {cj.}?=1 as
follows:

The sequence {cr} satisfies the recursion formula corresponding
to the polynomial q(x) at t if el — qt{cr} == 0.

The following results will be very useful for the sequel:

LEMMA 1. Let p(x)9 q(x) be polynomials and {cr}~=1 a sequence
of numbers. Then:

Qt{ps{cr}} =

where (pq)(x) — p{x) q(x)9 the product of the two polynomials.

Proof. For p(x) = Σi=o w^1 and q{x) — Σi=o Vft* we have:

I I k

Qt{Ps{Cr}} = Σ VjPt-άCr) = Σ V; Σ ttA-H

= Σ Σ

which completes the proof.

LEMMA 2. Lβ£ {̂ r}?=i satisfy the polynomial p(x) = Σΐ=o w^1 at
t,t — l,-—,t — l, and {dr}?=1 satisfy the polynomial q{x) — Σy=o VjX*
at t,t — l,'—,t — k. Then the sequence {cr + dr}^± satisfies the
polynomial q(x) - p(x) at t.

Proof.

(qp)t{cr + dr) = (qp)t{cr) + (pq)t{dr)

= Qt{Pt{cr}} + Pt{Qt{dr}}
I k

= Σ VjPt-ACr) + Σ UiQt-i{dr} = 0 .

We are now ready for the construction of the recursion formulas.

4* A recursion formula for the free part of H(Ω(X V
Our interest in this section is focused on the sequence {ak} where

ak = R(Hk(Ω(X V Y))) .
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Since H(Ω{X V Y)) = H(ΩX) U HψY) φ mult1 (ΩX, ΩY) and

Rimnlt1 (ΩX, ΩY)) = 0

we actually have ak = R{H{ΩX) U H{ΩY)k) k^l.

THEOREM 2. Let

R(Hi(ΩX))=\° * > ^

[bt i ^ n2 .

Then the sequence {(xk}ΐ=0 satisfies the recursion formula:

gx(x) = 1 - Σ Σ aibjXi+j , /or α τ̂/ A; > wx +

Γ/̂ e proof of this theorem derives from the following:

PROPOSITION 1. ak = α, + 6fc + 2 Σ ί +;=* ^ί>, + Ei+i<fc

Proof. According to the definition of ak we have

α * = . Σ multfO', r) .

We can split up this sum into, α*. = A + B + C, where:

A= Σ Λ(mult5 (i, ?•))
l i f c )

C= Σ B(mult? (i, »•))

Next we compute each term separately:

A = Λ(multi (Hk(ΩX))) + β(multj (Hk(ΩY))) = ak + bk

B = r Σ_fc Λ(multJ ((1, 2), r)) + ^ Σ_ t Λ(multJ ((2, 1), r))

= V α . ft + Σ δ n αr2 = 2 Σ αΛΣ
The computation of C is somewhat more complicated. Let mult? (j, r)
be a direct summand of (mult^^X, ΩY))k, with n ^ 3. We denote
/ = (^, . . . , ^_2) and f = (rx, , rn_2). Then it is not difficult to
see that:

? (i, r)) = R{ΩXin_) - R(ΩXόn). Λ(multf (/,
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Summing up the last equality on the proper possibilites of j and r
we get the desired equality for A.

Proof of Theorem 2. If k > nλ + n2 then each one of ak, bk and
aibά with i + j = k, equals zero. Thus for k > nx + n2 the equation
of Proposition 2 reduces to:

which is exactly the result of Theorem 2.

5* A recursion formula for the torsion component of H(ΩX) JJ
H(ΩY). In this section we want to find a convenient way of ex-
pressing the k dimensional part of H(ΩX) Π H(ΩY). We do it by
forming a recursion formula for the number of Rph direct summands
in each dimension, for each Rph, which is a direct summand of either
H{ΩX) or ff(ΩY). If Rph is one of these modules, we denote:

βk = Rph(H(ΩX)l[H(ΩY)) .

THEOREM 3. Let n3 and n4 be integers such that: ak + ck > 0
implies that k ^ n3 and bk + dk > 0 implies that k <^ n4. Consider
the polynomials:

n3 n4 _

q2(x) = 1 — Σ Σ (ai + ct)(b, + dj)xi+j

ns n4

.—. "I \ ' \ ' (ri I /> \(Tr\ I rJ \/y*1'-\~3

for k > 2{n3 + n4) the polynomial q2(x) q3(x) corresponds to the
recursion formula for {βk}t=1.

For the proof we need some intermediate result as well as some
auxiliary functions. The following functions are similar to functions
introduced in §2.

( i ) Φ\8lf , 8*, *!, , t*) = cJ1 cϊ* dί1 dlk

( i i ) R p h ( m \ i l t ? (j, r)) — Σ ψ(si> • • • > * * ) • Φ\si9 • • - , * * )

(ϋi) /Si = Σ ΛWmult? (i, r)) .

Note that in the expression Rph(m\xlto(j\ r)) the binomial term
Σ?=i si + tι - 1^ c a n b e o^tte^^ F o r if 2* β i 8 l + t, ^ l the binomial
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t e r m equals 1, and if ΣfU*z + *« = O t h e function φ(su •••,<*) is
zero.

PROPOSITION 2.

βk = (fih ~ <>k) + (dk - dk)

+ 2 Σ [(α, + c,)(δy - dy) - (α, + c4)(6y + dy)]

+ Σ (α* + cMbj + d^k_^
i+j<k

+ Σ [(α< + W * + di) - (α, + ci){bj + d,)]/9i_i-i

Proof. We split up /3fc into three, βk = Σ»,i,-rt=* i^(mult£(j, r)) =
A + B + C, and compute each term separately:

A - Λ,*(multJ ((1), (fc))) + Λ,*(multJ ((2), (fc)))

B= Σ i?^(mult0

2 (i, r)) = 2 Σ RAH^ΩX)® Hό{ΩY))
3 Σrt=k i + k=k

= 2 Σ [(fli + c{)(h + 3,) - (flt + dXbi + di)] .
i+j=k

The'jast term is more complicated, and needs some preliminary
computations. For n >̂ 3 and j = O'x, , i j , r = (rx, , rn) we
denote / = (jlf -. , iw_2), f = (rx, , r%_2). If jn_λ = 1 and j n = 2
we denote ̂ the following:

i Φ rn

Consider the following:

Λ,»(mult? 0 » ) = Σ Π ' α1"1'"""
- X / 7 \ » — I

x π

where each of the U{ equals the previous sum except that
ίm^r ) + 1 V 4 W + 1\ i s r e p l a c e d b y o n e o f t h
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^ r , , ^ / m2(rj \ / ra^r^) \ / m2 \

respectively. Now we compare mult? (j, r) with mult? 2 (i, f):

pk mult?"2 (/, f) ,

U, - arΛ_βrΛ • Rph multΓ2(/, f)

x #(«!, . , trn + 1, - , tk) - ar|l_ldril22pfc(mult?"2 (/, f))

= .„_. Σ πJC"-( i >)(M;( ί ))-<. »-"r«-»
βS.,sάl

x fo(βlf , trn + 1, , ίfc) - d ^ β i , , tk)]

^ t?-f (/, f)) ,

. . A π Λ J t Γ 2 ( j , f))

4̂ - cr._ldr,,i2,*(multf-«(/f r)) = ( ί , , . ^ , - β , . . ^ J i

Adding up the last equations we get:

tZ(j, r)) - (α r._1 + ^ . . ^ ( δ , . + drJRpk(mu\tΓz U,

= [(«,„_! + cj(brn + dj - (α,,^ + c^JCδ,. + drj]

x EWmulto"-2 (/, f)) .

We observe that the equation holds also when j n ^ = 2, j n = 1 and
r = (rlt , rn_2, rn, rn_x). Summing up the later equation for all j
and r, we get:

C= Σ (o, + cd(bi + d3)βk_^ + Σ (at + ?,)(&, + dt)

- (α, + c * ) ^ + <23 ) /3L w

This concludes the proof of Proposition 2:
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P R O P O S I T I O N 3.

β\ = (ak + ck) + (bk + dk) + 2 Σ (α,

+ Σ (αf + cjφ, + d,)/Sl_4_, .

Although the proof of this proposition is lengthy, it is similar
to the proof of Proposition 2 and will therefore be skipped.

Proof of Theorem 3. Under the conditions of the theorem, the
formulas of βk and βk reduce to the following:

+ Σ Σ [fa + CtXbj + dj) - (a, + cXft, + ώi)]/5Lί-, .

We observe that:

(β*{βι))k = Σ Σ [(α, + cjφt + dy) - (α, + CM; + ^OliβLί-i
i=l 5=1

(Qz{β\))k = 0 .

As a consequence of the results of §3 the proof of the theorem
is obtained.

6* A recursion formula for the torsion component of
H(Ω(X V Y)). We denote the number of Rph direct summands in.
Hk(Ω(X V Y)) by yk. A recursion formula for {yk} will be stated
next precisely:

THEOREM 4. Let ni9 n4 satisfy: di + CiX) and b5 + dά>Q imply
that i<| ns, j ^ n4.

Denote:

?*(*) = 1 - Σ Σ KM'+ί + ( α ^ + ftyc^ίί'+^l + x) + My«<+i(l + ^)2]

?5(») = 1 - Σ Σ [ ^ i + i + fads + 6Λ)α?<+ (̂l + x) + M ^ + ^ l + ^)2] .
i = l j=l

Then {7fc}ϊLi satisfies the recursion formula corresponding to q4{x) x
?β(») * 9i0*0 a t a n y fc > 3(̂ 3 + nA) + 4.

The proof of Theorem 4 is much more complicated than the
proofs of the previous theorems. However, in principal it is similar
to them. We state the intermediate results and leave the proofs
for the reader. We denote:
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7l = Σ Σ Σ RιAmnlt7 (j, r)) .
1 io +i k

459

PROPOSITION 4.

= [(ck - c^

+ 2 Σ
(d* - dk)}

- (α, + eύφj + d3)}

+ 2

Σ {Vib

Σ
ifc

PROPOSITION 5.

7& = cfc + dk + 2 Σ {(«< + et) (6, + dj) -

+ 2 Σ c4j + Σ {(α^/rU-f + a4
i 4 fcl i + j<k

+ (eh + daa, + Cidύa^t-j} .

7 An example* In this section we apply the recursion formulas
obtained, to compute the holomogy of the free product of two
groups GX*G2. Our method holds in this case, for GX*G2 is of the
homotopy type of Ω(BG1 V BG2) and ΩBGt is of the homotopy type
of Gi i = 1, 2, where J3G* is the classifying space of Gif i = 1,2,
[4], [7]. We actually demonstrate our method of computation on the
free product of the special orthogonal group SO3 with itself. The
homology of SO3 is computed [6] and equals:

Hj(SO3) =

j = 0, 3

,0 otherwise

We are content with this group, because though its homology is
simple the homology of SO3*SO3 is infinite dimensional and com-
plicated.

The recursion formulas for {ak}9 {βk} and {yk} can be applied only
to k > nγ + ni9 2(nB + n^, 3(w3 + nA) + 4 respectively, when we know
the sequences in lower dimensions. Of course {βk} and {yk} cor-
respond to the number of Z2 summands. The sequences of {ak} and
{γfc} in the lower dimensions were computed in [3], essentially by
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the use of the formulas of §2. {βk} can be computed similarly.
We summarize these results in the following table:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

a

0

0

2

0

0

2

0

0

2

0

0

2

0

0

2

0

0

2

β

2

2

2

6

8

10

18

26

36

56

82

118

176

258

376

554

812

1188

r

2

2

4

10

16

30

58

104

192

356

652

1200

2210

4062

7472

13746

25280

46498

Where the numbers beneath the heavy lines can be computed by the
recursion formulas as will be seen presently.

The recursion formulas are the following:

q,(x) = 1 - x6

q2{x) = 1 - x2 - 2x" - x6

qz(x) = 1 - x6

= 1 - x2 - 2x4 - 2xQ + x8 + 2x10 + x12

1 __ /y»2 ^?Λ*^ ^o*^ — ^^v ^ /> ̂
ιΛ/ ώJtΛ/ CJ<Λ/ ^JtΛ/ ιΛ/

qb(x) = l - x 6

= 1- x2 - 2xd - 3α4 - 2x5 2x6

As to that ζhOr) = qδ(x),

7.

[OJ) expresses the recursion formula for

For example, to obtain yί7 we substitute into:

7 l 7 = 715 + 27i4 + 3713 + 2712 + 27π - 79 - 278 - 377 - 276 - 75 = 25280 .
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