RECURSION FORMULAS FOR THE HOMOLOGY OF $\Omega(X \vee Y)$

G. Dula and E. Katz

Abstract

A recursion formula for $H(\Omega(X \vee Y))$, the homology of the loop space of the wedge of the spaces X and Y is established when ΩX and ΩY are connected, and have finite dimensional homology. The recursion formula is expressed in terms of $H(\Omega X)$ and $H(\Omega Y)$, and applies to dimensions higher than a fixed integer which depends on the dimension of the highest nonvanishing homologies of ΩX and ΩY. A similar but much simpler recursion formula for $H(\Omega X)$ II $H(\Omega Y)$, the co-product of the two algebras $H(\Omega X)$ and $H(\Omega Y)$ is also formulated. If G_{1} and G_{2} are topological groups and $G_{1} * G_{2}$ is their co-product in the category, then our results definitely hold for $H\left(G_{1} * G_{2}\right)$ by replacing ΩX by $G_{1}, \Omega Y$ by G_{2}, and $\Omega(X \vee Y)$ by $G_{1} * G_{2}$.

1. Introduction. Over a field $H(\Omega(X \vee Y))$ equals $H(\Omega X) \amalg$ $H(\Omega Y)$ [1] [2], a fact which substantially simplifies the problem of computing the homology of $\Omega(X \vee Y)$. Over a Dedekind domain a torsion factor is added [5] [3] which significantly complicates the situation. Taking a principal ideal domain as the coefficient ring, $H(\Omega(X \vee Y))$ was computed in [3]. However, even if ΩX and ΩY are finite dimensional, those computations call for an increasing number of manipulations as the dimension of the homology to be computed gets higher. If n_{1} and n_{2} are the highest dimensions of non vanishing homologies of $\Omega X, \Omega Y$, then for any $k>3\left(n_{1}+n_{2}\right)+4$ we introduce a recursion formula which expresses $H_{k}(\Omega(X \vee Y))$ in terms of $H_{i}(\Omega(X \vee Y)) i<k$. The number of computations does not increase with k. Of course $H_{i}\left(\Omega(X \vee Y)\right.$) with $i \leqq 3\left(n_{1}+n_{2}\right)_{+4}$ has to be computed independently, for example by the method of [5].

In §2 we state the result of [5] in a generalized form which will be used here. We also present in this section most of the relevant notation of this paper. Recursion formulas in general are introduced in §3. The recursion formula for the free component of $H(\Omega(X \vee Y))$ is presented in $\S 4$. In $\S 5$ we derive a recursion formula for $H(\Omega X) \amalg H(\Omega Y)$. The main result which is a recursion formula for the torsion component of $H(\Omega(X \vee Y))$ is proved in $\S 6$. We close with an application by computing $H\left(\mathrm{SO}_{3} * \mathrm{SO}_{3}\right)$.

The ring R will always be a principal ideal domain. The notation and terminology are those of [5].
2. The holomogy of $\Omega(X \vee Y)$ in dimension k. Let L^{j} be
free resolutions of the modules $A^{j}, \quad j=1,2, \cdots, n$. Define $\operatorname{mult}_{i}^{n}\left(A^{1}, \cdots, A^{n}\right)=H_{i}\left(L^{1} \otimes \cdots \otimes L^{n}\right)$. We have [3]:

$$
\widetilde{H}_{k}(\Omega(X \vee Y))=\sum_{n=1}^{\infty} \sum_{i=1}^{n-1} \sum_{\Sigma r_{t}+i=k} \operatorname{mult}_{i}^{n}\left(\widetilde{H}_{r_{1}}\left(\Omega X_{1}\right), \cdots, \widetilde{H}_{r_{n}}\left(\Omega X_{n}\right)\right)
$$

where $r=\left(r_{1}, \cdots, r_{n}\right)$ is a sequence of nonnegative integers, $j=$ (j_{1}, \cdots, j_{n}) is a sequence alternating on 1,2 , and $\Omega X_{2}=\Omega Y$. Thus the next step is to express explicitly the elements in the above summation. However, we first introduce some extra notation:
(i) mult ${ }_{i}^{n}(j, r)=\operatorname{mult}_{i}^{n}\left(\widetilde{H}_{r_{1}}\left(\Omega X_{j_{1}}\right), \cdots, \widetilde{H}_{r_{n}}\left(\Omega X_{j_{n}}\right)\right)$.
(ii) $\quad R(M)=$ the number of R direct summands in the module M.
$R_{p^{h}}(M)=$ the number of $R_{p^{h}}$ direct summands in M where p is a prime in R and h is a nonnegative integer.
(iii) $\quad a_{i}=R\left(\widetilde{H}_{i}(\Omega X)\right), \quad b_{i}=R\left(H_{i}(\Omega Y)\right)$,
$c_{i}=\sum_{h^{\prime}>h} R_{p^{h}}\left(\widetilde{H}_{i}(\Omega X)\right), \bar{c}_{i}=\sum_{h^{\prime} \geqq h} R_{p^{h}}\left(\widetilde{H}_{i}(\Omega X)\right)$,
$d_{i}=\sum_{h^{\prime}>h} R_{p^{h}}\left(\tilde{H}_{i}(\Omega Y)\right), \bar{d}_{i}=\sum_{h^{\prime} \geqq h} R_{p^{h}}\left(\tilde{H}_{i}(\Omega Y)\right)$.
(iv) $m_{t}(l)=$ the number of times that $H_{l}\left(\Omega X_{t}\right)$ appears in $\operatorname{mult}_{i}^{n}(j, r), t=1,2, l=1,2, \cdots, k$.
(v) $\phi\left(s_{1}, \cdots, s_{k}, t_{1}, \cdots, t_{k}\right)=\prod_{l=1}^{k} \bar{c}_{l}^{s} \bar{d}_{l}^{\bar{d}_{l}}-\prod_{l=1}^{k} c_{l}^{s} d_{l}^{t}$, $\left.\psi\left(s_{1}, \cdots, s_{k}, t_{1}, \cdots, t_{k}\right)=\prod_{l=1}^{k}{ }_{\left(m_{l}\right.}^{\left(m_{1}(l)\right.}\right) a_{l}^{\left(n_{1}(l)-s_{l}\right)} \cdot \prod_{l=1}^{k}{ }_{\left(\begin{array}{c}m_{2}(l) \\ t_{l}\end{array} b_{l}^{\left(m_{2}(l)-t_{l}\right.}\right)}^{\left(m_{2}\right)}$ where $0 \leqq s_{l} \leqq m_{1}(l), 0 \leqq t_{l} \leqq m_{2}(l)$ and

$$
\begin{aligned}
\binom{p}{q} & =\left\{\begin{array}{lll}
0 & q>p & \text { or } \quad q<0 \\
1 & q=p & \text { or } \quad 0=q<p
\end{array}\right. \\
& \frac{p!}{(p-q)!q!} \quad \text { otherwise }
\end{aligned}
$$

With this notation we have [3]:
THEOREM 1. $\quad R\left(\right.$ mult $\left._{0}^{n}(j, r)\right)=\prod_{l=1}^{k} a_{l}^{m_{1}(l)} \cdot b_{l}^{m_{2}(l)}$,

$$
R_{p^{h}\left(\operatorname{mult}_{i}^{n}(j, r)\right)=} \sum_{\substack{0 \leq s_{l} \leq m_{1}(l) \\ 0 \leq l \leq m_{2}(l) \\ 0 \leqq l \leq k}} \psi\left(s_{1}, \cdots, t_{k}\right) \cdot \phi\left(s_{1}, \cdots, t_{k}\right)\binom{\sum_{l=1}^{k}\left(s_{l}+t_{l}\right)-1}{i} .
$$

We close this section with some further notation:

$$
\widetilde{H}(\Omega(X \vee Y))=\operatorname{mult}^{0}(\Omega X, \Omega Y) \oplus \operatorname{mult}^{1}(\Omega X, \Omega Y)
$$

where $\operatorname{mult}^{0}(\Omega X, \Omega Y)=\sum_{n, j, r} \operatorname{mult}_{0}^{n}(j, r)$

$$
\operatorname{mult}^{1}(\Omega X, \Omega Y)=\sum_{n=1}^{\infty} \sum_{i=1}^{n-1} \sum_{j, r} \operatorname{mult}_{i}^{n}(j, r)
$$

Note that mult ${ }^{0}(\Omega X, \Omega Y)$ is exactly $H(\Omega X) \amalg H(\Omega Y)$.
3. Recursion formulas. In this section we will make the general preparation for setting up the recursion formulas mentioned in the introduction.

Let $\left\{c_{r}\right\}_{r=1}^{\infty}$ be a sequence of numbers, and $q(x)=1-u_{1} x-$ $u_{2} x^{2}-\cdots-u_{l} x^{l}$ a polynomial. We define a new sequence $\left\{c_{r}^{\prime}\right\}_{r=1}^{\infty}$ as follows:

$$
c_{t}^{\prime}=q_{t}\left\{c_{r}\right\}=c_{t}-u_{1} c_{t-1}-\cdots-u_{l} c_{t-l}
$$

The sequence $\left\{c_{r}\right\}$ satisfies the recursion formula corresponding to the polynomial $q(x)$ at t if $c_{t}^{\prime}=q_{t}\left\{c_{r}\right\}=0$.

The following results will be very useful for the sequel:
Lemma 1. Let $p(x), q(x)$ be polynomials and $\left\{c_{r}\right\}_{r=1}^{\infty}$ a sequence of numbers. Then:

$$
q_{t}\left\{p_{s}\left\{c_{r}\right\}\right\}=(p q)_{t}\left\{c_{r}\right\}
$$

where $(p q)(x)=p(x) \cdot q(x)$, the product of the two polynomials.
Proof. For $p(x)=\sum_{i=0}^{k} u_{i} x^{i}$ and $q(x)=\sum_{j=0}^{l} v_{j} x^{j}$ we have:

$$
\begin{aligned}
q_{t}\left\{p_{s}\left\{c_{r}\right\}\right\} & =\sum_{j=0}^{l} v_{j} p_{t-j}\left\{c_{r}\right\}=\sum_{j=0}^{l} v_{j} \sum_{i=0}^{k} u_{i} c_{t-j-i} \\
& =\sum_{h=0}^{l+k} \sum_{i+j=h} u_{i} v_{j} c_{t-h}=(p q)_{t}\left\{c_{r}\right\},
\end{aligned}
$$

which completes the proof.
Lemma 2. Let $\left\{c_{r}\right\}_{r=1}^{\infty}$ satisfy the polynomial $p(x)=\sum_{i=0}^{k} u_{i} x^{i}$ at $t, t-1, \cdots, t-l$, and $\left\{d_{r}\right\}_{r=1}^{\infty}$ satisfy the polynomial $q(x)=\sum_{j=0}^{l} v_{j} x^{j}$ at $t, t-1, \cdots, t-k$. Then the sequence $\left\{c_{r}+d_{r}\right\}_{r=1}^{\infty}$ satisfies the polynomial $q(x) \cdot p(x)$ at t.

Proof.

$$
\begin{aligned}
(q p)_{t} & \left\{c_{r}+d_{r}\right\}=(q p)_{t}\left\{c_{r}\right\}+(p q)_{t}\left\{d_{r}\right\} \\
& =q_{t}\left\{p_{t}\left\{c_{r}\right\}\right\}+p_{t}\left\{q_{t}\left\{d_{r}\right\}\right\} \\
& =\sum_{j=0}^{l} v_{j} p_{t-j}\left\{c_{r}\right\}+\sum_{i=0}^{k} u_{i} q_{t-i}\left\{d_{r}\right\}=0
\end{aligned}
$$

We are now ready for the construction of the recursion formulas.
4. A recursion formula for the free part of $H(\Omega(X \vee Y))$. Our interest in this section is focused on the sequence $\left\{\alpha_{k}\right\}$ where

$$
\alpha_{k}=R\left(\widetilde{H}_{k}(\Omega(X \vee Y))\right) .
$$

Since $\tilde{H}(\Omega(X \vee Y))=\tilde{H}(\Omega X) \amalg \tilde{H}(\Omega Y) \oplus \operatorname{mult}^{1}(\Omega X, \Omega Y)$ and

$$
R\left(\operatorname{mult}^{1}(\Omega X, \Omega Y)\right)=0
$$

we actually have $\alpha_{k}=R\left(\widetilde{H}(\Omega X) \amalg \widetilde{H}(\Omega Y)_{k}\right) k \geqq 1$.
Theorem 2. Let

$$
\begin{aligned}
R\left(H_{i}(\Omega X)\right) & = \begin{cases}0 & i>n_{1} \\
a_{i} & i \leqq n_{1}\end{cases} \\
R\left(H_{i}(\Omega Y)\right) & = \begin{cases}0 & i>n_{2} \\
b_{i} & i \leqq n_{2}\end{cases}
\end{aligned}
$$

Then the sequence $\left\{\alpha_{k}\right\}_{k=0}^{\infty}$ satisfies the recursion formula:

$$
q_{1}(x)=1-\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{1}} a_{i} b_{j} x^{i+j}, \quad \text { for any } k>n_{1}+n_{2} .
$$

The proof of this theorem derives from the following:

PROPOSITION 1. $\alpha_{k}=a_{k}+b_{k}+2 \sum_{i+j=k} a_{i} b_{j}+\sum_{i+j<k} a_{i} b_{j} \alpha_{k-i-j}$.
Proof. According to the definition of α_{k} we have

$$
\alpha_{k}=\sum_{n j, \sum r_{t}=k} \operatorname{mult}_{0}^{n}(j, r)
$$

We can split up this sum into, $\alpha_{k}=A+B+C$, where:

$$
\begin{aligned}
& A=\sum_{n=1, j, r=(k)} R\left(\operatorname{mult}_{0}^{1}(j, r)\right) \\
& B=\sum_{n=2, j, \Sigma_{r_{t}}=k} R\left(\text { mult }_{0}^{2}(j, r)\right) \\
& C=\sum_{n \geq 3, j, r^{2} r_{t}=k} R\left(\text { mult }_{0}^{n}(j, r)\right) .
\end{aligned}
$$

Next we compute each term separately:

$$
\begin{aligned}
A= & R\left(\operatorname{mult}_{0}^{1}\left(\widetilde{H}_{k}(\Omega X)\right)\right)+R\left(\operatorname{mult}_{0}^{1}\left(\widetilde{H}_{k}(\Omega Y)\right)\right)=a_{k}+b_{k} \\
B= & \sum_{r_{1}+r_{2}=k} R\left(\operatorname{mult}_{0}^{2}((1,2), r)\right)+\sum_{r_{1}+r_{2}=k} R\left(\operatorname{mult} t_{0}^{2}((2,1), r)\right) \\
& =\sum_{r_{1}+r_{2}=k} a_{r_{1}} \cdot b_{r_{2}}+\sum_{r_{1}+r_{2}=k} b_{r_{1}} \cdot a_{r_{2}}=2 \sum_{i+j=k} a_{i} b_{j}
\end{aligned}
$$

The computation of C is somewhat more complicated. Let mult ${ }_{0}^{n}(j, r)$ be a direct summand of (mult $\left.{ }^{0}(\Omega X, \Omega Y)\right)_{k}$, with $n \geqq 3$. We denote $\hat{j}=\left(j_{1}, \cdots, j_{n-2}\right)$ and $\hat{r}=\left(r_{1}, \cdots, r_{n-2}\right)$. Then it is not difficult to see that:

$$
R\left(\operatorname{mult}_{0}^{n}(j, r)\right)=R\left(\Omega X_{j_{n-1}}\right) \cdot R\left(\Omega X_{j_{n}}\right) \cdot R\left(\operatorname{mult}_{0}^{n}(\hat{j}, \hat{r})\right)
$$

Summing up the last equality on the proper possibilites of j and r we get the desired equality for A.

Proof of Theorem 2. If $k>n_{1}+n_{2}$ then each one of a_{k}, b_{k} and $a_{i} b_{j}$ with $i+j=k$, equals zero. Thus for $k>n_{1}+n_{2}$ the equation of Proposition 2 reduces to:

$$
\alpha_{k}=\sum_{i+j<k} a_{i} b_{j} \alpha_{k-i-j}=\sum_{\substack{i \leq n_{1} \\ j \leq n_{2}}} a_{i} b_{j} \alpha_{k-i-j},
$$

which is exactly the result of Theorem 2.
5. A recursion formula for the torsion component of $H(\Omega X)$ I $H(\Omega Y)$. In this section we want to find a convenient way of expressing the k dimensional part of $H(\Omega X) \amalg H(\Omega Y)$. We do it by forming a recursion formula for the number of $R_{p^{h}}$ direct summands in each dimension, for each $R_{p h}$, which is a direct summand of either $\tilde{H}(\Omega X)$ or $\tilde{H}(\Omega Y)$. If $R_{p^{k}}$ is one of these modules, we denote:

$$
\beta_{k}=R_{p^{k}}(\tilde{H}(\Omega X) \amalg \tilde{H}(\Omega Y)) .
$$

THEOREM 3. Let n_{3} and n_{4} be integers such that: $a_{k}+\bar{c}_{k}>0$ implies that $k \leqq n_{3}$ and $b_{k}+\bar{d}_{k}>0$ implies that $k \leqq n_{4}$. Consider the polynomials:

$$
\begin{aligned}
& q_{2}(x)=1-\sum_{i=1}^{n_{3}} \sum_{j=1}^{n_{4}}\left(a_{i}+\bar{c}_{i}\right)\left(b_{j}+\bar{d}_{j}\right) x^{i+j} \\
& q_{3}(x)=1-\sum_{i=1}^{n_{3}} \sum_{j=1}^{n_{4}}\left(a_{i}+c_{i}\right)\left(b_{j}+d_{j}\right) x^{i+j}
\end{aligned}
$$

Then for $k>2\left(n_{3}+n_{4}\right)$ the polynomial $q_{2}(x) \cdot q_{3}(x)$ corresponds to the recursion formula for $\left\{\beta_{k}\right\}_{k=1}^{\infty}$.

For the proof we need some intermediate result as well as some auxiliary functions. The following functions are similar to functions introduced in §2.

$$
\begin{equation*}
\phi^{1}\left(s_{1}, \cdots, s_{k}, t_{1}, \cdots, t_{k}\right)=c_{1}^{s_{1}} \cdots c_{k}^{s_{k}} \cdot d_{1}^{t_{1}} \cdots d_{k^{\prime} k}^{t_{k}} \tag{i}
\end{equation*}
$$

(ii) $R_{p^{h} h}^{1}\left(\operatorname{mult}_{i}^{n}(j, r)\right)=\sum_{\substack{0 \leq s_{l} \leq m_{1}(l) \\ 0 \leq l \leq m_{1} \\ 1 \leq l \leq m_{2}(l)}} \psi\left(s_{1}, \cdots, t_{k}\right) \cdot \phi^{1}\left(s_{1}, \cdots, t_{k}\right)\binom{\sum_{l=1}^{k} s_{l}+t_{l}-1}{i}$.

$$
\begin{equation*}
\beta_{k}^{1}=\sum_{n, j,=r_{t}=k} R_{p}^{1}\left(\operatorname{mult}_{0}^{n}(j, r)\right) \tag{iii}
\end{equation*}
$$

Note that in the expression $R_{p^{n}}\left(\right.$ mult $\left._{0}^{n}(j, r)\right)$ the binomial term $\binom{\sum_{l=1}^{k} s_{l}+t_{l}-1}{0}$ can be omitted. For if $\sum_{l=1}^{k} s_{l}+t_{l} \geqq 1$ the binomial
term equals 1 , and if $\sum_{l=1}^{k} s_{l}+t_{l}=0$ the function $\phi\left(s_{1}, \cdots, t_{k}\right)$ is zero.

Proposition 2.

$$
\begin{aligned}
\beta_{k}= & \left(\bar{c}_{k}-c_{k}\right)+\left(\bar{d}_{k}-d_{k}\right) \\
& +2 \sum_{i+j=k}\left[\left(a_{i}+\bar{c}_{i}\right)\left(b_{j}-\bar{d}_{j}\right)-\left(a_{i}+c_{i}\right)\left(b_{j}+d_{j}\right)\right] \\
& +\sum_{i+j<k}\left(a_{i}+\bar{c}_{i}\right)\left(b_{j}+\bar{d}_{j}\right) \beta_{k-i-j} \\
& +\sum_{i+j=k}\left[\left(a_{i}+\bar{c}_{i}\right)\left(b_{k}+\bar{d}_{j}\right)-\left(a_{i}+c_{i}\right)\left(b_{j}+d_{j}\right)\right] \beta_{k-i-j}^{1} .
\end{aligned}
$$

Proof. We split up β_{k} into three, $\beta_{k}=\sum_{n, j,{ }^{\prime} r_{t}=k} R_{p^{h}}\left(\operatorname{mult}_{0}^{n}(j, r)\right)=$ $A+B+C$, and compute each term separately:

$$
\begin{aligned}
A & =R_{p^{k}}\left(\operatorname{mult}_{0}^{1}((1),(k))\right)+R_{p^{h}}\left(\operatorname{mult}_{0}^{1}((2),(k))\right) \\
& =\left(\bar{c}_{k}-c_{k}\right)+\left(\bar{d}_{k}-d_{k}\right), \\
B & =\sum_{j \sum_{i r t}=k} R_{p^{h}}\left(\text { mult } t_{0}^{2}(j, r)\right)=2 \sum_{i+k=k} R_{p^{k}}\left(\widetilde{H}_{i}(\Omega X) \otimes \widetilde{H}_{j}(\Omega Y)\right) \\
& =2 \sum_{i+j=k}\left[\left(a_{i}+\bar{c}_{i}\right)\left(b_{j}+\bar{d}_{j}\right)-\left(a_{i}+c_{i}\right)\left(b_{j}+d_{j}\right)\right] .
\end{aligned}
$$

The "last term is more complicated, and needs some preliminary computations. For $n \geqq 3$ and $j=\left(j_{1}, \cdots, j_{n}\right), r=\left(r_{1}, \cdots, r_{n}\right)$ we denote $\hat{j}=\left(j_{1}, \cdots, j_{n-2}\right), \quad \hat{r}=\left(r_{1}, \cdots, r_{n-2}\right)$. If $j_{n-1}=1$ and $j_{n}=2$ we denote the following:

$$
\begin{aligned}
& \hat{m}_{1}(i)= \begin{cases}m_{1}(i) & i \neq r_{n-1} \\
m_{1}(i)-1 & i=r_{n-1}\end{cases} \\
& \hat{m}_{2}(i)= \begin{cases}m_{2}(i) & i \neq r_{n} \\
m_{2}(i)-1 & i=r_{n}\end{cases}
\end{aligned}
$$

Consider the following:

$$
\begin{aligned}
& R_{p^{h}}\left(\operatorname{mult}_{0}^{n}(j, r)\right)=\sum_{\substack{0 \leq s i l \\
0 \leq t \leq m_{1}(l) \\
1 \leqq l \leq m_{2}(l)}} \prod_{l \neq r_{n-1}}\left\{\binom{m_{1}(l)}{s_{l}} a^{\left(m_{1}(l)-s_{l}\right)}\right\} \\
& \quad \times \prod_{l \neq r_{n}}\left\{\binom{m_{2}(l)}{t_{l}} b^{\left(m_{2}(l)-t_{l}\right)}\right\} \cdot\binom{\hat{m}_{1}\left(r_{n-1}\right)+1}{s_{r_{n-1}}}\binom{\hat{m}_{2}\left(r_{n}\right)+1}{t_{r_{n}}} \cdot a_{r_{n}}^{\left(m_{1}\left(r_{n-1}\right)-s_{r_{n}-1}\right)} \\
& \quad \times b_{r_{n}}^{m_{2}\left(r_{n}\right)-t_{r_{n}}} \cdot \phi\left(s_{1}, \cdots, t_{k}\right)=U_{1}+U_{2}+U_{3}+U_{4}
\end{aligned}
$$

where each of the U_{i} equals the previous sum except that $\binom{\hat{m}_{1}\left(r_{n-1}\right)+1}{s_{r_{n-1}}}\binom{\hat{m}_{2}\left(r_{n}\right)+1}{t_{r_{n}}}$ is replaced by one of the terms

$$
\left.\begin{array}{rl}
\binom{\hat{m}_{1}\left(r_{n-1}\right)}{s_{r_{n-1}}}\binom{\hat{m}_{2}\left(r_{n}\right)}{t_{r_{n}}}, & \binom{\hat{m}_{1}\left(r_{n-1}\right)}{s_{r_{n-1}}}\binom{\hat{m}_{2}\left(r_{n}\right)}{t_{r_{n}}-1}, \\
& \binom{\hat{m}_{1}\left(r_{n-1}\right)}{s_{r_{n-1}}-1}\binom{\hat{m}_{2}}{t_{r_{n}}}, \\
s_{r_{n-1}-1}-1
\end{array}\right),\binom{m_{2}\left(r_{n}\right)}{t_{r_{n}}-1}, ~ \$
$$

respectively. Now we compare mult ${ }_{0}^{n}(j, r)$ with mult ${ }_{0}^{n-2}(\hat{j}, \hat{r})$:

$$
\begin{aligned}
& U_{1}=a_{r_{n-1}} b_{r_{n}} \sum_{\substack{0 \leq s_{l} \leq \hat{m}_{1}(l) \\
0 \leq t \leq t \leq n_{2} \\
1 \leq l \leq \hat{m}_{l}(l)}} \prod_{l=1}^{k}\left\{\binom{m_{1}(l)}{s_{l}} a_{l}^{\left(\hat{m}_{1}(l)-s_{l}\right)}\right\} \\
& \times \prod_{l=1}^{k}\binom{m_{2}(l)}{t_{l}} b_{l}^{\left(m_{2}(l)-t_{l}\right)} \cdot \phi\left(s_{1}, \cdots, t_{k}\right) \\
& =a_{r_{n-1}} b_{r_{n}} R_{p^{k}} \operatorname{mult}_{0}^{n-2}(\hat{j}, \hat{r}), \\
& U_{2}-a_{r_{n-1}} \bar{d}_{r_{n}} \cdot R_{p^{h}} \operatorname{mult}_{0}^{n-2}(\hat{j}, \hat{r}) \\
& =a_{r_{n-1}} \cdot \sum_{\substack{0 \leq s_{l} \leq m_{1}(l) \\
0 \leq l \leq l \leq 1 \\
1 \leq l \leq m_{2}(l)}} \prod_{l=1}^{k}\left\{\binom{\widehat{m}_{1}(l)}{s_{l}} a_{l}^{a_{l}^{\left(\hat{m}_{1}(l)-s_{s}\right)}}\right\} \prod_{l=1}^{k}\left\{\binom{\widehat{m}_{2}(l)}{t_{l}} b_{l}^{\left(m_{2}(l)-t_{l}\right)}\right\} \\
& \times \phi\left(s_{1}, \cdots, t_{r_{n}}+1, \cdots, t_{k}\right)-a_{r_{n-1}} \bar{d}_{r_{n}} R_{p^{h}}\left(\text { mult }_{0}^{n-2}(\hat{j}, \hat{r})\right)
\end{aligned}
$$

$$
\begin{aligned}
& \times\left[\phi\left(s_{1}, \cdots, t_{r_{n}}+1, \cdots, t_{k}\right)-\bar{d}_{\lambda_{n}} \phi\left(s_{1}, \cdots, t_{k}\right)\right] \\
& =a_{r_{n-1}}\left(\bar{d}_{r_{n}}-d_{r_{n}}\right) R_{p h}^{1}\left(\operatorname{mult}_{0}^{n-2}(\hat{j}, \hat{r})\right), \\
& U_{3}-b_{r_{n}} \bar{c}_{r_{n-1}} R_{p^{h}}\left(\operatorname{mult}_{0}^{n-2}(\hat{j}, \hat{r})\right)=b_{r_{n}}\left(\bar{c}_{r_{n}}-c_{r_{n}}\right) R_{p^{h}}^{1}\left(\operatorname{mult}_{0}^{n-2}(\hat{j}, \hat{r})\right) \\
& U_{4}-\bar{c}_{r_{n-1}} d_{r_{n}} R_{p^{h}}\left(\operatorname{mult}_{0}^{n-2}(\hat{j}, \hat{r})\right)=\left(\bar{c}_{r_{n-1}} \bar{d}_{r_{n}}-c_{r_{n-1}} d_{r_{n}}\right) R_{p h}^{1}\left(\operatorname{mult}_{0}^{n-2}(\hat{j}, \hat{r})\right) .
\end{aligned}
$$

Adding up the last equations we get:

$$
\begin{aligned}
& R_{p^{h}}\left(\text { mult }_{0}^{n}(j, r)\right)-\left(a_{r_{n-1}}+\bar{c}_{r_{n-1}}\right)\left(b_{r_{n}}+\bar{d}_{r_{n}}\right) R_{p^{h}}\left(\operatorname{mult}_{0}^{n-2}(\hat{j}, \hat{r})\right) \\
& = \\
& =\left[\left(a_{r_{n-1}}+\bar{c}_{r_{n}}\right)\left(b_{r_{n}}+\bar{d}_{r_{n}}\right)-\left(a_{r_{n-1}}+c_{r_{n-1}}\right)\left(b_{r_{n}}+d_{r_{n}}\right)\right] \\
& \quad \times R_{p h}^{1}\left(\text { mult }_{0}^{n-2}(\hat{j}, \hat{r})\right) .
\end{aligned}
$$

We observe that the equation holds also when $j_{n-1}=2, j_{n}=1$ and $r=\left(r_{1}, \cdots, r_{n-2}, r_{n}, r_{n-1}\right)$. Summing up the later equation for all j and r, we get:

$$
\begin{aligned}
C= & \sum_{i+j<k}\left(a_{i}+\bar{c}_{i}\right)\left(b_{j}+\bar{d}_{j}\right) \beta_{k-i-j}+\sum_{i+j<k}\left(a_{i}+\bar{c}_{i}\right)\left(b_{j}+\bar{d}_{j}\right) \\
& -\left(a_{i}+c_{i}\right)\left(b_{j}+d_{j}\right) \beta_{k-i-j}^{1} .
\end{aligned}
$$

This concludes the proof of Proposition 2:

Proposition 3.

$$
\begin{aligned}
\beta_{k}^{1}= & \left(a_{k}+c_{k}\right)+\left(b_{k}+d_{k}\right)+2 \sum_{i+j=k}\left(a_{i}+c_{i}\right)\left(b_{j}+d_{j}\right) \\
& +\sum_{i+j>k}\left(a_{i}+c_{i}\right)\left(b_{j}+d_{j}\right) \beta_{k-i-j}^{1} .
\end{aligned}
$$

Although the proof of this proposition is lengthy, it is similar to the proof of Proposition 2 and will therefore be skipped.

Proof of Theorem 3. Under the conditions of the theorem, the formulas of β_{k} and β_{k}^{1} reduce to the following:

$$
\begin{aligned}
\beta_{k}= & \sum_{i=1}^{n_{3}} \sum_{j=1}^{n_{4}}\left(a_{i}+c_{i}\right)\left(b_{j}+\bar{d}_{j}\right) \beta_{k-i-j} \\
& +\sum_{i=1}^{n_{3}} \sum_{j=1}^{n_{4}}\left[\left(a_{i}+\bar{c}_{i}\right)\left(b_{j}+\bar{d}_{j}\right)-\left(a_{i}+c_{i}\right)\left(b_{j}+d_{j}\right)\right] \beta_{k-i-j}^{1}
\end{aligned}
$$

We observe that:

$$
\begin{aligned}
& \left(q_{2}\left\{\beta_{l}\right\}\right)_{k}=\sum_{i=1}^{n_{3}} \sum_{j=1}^{n_{4}}\left[\left(\alpha_{i}+\bar{c}_{i}\right)\left(b_{i}+\bar{d}_{j}\right)-\left(a_{i}+c_{i}\right)\left(b_{j}+d_{j}\right)\right] \beta_{k-i-j}^{1} \\
& \left(q_{3}\left\{\beta_{l}^{1}\right\}\right)_{k}=0 .
\end{aligned}
$$

As a consequence of the results of $\S 3$ the proof of the theorem is obtained.
6. A recursion formula for the torsion component of $H(\Omega(X \vee Y))$. We denote the number of $R_{p^{h}}$ direct summands in, $H_{k}(\Omega(X \vee Y))$ by γ_{k}. A recursion formula for $\left\{\gamma_{k}\right\}$ will be stated next precisely:

THEOREM 4. Let n_{3}, n_{4} satisfy: $a_{i}+\bar{c}_{i}>0$ and $b_{j}+\bar{d}_{j}>0$ imply that $i \leqq n_{3}, j \leqq n_{4}$.

Denote:

$$
\begin{aligned}
& q_{4}(x)=1-\sum_{i=1}^{n_{3}} \sum_{j=1}^{n_{4}}\left[a_{i} b_{j} x^{i+j}+\left(a_{i} \bar{d}_{j}+b_{j} \bar{c}_{i}\right) x^{i+j}(1+x)+\bar{c}_{i} \bar{d}_{j} x^{i+j}(1+x)^{2}\right] \\
& q_{5}(x)=1-\sum_{i=1}^{n_{3}} \sum_{j=1}^{n_{4}}\left[a_{i} b_{j} x^{i+j}+\left(a_{i} d_{j}+b_{j} c_{i}\right) x^{i+j}(1+x)+c_{i} d_{j} x^{i+j}(1+x)^{2}\right]
\end{aligned}
$$

Then $\left\{\gamma_{k}\right\}_{k=1}^{\infty}$ satisfies the recursion formula corresponding to $q_{4}(x) \times$ $q_{5}(x) \cdot q_{1}(x)$ at any $k>3\left(n_{3}+n_{4}\right)+4$.

The proof of Theorem 4 is much more complicated than the proofs of the previous theorems. However, in principal it is similar to them. We state the intermediate results and leave the proofs for the reader. We denote:

$$
\gamma_{k}^{1}=\sum_{n=1}^{\infty} \sum_{i=0}^{n-1} \sum_{r_{t}+i=k} R_{p h}^{1}\left(\operatorname{mult}_{i}^{n}(j, r)\right)
$$

Proposition 4.

$$
\begin{aligned}
\gamma_{k}= & {\left[\left(\bar{c}_{k}-c_{k}\right)+\left(\bar{d}_{k}-d_{k}\right)\right] } \\
& +2 \sum_{i+j=k}\left\{\left(a_{i}+\bar{c}_{i}\right)\left(b_{j}+\bar{d}_{j}\right)-\left(a_{i}+c_{i}\right)\left(b_{j}+d_{j}\right)\right\} \\
& +2 \sum_{i+j=k-1}\left\{\bar{c}_{i} \bar{d}_{j}-c_{i} d_{j}\right\} \\
& +\sum_{i+j<k}\left\{a_{i} b_{j} \gamma_{k-i-j}+a_{i} \bar{d}_{j}\left(\gamma_{k-i-j}+\gamma_{k-i-j-1}\right)\right. \\
& \left.+b_{j} c_{i}\left(\gamma_{k-i-j}+\gamma_{k-i-j-1}\right)+\bar{c}_{i} \bar{d}_{j}\left(\gamma_{k-i-j}+2 \gamma_{k-i-j-1}+\gamma_{k-i-j-2}\right)\right\} \\
& +\sum_{i+j<k}\left\{a_{i}\left(\bar{d}_{j}-d_{j}\right)\left(\gamma_{k-i-j}^{1}+\gamma_{k-i-j-1}^{1}\right)+b_{j}\left(\bar{c}_{i}-c_{i}\right)\left(\gamma_{k-i-j}^{1}+\gamma_{k-i-j-1}^{1}\right)\right. \\
& \left.+\left(\bar{c}_{i} \bar{d}_{j}-c_{i} d_{j}\right) \cdot\left(\gamma_{k-i-j}^{1}+2 \gamma_{k-i-j-1}^{1}+\gamma_{k-i-j-2}^{1}\right)\right\} .
\end{aligned}
$$

Proposition 5.

$$
\begin{aligned}
\gamma_{k}^{1}= & c_{k}+d_{k}+2 \sum_{i+j=k}\left\{\left(a_{i}+c_{i}\right) \cdot\left(b_{j}+d_{j}\right)-a_{i} b_{j}\right\} \\
& +2 \sum_{i+j=k-1} c_{i} d_{j}+\sum_{i+j<k}\left\{\left(a_{i} b_{j} \gamma_{k-i-j}^{1}+a_{i} d_{j}\right)\left(\gamma_{k-i-j}^{1}+\gamma_{k-i-j-1}^{1}\right)\right. \\
& +b_{j} c_{i}\left(\gamma_{k-i-j}^{1}+\gamma_{k-i-j-1}^{1}\right)+c_{i} d_{j}\left(\gamma_{k-i-j}^{1}+2 \gamma_{k-i-j-1}^{1}+\gamma_{k-i-j-2}^{1}\right) \\
& \left.+\left(c_{i} b_{i}+d_{j} a_{i}+c_{i} d_{j}\right) \alpha_{k-i-j}\right\} .
\end{aligned}
$$

7. An example. In this section we apply the recursion formulas obtained, to compute the holomogy of the free product of two groups $G_{1} * G_{2}$. Our method holds in this case, for $G_{1} * G_{2}$ is of the homotopy type of $\Omega\left(B G_{1} \vee B G_{2}\right)$ and $\Omega B G_{i}$ is of the homotopy type of $G_{i} i=1$, 2 , where $B G_{i}$ is the classifying space of $G_{i}, i=1,2$, [4], [7]. We actually demonstrate our method of computation on the free product of the special orthogonal group SO_{3} with itself. The homology of SO_{3} is computed [6] and equals:

$$
H_{j}\left(\mathrm{SO}_{3}\right)= \begin{cases}Z & j=0,3 \\ Z_{2} & j=1 \\ 0 & \text { otherwise }\end{cases}
$$

We are content with this group, because though its homology is simple the homology of $\mathrm{SO}_{3} * \mathrm{SO}_{3}$ is infinite dimensional and complicated.

The recursion formulas for $\left\{\alpha_{k}\right\},\left\{\beta_{k}\right\}$ and $\left\{\gamma_{k}\right\}$ can be applied only to $k>n_{1}+n_{2}, 2\left(n_{3}+n_{4}\right), 3\left(n_{3}+n_{4}\right)+4$ respectively, when we know the sequences in lower dimensions. Of course $\left\{\beta_{k}\right\}$ and $\left\{\gamma_{k}\right\}$ correspond to the number of Z_{2} summands. The sequences of $\left\{\alpha_{k}\right\}$ and $\left\{\gamma_{k}\right\}$ in the lower dimensions were computed in [3], essentially by
the use of the formulas of $\S 2$. $\left\{\beta_{k}\right\}$ can be computed similarly.
We summarize these results in the following table:

	α	β	γ
1	0	2	2
2	0	2	2
3	2	2	4
4	0	6	10
5	0	8	16
6	2	10	30
7	0	18	58
8	0	26	104
9	2	36	192
10	0	56	356
11	0	82	652
12	2	118	1200
13	0	258	2210
14	0	376	4062
15	2	554	7472
16	0	112	13746
17	2	25280	
18	0	46498	

Where the numbers beneath the heavy lines can be computed by the recursion formulas as will be seen presently.

The recursion formulas are the following:

$$
\begin{aligned}
q_{1}(x) & =1-x^{6} \\
q_{2}(x) & =1-x^{2}-2 x^{4}-x^{6} \\
q_{3}(x) & =1-x^{6} \\
\left(q_{2} q_{3}\right)(x) & =1-x^{2}-2 x^{4}-2 x^{6}+x^{8}+2 x^{10}+x^{12} \\
q_{4}(x) & =1-x^{2}-2 x^{3}-3 x^{4}-2 x^{5}-x^{6} \\
q_{5}(x) & =1-x^{6} \\
\left(q_{4} q_{5}\right)(x) & =1-x^{2}-2 x^{3}-3 x^{4}-2 x^{5}-2 x^{6}+x^{8}+2 x^{9}+3 x^{10}+2 x^{11}+x^{12} .
\end{aligned}
$$

As to that $q_{1}(x)=q_{5}(x),\left(q_{4} q_{5}\right)(x)$ expresses the recursion formula for γ.

For example, to obtain γ_{17} we substitute into:

$$
\gamma_{17}=\gamma_{15}+2 \gamma_{14}+3 \gamma_{13}+2 \gamma_{12}+2 \gamma_{11}-\gamma_{9}-2 \gamma_{8}-3 \gamma_{7}-2 \gamma_{6}-\gamma_{5}=25280
$$

References

1. I. Berstein, On co-groups in the category of graded algebras, Trans. Amer. Math. Soc., 115 (1965), 257-269.
2. A. Clark and L. Smith, The rational homotopy of a wedge, Pacific J. Math., 24 (1968), 241-246.
3. G. Dula and E. Katz, Computation of the homology of $\Phi(X \vee Y)$, submitted.
4. D. M. Kan, A combinational definition of homotopy groups, Ann. of Math., (2) 67 (1958), 282-312.
5. E. Katz, A Künneth formula for coproducts of simplicial groups, Procr. Amer. Math. Soc., 61, No. 1 (1976), 117-121.
6. C. Miller, The topology of rotation groups, Ann. of Math., (2) 57 (1953), 90-114.
7. J. W. Milnor, Construction of universal bundles, I, Ann. of Math., (2) 63 (1956), 272-284.

Received January 21, 1978.
University of Haifa
Mount Carmel, Haifa, 31999, Israel
Current address: Tel-Aviv University
Tel-Aviv, Israel

