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BIHARMONIC AND POLYHARMONIC
PRINCIPAL FUNCTIONS

L. 0. CHUNG

The biharmonic principal function problem is the con-
struction of a biharmonic function in a space which
"imitates" the behavior of a given singularity function.
In this paper we first define the notion of a biharmonic
operator which clarifies the modes of 'imitation/' We then
prove the existence and uniqueness theorem of the bihar-
monic principal function. The theory is a generalization
of the harmonic principal functions to the larger family of
biharmonic functions. An indication of its application as
well as its further generalization to polyharmonic functions
is also given.

The theory of principal functions plays an important role in
the study of harmonic functions in that it allows for the global
construction of harmonic functions with a great variety of singularity
behaviors. See Ahlfors-Sario [1] or Rodin-Sario [3] for a com-
prehensive treatment of this theory and many of its applications.
Since the study of biharmonic and polyharmonic functions draws
heavily from the experience of harmonic theory, it has been felt
that a theory of biharmonic or polyharmonic principal functions
would be desirable. Except for some results in the thesis of Rader
[2] which constructs some interesting special examples, a general
theory is still in the waiting. In this paper, we will present another
step toward such a theory in first defining the basic concept of
biharmonic operator and then proving the existence and uniqueness
of biharmonic principal functions, one of the three main theorems
of the theory. Our paper is self contained except for a proof of
Sario's g-lemma which can be found in [1] or [3]. An indication of
generalizing the results to polyharmonic functions is given at the end.

In § 1, after a review of notations, we prove an alternating
lemma which is the main technical tool of our theory. From this,
the main existence and uniqueness theorem of Sario et al for the
harmonic theory follows rather easily.

In § 2, we define the concepts of a biharmonic operator which
is basic for our theory. Examples and simple properties of this
operator are given. Next in § 3, we prove the existence and
uniqueness theorem for biharmonic principal functions. Some appli-
cations are then given in § 4 which includes the construction of
biharmonic functions with various singularity properties, e.g., the
classical singularity problem of closed manifolds, the biharmonic
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Green's function 7. Finally, in § 5 we make some remarks about
the generalization to polyharmonic functions as well as some open
problems.

1* Let R be a Riemannian manifold, compact or noncompact,
and A — dd + δd the Laplace-Beltrami operator. A function u(x) is
called harmonic, quasiharmonic and biharmonic if Au = 0, Au = c
with c a constant and A2u = A An = 0 respectively. We will denote
them, in symbols, by H{R), Q(R) and H\R) in that order. A quasi-
harmonic function q such that Aq = 1 is called a normalized quasi-
harmonic function. This terminology is slightly different from the
one used by other workers in the field in that, in our usage, R £
H(R) £ Q(R) £ H\R) form a sequence of increasing vector spaces
under illusion where R is the set of real numbers.

We also consider manifolds with boundaries. Suppose that A is
a compact or noncompact manifold with boundary dA. The above
symbols H(A), Q(A), H\A) will denote the family of harmonic,
quasiharmonic and biharmonic functions in the interior of A and
continuous through the boundary dA. The following is the famous
#-lemma of Sario whose proof can be found in [1] or [3]:

Sario's q-lemma. Let a be a compact subset of the interior of
a Riemannian manifold R. Then there exists a positive constant
q < 1 such that for all harmonic functions u on R which change
signs on a, we have

q inf u rSJ u | a ^ q sup u .
R R

Before we prove the technical alternating lemma, we recall
Sario's notion of normal operator, here we rename it harmonic
operator. As above, let A be a compact or noncompact Riemannian
manifold with a compact boundary dA. A linear transformation
L: C(dA) -> H(A) is called a harmonic operator if it satisfies the
following conditions: (1) (Lf) | dA = /, (2) min^/ ^ Lf ^ max34/

and (3) the flux condition: I *dLf = 0 holds for any β homologous
J β

to α.

ALTERNATING LEMMA. Let A, Ω be submanifolds of R such
that

1. dim A = dim Ω = dim R,
2. A has a compact relative boundary dA, Ω has a compact

relative boundary dA, and dA f] dΩ = φ,
3. A Π Ω is a nonempty open set, A Π Ω has boundary dA U dΩ,
4. L: C(dA)-+H(A) and K: C(dΩ) —> H{Ω) are harmonic operators
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with maxJBΓ(/), min K(f) £ int (Ω) for any nonconstant f,
5. w is a harmonic function on A Γ\ Ω continuous in A Π Ω.

Then there are u e C(dA) and v e C(dΩ) and a constant k such
that

w — (Lu + Kv) = — kω ,

where co is the harmonic function in A Π Ω with boundary data 0
on dA and 1 on dΩ.

Further the constant k = 0 if and only if the flux condition

\ *dw = 0 holds for any β homologous to a — dA.
J β

Proof. Consider the sequence

(KL)n(w - Kw) , n = 0, 1, 2, .

The ranges range (w — Kw) ~D range (KL)(w — Kw) z> range (KL)2(w —
Kw) z) form a decreasing sequence of closed sets by the defini-
tion of harmonic operators. Also, the maximum condition 4 of the
hypothesis for if implies that max (KL)n(w — ί w ) > m a x (KL)n+\w —
Kw) and min (KL)n(w - Kw) < min (KL)n+\w - Kw). Therefore,
t h e r e is a number kef]n range (i£L)w(w — Kw). Form a new

sequence

(KL)n(w - Kw) - k - (KL)%w - k - K w ) , n - 0, 1, 2, .

Each one of this sequence changes signs. Similarly L(KL)n(w — k —
Kw) changes signs for each n also. As a consequence, {KL)n{w —
k — Kw) changes signs on the closed set dA for each n. By the
g-lemma, there is a q e (0, 1) such that

q i n f Q (KL)n(w - k - Kw) ^ (KL)n(w -k~ Kw) \ 3A

<; q sup.ς, (KL)n(w — k — Kw) .

Since inf34 (KL)n(w -k- Kw)^(KL)n+\w-k-Kw) ^ sup3^ (KL)n(w -
k-Kw), we have g'inf^ (KL)n(w-k~Kw)^(KL)n+\w~k- Kw)\dA ^
<f supo (KL)n(w — fc — ϋΓw). Continuing, we have

inf ρ (ΐTLXw - ft - ίw) ^ (KL)n(w - & -

(KL)(w — Jfc —

Thus, the series

Σ (KL)n(w - k - Kw)

converges to a harmonic function on Ω. Similarly, the series
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Σ»=i L(KL)n(w — k — Kw) also converges to a harmonic function on
A.

k — Kw). Consider the harmonic function w — (Kv + Lu) — w — k —
K w + Σ * = i ( K L ) n ( w - k - K w ) - Σ Γ = o L ( K L ) n ( w - k - K w ) . T o s e e
that it is —ko), we have to check that it has the desired boundary
values. Operating with K, we see K(w — (Kv + Lu)) = Kw — (Kv +
KLu) = —k; while operating with L, we have L(w — (Kv + Lu)) =
Lw — (LKv + Lu) = 0. Thus it has the boundary values — k at dΩ
and 0 at dA, as desired.

Finally, we will check the flux condition. Clearly,

— I *dkω — \ *d(w — (Lu + Kv)) — 1 *dw .
}β }β h

Since I *dω Φ 0, we conclude that I *dw = 0 if and only if k — 0.
)β )β

In many applications of the above alternating lemma, R will
be an open Riemannian manifold, A will be a boundary neighbor-
hood, Ω will be a regular submanifold of R, K will be the Dirichlet
operator on Ω. Indeed, that is what our notations will be if not
specified otherwise. We also use β to denote a chain homologous
to a. As an application of this lemma, we give a new proof of the
Main Existence and Uniqueness Theorem of the harmonic theory
due to Sario et al, [1] and [3].

THEOREM. Let s be harmonic in A. Then the necessary and
sufficient condition for the existence of a harmonic function p on
the entire R such that

p — s = L(p — 3)

is that s satisfies the flux condition:

*ds = 0.

The functions p is unique up to an additive constant.

Proof. Let s be given. Let Ω be any regular subregion such
that the alternating lemma applies. Then there are u and v such
that 3 — (Lu + Kv) = 0 by the lemma. Thus let p = s — Lu on A
and p — Kv on Ω. Clearly, p is the required harmonic function.
This proves the sufficiency part. The necessity part is obvious.

The function s that satisfies the above flux condition is called
a singularity function, and the function p is called a principal func-
tion of 3 for the operator L. Intuitively, p can be said to "imitate"
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the behavior of s with respect to L. Our main objective is to
extend the above theorem to the larger family of biharmonic func-
tions.

2* To achieve our goal, we first define the concept biharmonic
operator. A linear transformation L: G(dA) x C(dA) -> H\A) is
called a biharmonic operator if it satisfies the following five condi-
tions:

(1) u — Lf — L(flf f2) is a bounded biharmonic function, i.e.,
— oo < inf U ^ SUP U < oo

( 2 ) u I dA = flf An \ dA = f2;
(3) L( ,0) is a harmonic operator of the first variable;
(4) AL(0, •) is a harmonic operator of the second variable;
( 5) L(0, /) ^ 0 if / ^ 0.
We give some simple properties and examples of biharmonic

operators.
For any α, A, / = (flf f2) and any L: C(dA) x C(dA) -* H\A),

we have the decomposition L(fu f2) — L(fl9 0) + L(0, /2). The first
term of the above decomposition may be called the harmonic part
and the second term the potential part of L(fl9f2). To define L,
we only need to define its harmonic part and potential part.

The following lemma on quasiharmonic functions is needed later.

LEMMA. Let A, Ω be submanifolds of R as in the alternating
lemma. Let L: C(dA) x C{dA) -> H\A) and K: C(dΩ)xC(dΩ)->H2(A)
be two biharmonic operators. Let K(0, 1) > 0 outside of dΩ, and
let w = L(0, 1) — iT(0, 1). Then there are u, v and constant k Φ 0
such that

w - (L(u, 0) + K(v, 0)) = -hω

where ω is 0 on dA and 1 on dΩ.

Proof. Since w is harmonic and L( , 0) and K( 9 0) are harmonic
operators, we thus can apply the alternating lemma to obtain
u, v, k satisfying all the above properties except possibly k Φ 0. To

see that k Φ 0, we need to show \ *dw Φ 0. Clearly, w < 0 on dΩ,

but w ^ 0 on dA by the hypothesis on K(0, 1) as well as the property
(5) of biharmonic operators.

Let M = sup3^w. Then M < 0. Choose any δ e (M, 0). Let β

be the points in A (Ί Ω such that w — δ there. Clearly 1 *dw Φ 0.

Hence k Φ 0 as claimed.
The following are three simple examples of biharmonic operators.
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EXAMPLE 1. Let A be a compact Riemannian manifold with
boundary dA. Then the Dirichlet operator is a biharmonic operator.

EXAMPLE 2. Let ϊ be a compact Riemannian manifold with
boundary dR. Let A' be a boundary neighborhood of R with
disjoint boundary components a and dR. Let B be a punctured
ball, disjoint from A', with deleted center ξ. Let R be the interior
of R{ξ}, A be A! U 5, and dA be α U 95. Define L: C(3A) x C(3ii)->
H\A) by the following conditions:

(1) u\dA = L(f)\dA = f = (f1 f2);
(2) w IJS solves the Dirichlet problem of B\{ζ};
(3) Λ is a constant in dR, chosen such that the flux condi-

tion on Δu is satisfied;
(4) L(/i, 0) is a constant in dR chosen so that L{ , 0) is a

harmonic operator.
(5) L(0, •) is a constant in dR so chosen that the linearity

condition and condition (5) of the definition of biharmonic operators
are satisfied.

Then L is a biharmonic operator.

EXAMPLE 3. L(flf /2) = Li(/i) + GL2(/2) is a biharmonic operator
if Lίf L2 are harmonic operator and G is the Green's operator, if
well defined. See [2].

3* We are now ready to prove the existence and uniqueness
theorem of biharmonic principal functions which is the main result
of our paper.

THEOREM. Let A be a boundary neighborhood of an open
Riemannian manifold R with relative boundary dA. Let L be a
biharmonic operator on C{dA) x C(dA) and let s be a biharmonic
function on A. Then the necessary and sufficient condition for
the existence of a biharmonic function p in R such that

p - s = L(p - 8, Δ(p - s))

is that the following flux condition be satisfied:

[ *dΔs = 0

where β is a chain homologous to dA. The function s is unique
up to an additive constant. Moreover, if s is harmonic, then q is
quasiharmonic; and if s is both harmonic and satisfies the flux

condition \ *ds = 0, then p is harmonic.
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Proof. The necessity is rather routine. We will prove the

sufficiency. Suppose \ *dΔs = 0. By the existence theorem of the

harmonic theory, there is a harmonic function r in R such that

r — As = AL(0, r — As) .

Let Ω be a regular subregion in R whose interior contains dA
and K be the Dirichlet operator on C(dΩ) x C(dΩ) to jgΓ2(U). By
Example 1, K is a biharmonic operator, also if(0, 1) > 0 in the
interior of Ω.

We will show that w = L(0, r — ̂ ίs) + s — UΓ(O, r) is harmonic in
I f l f l continuous to the boundary. Indeed, Aw = JL(0, r — As) 4-
Js - Λlf(0, r) = r - Λs + As - r = 0.

Thus, by the alternating lemma, there are functions u, v and
constant k such that w — (L(i&, 0) + K(v, 0)) — — kω where ω is
harmonic on A f] Ω with boundary data 0 on 9A and 1 on 9i3.

There are two cases to be considered: the case that k = 0 and
otherwise.

Suppose k = 0. We have w - (L(w, 0) + K(v, 0)) = 0. Hence
L( — u, r — As)+ s = K(v, r) in AΓ\Ω. We define p — L(— u, r — As) + s
in A and let p = JBΓ(I;, r) in i2. It is routine to verify that p satisfies
our requirement.

Suppose k Φ 0. Consider the function w1 = L(0, 1) — K(0, 1) in
A (Ί Ω. Clearly, w1 is harmonic and hence, by the lemma on quasi-
harmonic functions in § 2, there are functions uu v1 and nonzero
constant kt Φ 0 such that wι — (L(ulf 0) + K(vl9 0)) = — ̂ ft). Now
we have w - (L(u, 0) + K(v, 0)) - kk^iw, - (L(^, 0) + K(vu 0))] - 0.
We can apply the previous argument to separate L and K and obtain
the desired p.

To show the uniqueness, let us suppose that there are two such
functions pλ and p2- Since Apγ and Ap2 are principal functions of
As for the harmonic operator AL(0, •), they differ by a constant &,
by the uniqueness theorem of the harmonic theory.

We claim that k = 0. Suppose not. Let us assume that k =
Jpx — Jp2 > 0. We have a nonconstant function pλ — p2 = px — s —
(2>2 - β) = £ ( P i ~ ί>2, ^ ( P i - 3>2)) = ^(3>! - 3>2, &). L e t Λf = m a x 3 i \pί-

p2\. We consider px — p2 + Λf = L(px — p2 + M, 0) + L(0, k) which
is nonnegative superharmonic in the entire R and which has a
minimum in dA when restricted to A. Thus it has a minimum in
the interior of R. This is impossible.

Therefore A(p1 — p2) = 0. Again, consider p1 — p2 = L(px — p29

Δ{p1 — p2)) = L(ί?i — p2, 0) which when restricted to A has minimum
in dA. As a consequence px — p2 has a minimum in the interior of
R. This implies that p1 — p2 is constant as required.
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Finally, suppose s is harmonic, As = 0. We may choose r = 0.

If we also have 1 *ds = 0, then our proof is reduced to the proof

of the harmonic theory and p is harmonic. If we have I *ds Φ 0;
}β

then by adjusting a constant multiple of L(0, jfcj — K(0, fcx), we see
that p is quasiharmonic.

As usual, we call s a singularity function and p a principal
function of s with respect to L.

4* In the following, we give two applications of the existence
theorem. First is the construction of the singularity biharmonic
functions in a closed space. The other is the construction of the
biharmonic Green's function y for a space with boundary.

To construct the singularity biharmonic potential, let β be a
closed Riemannian manifold. Choose distinct ζ0, d e R and Ao, A1 two
disjoint disks with centers ζ0, ζ1# Let R = R{ζ0, ζ j , A = J0UΛ\{C0, Q,
3A = 3A0 U 94. Define the singularity function s so that s has a
positive biharmonic singularity ζ0 and a negative singularity near
ζlf i.e., s(flc) — r 2 logr for άimR = 2, s(x) — — r for dimi2 = 3, s(#)~
—logr for dimi? = 4, and s(x) ^ r"%+4 for dimi? ^ 5 where w = dim
i? and r = dist (ζ0, a?), the distance between ζ0 and x for a; near ζ0.
Similar remarks apply to s(x) near d with different signs. Also, we
take the flux of As across 3A0 normalized to be 1 and across 3AX

normalized to be — 1. Hence the flux condition is satisfied. Let L
be the biharmonic operator corresponding to the Dirichlet operator
on Ά. By the existence theorem, there is a principal function p.
Since p — s = L{p — s, A(p — s)) is regular in Ά, p has the same
singularities as s. We thus have a function defined in the entire
space R with positive biharmonic singularity at ζ0 and negative
biharmonic singularity at ζ1#

Next we construct the Green's function 7 which is characterized
by the boundary data 7 = Ay = 0.

Let R be a Riemannian manifold with boundary dR. Let ζ be
an interior point in R. We want to construct a biharmonic Green's
function 7(ζ, y) on R which is characterized by a biharmonic singu-
larity at ζ and boundary data 7 = Ay = 0 at 95. Choose a disk D
centered at ζ with boundary 3D. Choose a boundary neighborhood
Ar of R, disjoint from Zλ Let R = 5\[ζ}\dΪ2 and A = A' U 2?\{C}.
dA = 9Z? U 3A' where 9A' is the relative boundary of A' in i2, i.e.,
without dR. Define the operator L as in Example 2. The singu-
larity function s is characterized in the following way: s(y) has a
biharmonic singularity at ζ, and s, As are constant, say cλ and c2 at

922 with c2 so chosen such that 1 *dAs = 0. Since s satisfies the flux

condition, there is a principal function p of s. Hence p has the
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same singularity as s at ζ, because p—s — L(p—s, Δ(p—s)) is regular in
the entire D. By the definition of L, p and Δp are constant on dR,
say equal to c' and c" respectively. Then the required 7 = p — c'—
c"GL where GL — \g{xy y)dy is the harmonic Green's operator on 1,
which exists because R is compact bordered.

5* Our theory can be extended, by induction, to poly harmonic
functions, i.e., Δnu = 0 for some n. Both the definitions and proofs
will become more complicated. However, the basic idea is the same.
For example, without going into details, the wth harmonic operator
will be a linear operator L: (C(dA))n —> Hn(A) with conditions similar
to those of the biharmonic operator.

We conclude with some open problems. The existence and
uniqueness theorem is one of the three main theorems of Sario's
harmonic theory. The other two theorems are the convergence
theorem and the extremum theorem. A natural question for us is:
what are the generalizations of these two other theorems in our
theory? With these two more theorems, we will naturally consider
the many applications proposed for the harmonic theory as in [3],
hence a rather wide vista is in the horizon.
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