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HERMITIAN LIFTINGS IN ORLICZ SEQUENCE SPACES

G. D. ALLEN, D. A. LEGG AND J. D. WARD

Let M and N be complimentary Orlicz functions satisfy-
ing the J2-condition, and let lM and l(M) be the Orlicz se-
quence spaces associated with M with the two usual norms.
We show that if 2 is not in the associated interval for M9

then every essentially Hermitian operator on lM or liM) is a
compact perturbation of a real diagonal operator.

l Introduction* If B is a unital Banach algebra, let S = { / e 5 * :
f{e) = 1 = 11/11} be the state space and for each element xeB, and
set W{x) = {/(aO:/eS}. Let X be a complex Banach space, B(X)
the space of bounded linear operators on X, and C(X) the space
of compact linear operators on X. The quotient algebra A(X) =
B(X)/C(X) is called the Calkin algebra and both B(X) and A(X)
We unital Banach algebras. If TeB(X), the set W(T) is called
the numerical range of T, and the set We(T) = ΓUecm W(T + K)
is called essential numerical range of T. An operator TeB(X)
is called Hermitian if W(T) £ R, the real line, and essentially
Hermitian if TFe(Γ) £ R.

Clearly any compact perturbation of a Hermitian operator Te
B(X) is essentially Hermitian, but the converse is by no means
obvious. The converse is easy if X is a Hubert space, and has been
shown to be true if X = lp, 1 ^ p < oo, (cf. [1] and [4]). In this
paper, we show the converse is true for those Orlicz sequence spaces
X for which 2 is not in the so called associated interval. This term
is defined below.

2* Orlicz sequence spaces* We refer the reader to [3] and [6]
for references on Orlicz spaces. In [3], Orlicz function spaces are
considered, and many of the results translate directly into the se-
quence space setting.

In this paper, assume that M is a continuous, strictly increasing,
convex function defined on [0, oo), with Λf(O) = 0, and l i m ^ M(t) = '<*>.
Any function M satisfying these properties is called an Orlicz func-
tion. The complementary function will be denoted by N. We assume
M and N both satisfy the 4>-condition; that is, there exists Ko > 0
such that M(2t) ^ KQM(t) and N(2t) ^ K0N(t) for all t. By [5, Prop,
2.9], this means there exists Kλ^l such that

(1) l ί M « and lSfίf
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for all t.
Since we are assuming the 4rcondition, w e m a y further assume

that p = M' and q = N' are continuous and strictly increasing (cf.
[5], Prop. 2.15). Recall also that p and q are inverse functions of
each other.

The following are equivalent norms on the Orlicz sequence
spaces:

Hall* = IIRJIU = inf [k: | l ( M ) £ l} .

llffllun = IIKJIU = sup { Σ α A : Σ #(!&.!) ̂  4

Note that | |ά|U = 1 if and only if ΣϊU-MίKI) = l Denote by Z*
and Z(Jf, the Orlicz sequence spaces endowed with the || ||ir and || |l<in
norms, respectively. The dual space 1% is isometrically isomorphic
to lm (cf. [6], Prop. 4.b.l), and the dual space l*M) is isometrically
isomorphic to lN (cf. [3], p. 135). Because both M and N are assumed
to satisfy the J2-condition, lM (and ϊ^) are uniformly convex [7,
Thm. 1] and thus reflexive (condition (iv) in Theorem 11 of [7] is
extraneous in the case of sequence spaces as has been noted in [2,
Theorem. 3]).

For each Orlicz function define the following two numbers:

(2) aM = supjp: sup MΆ <

(3) βM = inΐ\p: inf MΆ >

It is easy to see that 1 <; aM ^ βM <; oo f and that βM < °° if and
only if M satisfies the z/2-condition near 0 (cf. [6, Theorem 4.a.9]).
Let aN and βN be the values defined as above for the complementary
function N. Then it is known that α^1 + βΰ1 = 1 and α^1 + /3^x = 1
(cf. [6, Theorem 4.b.3]). Hence if M and JV satisfy the 4>-condition,
we have 1 < aM ^ βM < oo and 1 < aN <: ^ < oo. The interval
[oίM, βϋ] is called the associated interval for M.

If 2 < α^ ^ yβ̂  < oo f r and s can be chosen so that 2 < r <
tfjf ̂  /Sir < s < oo. Then from (2) there is a constant K4 < oo such
that

Using (1), (2) and the fact that Λf(λ) = \* p(t)dt ^ λp(λ) we have
Jo
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( 5 ) sup P { U ) < sup K ^ U ) = KJtt = Q1<Q°.
»<WS1 p(λ)ί'-χ ~ o<W£iλίλ'1Jlf(λ)rl

Similarly, using (3) and (1), it follows that

( 6 ) inf ^ ί M L = Q 2 > 0 .

These inequalities will be used later.

3* Vector states on B{lM) and B(l{M)).

THEOREM 3.1. If a — {an} is a unit vector in lM, let a' = {a'n},
where a'n = kp(\an\) sgn an and k = ||{p(|αj)}||^). Then the mapping
A —» (Aa, a'} defines a state on B(lM). Furthermore, there is a
K2 > 0 such that K2 ̂  k ̂  1 for all unit vectors a e lM.

Proof. άf is a unit vector in 1{N) by the definition of k. Now
11̂ 11̂  = 1 implies *ΣΐZ=iM(\an\) = 1, and this is the same as

|))) = 1. By [3, Theorem 10.4],

* I) sgn an = k Σ I «• lί>(l α« I)
Λ = 1 n=l

= k Σ |p(|o.|)|?(p(|oj)) - fc||{p(|αJ)}|U, = 1 .
ln=l

Hence A -» <Aά, ά'> defines a vector state on B(lM) for each unit
vector aelM.

Since | |{p(|αj)} | |m ^ 1, it follows that fc^l. Using (1) and the
equality above, Σ k J p ( K I ) = Hp(KI)||w), it follows that | |{p(|αj)}| |w )^
Kx. Thus Kr1 ̂ k^ 1. Take K2 = uTr1 and the proof is complete.

THEOREM 3.2. If a — {an} is a unit vector in liM), let a" = {a"},
where a'l = p{k\an\) sgn an and k>0 is chosen so that Σ N(p(k\an\)) = l.
Then the mapping A -* (Aa, a"} defines a state on B(l{M)). Further-
more, there is a Kz ^ 1 such that 1 ̂  k ̂  Kz for all unit vectors
ael{M).

Proof. The proof is similar to that of Theorem 3.1. In this
case, note that

= \ i\an

It follows that <α, ά"> = l/fc||{?(|α:'|)}||(jf) = 1. So A -» <Aα, α">
defines a vector state on B(l{M)) for each unit vector ά e i w . Also
Xr1 ^ Λ""1 ^ 1, so take K3 = ϋΓx and the proof is complete.



382 G. D. ALLEN, D. A. LEGG AND J. D. WARD

4* Essent ia l ly H e r m i t i a n o p e r a t o r s o n lM o r £u / )* L e t A be
an opera tor on lM or l(M) and define

Ti(A) = msLx{\Imz\:ze W(A)} .

Let 3P be the set of projections onto the span of a subset of the
canonical basis vectors for lM or 1{M). If P e ^ , define PL = I — P,
where I is the identity operator.

Our first result in this section is trivially true in the lp spaces
p Φ 2, 1 < p < °°, and is also true for the Orlicz spaces under con-
sideration here. But due to the state structure in lM the result
must be proved. Recall that throughout this paper M and N satisfy
the J2-condition and hence that lM is reflexive and uniformly convex.

LEMMA 4.1. There is a constant c > 0 so that rt(PAP) < crt(A)
for all P e ^ and AeB(lM).

Proof. Suppose for a given AeB(lM) and Pe^ with P1 in-
finite dimensional that there exists a vector σ — {σn} in lM for which
rt(PAP) = δ = Im (PAPσ, σ'}. From Theorem 3.1, it follows that
σ' = {kp(\σn\)sgnσn} where k = \\{p(\σn\)}\\^) and that

r^PAP) - k Im (Aσ, {p(\ σn |) sgn σn})

where σ = {σn} satisfies Pσ = σ and PLσ = 0. Clearly \\σ\\ ^ 1. We
wish to perturb σ into a unit vector 7 for which Im (Ay, τ'> ^ cd
for some c > 0, c independent of σ, P and A. Since lM is reflexive
the basis {ex) is shrinking [6]. Furthermore the sequences {βj and
{Aβi} converge weakly to zero. From this it follows that for given
ε > 0, there exists an N so that

\(A(σ + reN), (σ + reN)')-k'(Aσ, {p(\σn\) sgn σn})-k'(AreN, p(r)e'N)\<ε

where 0 <; r < 1 is chosen so that | \ σ + reN 11 = 1 and k' —
\\{v(βn\ 2>(* )}|lw From Theorem 3.1, K2^k'/k. Hence it follows
that

Im (A(σ + reN), (σ + reN)')

^ Im [k'(Aσ, {p(\σn\) sgn σj> + k'(AreN, p(r)ef

N)] - ε .

So

r<(A) ^ -7-[fcIm <A5, {p( |σ. | ) sgn σn}) + klm (AreN, p(r)e'N)] - ε .
k

Now if | I m (AeN, e'N)\ ^ iΓ2δ/2, t h e lemma is proved w i t h c = KJ2.
So assume \Im (AeN, e'N}\ < K2δ/2 (K2 as in Theorem 3.1). In t h i s
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case, note that the quantities r and kp(r)K2 are less than or equal
to 1 since p(r)KJc < p(r)k' = p(r)/\\{p(σ), p(r)}\\m and it follows that

- ε

[/] ε ^ J O / 2 - ε
k

and the lemma still holds with c = KJ2.
Consider next the case Pe^ with P 1 finite dimensional. Then

P eventually "looks like" the identity. Suppose for such P, r^PAP) >
cTi(A) with c as above. Then there exists a unit vector σ such
that

Im (PAPσ, σ'} > cr^A)

and due to the continuity of the inner product assume σ has finite
support. The projection P can now be altered to a projection P'
for which P ' 1 is infinite dimensional and Im (PΆP'σ, σ') > crt(A).
But this is impossible and so the lemma is valid for all projections.

LEMMA 4.2. // 2 < aM, then there is a constant cM such that
supPe ,. | |PAP11| ^ cMrlA) for all AeB(lM).

Proof. Let AeB(lM) be fixed, and let supPe,. ||PAP1 \\ = a.
Assume, without loss of generality, that the supremums of the above
expression are attained; that is, there exists some P e ^ and fixed
unit vectors aβlM and V el{N) satisfying a = (PAPLa, P>. Letting
b be associated with V as above (i.e., <δ, b'} = 1, | |6 | | = 1) assume
pλa = a, Pb = b. So a and b have disjoint supports. Let σ = ca +
db, where c and d are chosen so that \\σ\\M — 1 and c sgncί = i\c\.
Since Σ?=i^(MI°U + l^ll^l) = 1 and M is convex, we must have
\d\ ^ 1 - |c | ^ 0 .

Now it follow that

m(Aσf σ')\

m {{PAP1^, ά'> + (PLAPLσ, a'} +

<PAP<7,<7'>}|

(PLAPσ, σ')}\ -

where the last inequality follows from Lemma 4.1. Hence letting
c' = 2c + 1 we have

cV4(il) ^ l lm^PAP 1 ^, σ') + (PLAPσ, σ'}}\

= Im JΣ (PAP1α)%cfc1p(| dδ% |) sgn W
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( 7 ) h Σ (P1APb).dklP(\caΛ\) sgncαMJ |

Im ] Σ (P-4Pxa)M/i;2?>(l K I) s g n 6W c sgn ι

x

{PLAPb)Jc,p{\ an I) sgn {PLAPb)n

ki p(\can\) sgn a

&3 2>(|aΛ|) sgn(ϊ

where fej, &2 and fcs are the positive weights associated with σ', b',
a' as in Theorem 3.1.

From (5) and (6), the inequality (7) continues as

( 8 )

Im {Σ (PAP^d)nk2p(\ K I) sgn bn • c sgn d ^Q, \ d Γ 1

Ui k

LAP6)Λί>(! an I) sgn (P1-APδ). | d \ ^ | e Γ1

where each term in the second series is nonnegative. Since c sgn d =
\e\i it follows from (5) that

c'r,(A) ^ (PAPλά, b')R',|c\|dΓ1 - (PLAPb, α">Λί

( 9 )

where

and α" = {A^j)(|αn|) sgn (PXAP6)Λ}. Notice that the constants jR2 and
i?i are independent of the vectors σ, a and 6. Now choose \c\ so
small that

( l - i c l

Then

R'

c o | r 2 > 2i21 |c0 | '-
2

) so JBt(l - |co |) 8- 2 - RA >
Finally, choose c such that \c\ — \co\. Recalling that \d\ ^ 1 — \co\,
it follows that

(10)

Hence by (9) and (10), we may take cM = c'lR,\co\
r-\l - | c o | ) ] - 1 and

the lemma is proved.
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LEMMA 4.3. // 2 < aM, then there exists a constant cM such that
||PAPLII £cMrt(A) for all AeB(l[M)).

Proof. The proof is almost identical with the proof of Lemma
4.2, with 6' replaced with 6" (of Theorem 3.2).

THEOREM 4.4. If 2£ [aM, βM], then there exists a constant cM

such that supP e^ !|PAP11| <; Cjar^A) for all AeB(lM) or B(l{M)).

Proof. If 2 < aM, the conclusion follows from Lemmas 4.2 and
4.3. If 1 < aM <; βM < 2, then consider the transpose operator A1 e
B(l{N)) or B{lN). From the above relations between aM, βN and βM,
aN, and since 2 < aN <; βN < oo, the conclusion follows from Lemmas
4.2 and 4.3.

REMARK. Theorem 4.4 implies that Hermitian elements in B(lM)
or B(l{M)), 2&[aM, βM], must be diagonal with respect to the canoni-
cal basis. Results of this type were first obtained by Tarn (see [8]).

THEOREM 4.5. // AeB(lM) or B(liM)), then || A - diam A|| ^
8 supp6^, ||PAP11|.

The proof of this result requires nothing special about the
function M. Indeed, below, we sketch the proof which in detail can
be found in [1], Lemmas 3, 4, 5 and 6. Since lM is reflexive, the
canonical basis {βj is unconditionally monotone and shrinking. From
those facts it can be verified that there are diagonal operators uk e
B{lM) for which ukuk = 1 and for which the

71 1 -
lim Σ —{uhAuj) = diag A ,

with the limit being taken in the w* topology of B(lM). With this
and the w*-lower-semicontinuity of the norm it follows that

||diag A — A\\ ^ lim sup
kAuk - A

<; lim sup max \\Auk — ukA\\
n—>oo lύk^n

S sup{||SA — AS\\: S is a diagonal operator in

B { l M ) , \ \ 8 \ \ = l } . -

Finally, by a result of Arveson [1, Lemma 6], this quantity is shown
to be <; 8supPe^ 11 PAP11|. This completes a sketch of the proof of
the theorem.
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THEOREM 4.6. Let 2 g [aM, βM]m If A is an essentially Hermitian
operator in B(lM) or B(l{M)), then there is a real diagonal operator
D and a compact operator K such that A = D + K.

Proof. We show that A — Re diag A is compact. Suppose that
diag A = Re diag A, since Im diag A must be compact for essentially
Hermitian operators. Recall that Pi is the projection onto span
{en+1, en+2, •}. If ri((A — re diag A)Pi) is not convergent to zero as
n —> °o, it is simple to construct a sequence of mutually disjoint
norm one vectors vn for which infn | Im ((A — Re diag A)vn9 v'n) | =
k > 0. If glim denotes Banach limit, then φ( ) = glim (-vn, v'n) is a
state on the Calkin algebra for which Im φ(A) = k > 0. This con-
tradicts the hypothesis that A is essentially Hermitian. Hence by
Theorems 4.4 and 4.5 it follows that \\(A - Re diag A)Pi\\ -> 0 as
w —» oo. This means that, in the uniform norm,

lim (A - Re diag A)Pn = A - Re diag A .
n-*oo

Since each PM is compact, the theorem is proved.

5* Concluding remarks* It is conjectured that if 2e[aM, βM]
the main result does not hold in general. The reason is this: if 2 e
[&MJ βπ\ then lM contains a subspace isomorphic to l2, and indeed
the subspace can even be complemented. However even with the
assumption that lM contains a complemented subspace isomorphic to
l2 we have been unable to establish the conjecture. The existence
of the isomorphism is simply not enough; in fact there is a modular
Orlicz sequence space, isomorphic to l2, which contains only diagonal
Hermitian operators.

The analogous result to Theorem 4.5 in Orlicz function spaces,
even in Lp 1 <; p < oo f is another matter altogether and it is posed
as an open problem.
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