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ON SOME FIXED POINT THEOREMS
FOR MULTIVALUED MAPPINGS

KENJIRO YANAGI

We give some fixed point theorems for multivalued non-
expansive mappings or generalized contractions with non-
compact domains in Banach spaces. First, we give a fixed
point theorem for nonexpansive mappings that generalizes
the results of Lami-Dozo, Assad-Kirk and Ko. Furthermore
we give similar theorems for nonexpansive mappings or
generalized contractions with nonconvex domains.

In 1976, Caristi [4] obtained fixed point theorems for weakly
inward single valued mappings. The essential part of his proof is
based on the following useful existence theorem.

THEOREM (Browder [2], Caristi-Kirk [3], Caristi [4], Kirk [9],
Siegel [18] and Wong [19]). Let X be a complete metric space and
f:X—>X an arbitrary mapping. Suppose there exists a lower semi-
continuous mapping ψ of X into the nonnegative real numbers such
that for each xeX,

d(x, f(x)) ^ ψ(x) - f{f(x)) .

Then f has a fixed point in X.

Fixed point theorems for multivalued nonexpansive mappings
are obtained by Assad-Kirk [1], Downing-Kirk [5], Itoh-Takahashi
[8], Ko [10], Lami-Dozo [11], Lim [12, 13], Reich [15, 16, 17] and
the other. Recently Downing-Kirk and Reich obtained some existence
theorems containing the results of Lim by using the above theorem
essentially. In this paper we shall give extensions of results of
Lami-Dozo, Assad-Kirk and Ko by using similar method to Downing-
Kirk and Reich. Furthermore we shall obtain similar results in the
case of nonconvex domain. Now we shall introduce some necessary
notations and definitions. Let X be a Banach space and K be a
nonempty convex subset of X. If xeK, we define the inward set
of x relative to K, denoted Iκ(x) as follows:

Iκ(x) = {x + a{y - x)\yeK, a ^ 1} .

We say that a mapping /: K -> X is weakly inward if f(x) belongs
to the closure of Iκ(x) for each xeK. We denote by <af^(X) the
family of nonempty bounded closed subsets of X and denote by

the family of nonempty compact subsets of X. For A e
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we define d(x, A) = inf {\\x - y\\\yeA). If KaX, c l(2Q,

int (K) and 3if will stand for the closure, interior and boundary of
K, respectively. We write xn -^ x to indicate that the sequence of
vectors {xn} converges weakly to x; as usual xn —> x will symbolize
(strong) convergence.

DEFINITION 1. Let D be the Hausdorff metric on &&(X) induced
by the norm of X and let Ke^^(X). T: Ke^^(X) is said to be
nonexpansive if D(T(x), T(y)) ̂  \\x — y\\ for every x, yeK. T:K—>
&&(X) is said to be a contraction if for every x, yeK, D(T(x),
T(y)) ^ k\\x - y\\, where 0 ^ k < 1. T: K-><£?^(X) is said to be
a generalized contraction if for each x e K there is a number
a(x) < 1 such that D(T(x), T(y)) ̂  a{x)\\x - y\\ for each yeK.

DEFINITION 2. A Banach space X is said to satisfy OpiaVs con-
dition if the following holds: If a sequence {xn} is weakly convergent
to x in X and x Φ yy then

( * ) liminf \\xn — x\\ < liminf ||&n — y\\ .

A Banach space X is said to satisfy weak OpiaΓs condition if the
following holds: If a sequence {xn} is weakly convergent to x in X,
then for every y in X,

(**) limmf Us. - x\\ ̂  liminf | | s . - y|| .

We remark that (*) and (**) are equivalent to (*)' and (**)', respec-
tively (cf. [11]):

(*) ' limsup||αΛ - x\\ < l i m s u p | | ^ - y\\ ,

(**)' limsup \\xn — x\\ ̂  limsup ||αj» — i/|| .

Hubert spaces and ϊp(l ^ ί? < oo) satisfy OpiaΓs condition and Banach
spaces with weakly continuous duality mappings satisfy weak OpiaΓs
condition (cf. [14]).

DEFINITION 3. Let K be a convex set in X. T:
is said to be demiclosed on K if xn —*x, yn—>y and yne T(xn) imply
ye T(x). T: K—>&&(X) is said to be semiconvex on K if for any
xf y eKf z = λα; + (1 — λ)ί/, where 0 ^ λ ^ 1, and any xx e T(x), y1 e
T{y), there exists z,eT(z) such that | | ^ | |

PROPOSITION 1 (JSΓo [10]). Lei K be a convex set in X and let
T: K-> <^&(X). If I — T is semiconvex on K, then for any x,yeK
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and z — Xx + (1 — X)y, where 0 <; X <; 1, we have d(z, T(z)) <S
max {d(x, T(x)\ d(y, T(y))}.

PROPOSITION 2 (Ko [10], Downing-Kίrk [5]). Let K be a set in
X. If T: K —> ^&(X) is upper semicontinuous, then d(x, T(x)) is
a lower semicontinuous mapping of K into the nonnegative real
numbers.

Before we obtain main theorems, we shall state the following
result related to multivalued contractions.

PROPOSITION 3 (Downing-Kirk [5], Reich [17]). Let K be a non-
empty closed convex subset of X and let T: K-> J3?~(X) be a contra-
ction. If T(x) c cl (/#(#)) for each xeK, then T has a fixed point.

We shall obtain the first theorem.

THEOREM 1. Let Kbe a nonempty weakly compact convex subset
of a Banach space X and let T:K~>^f(X) be nonexpansive such
that T(x) ccl(Iκ(x)) for each xeK. If I — T is demiclosed or semi-
convex on K, then T has a fixed point.

Proof. Choose a point x0 in K and a sequence {kn}, 0 < kn < 1,
that converges to 0. By Proposition 3, the mapping Tn: K—>Jsf(X)
defined by Tn(x) = knx0 + (1 — K)T(x) for all xeK has a fixed point
xn. Consequently there exists yn 6 T(xn) such that xn — knx0 +
(1 — kn)yn. Suppose I — T is demiclosed on K. Since K is weakly
compact, there is a sequence {xH} of {x%} such that xn^zeK. Also

Therefore 0 6 (I — T)(z), i.e., z e T(z). Suppose / — T is semiconvex
on if. We have inf {d(x, T(x))\xeK} = 0 because

Let r > 0, define i ϊ r = {xeK\d(x, T(x)) ^ r}. Since Proposition 1
and Proposition 2 imply that Hr are closed convex, Hr are weakly
closed for every r > 0. The family {JEfr|r > 0} has the finite inter-
section property. Therefore, by the weak compactness of K, we
have n{i ί r | r > 0} Φ 0 . It is clear that any point in Π{H r |r > 0}
is a fixed point of T. •

We obtain the following



236 KENJIRO YANAGI

COROLLARY 1. Let K be a nonempty weakly compact convex
subset of a Banach space X which satisfies OpiaΓs condition (or
weak OpiaΓs condition). If T:K —> J3?*(X) is nonexpansive (or a
generalized contraction) such that T(x) c cl (Iκ(%)) for each x e K,
then T has a fixed point.

Proof. If X satisfies OpiaΓs condition and T is nonexpansive,
then / — T is demiclosed on K by the result of Lami-Dozo. There-
fore we show that / — T is demiclosed on K if X satisfies weak OpiaΓs
condition and T is a generalized contraction. Suppose that xn -* x,
yn->y and yne(I — T)(xn). Hence there exists un e T(xn) such that
Vn = xn — w» Since T(x) is compact, there exists vn e T(x) such that

IK - un\\ ^ D(T(x\ T(xJ) ^ a(x)\\x - xn\\ .

Also there is a sequence {vni} of {î } such that vni -+v 6 T(x). We
have the following relation,

— x\\ ^ l i m s u p | | u Λ — v Λ . | |
i-»oo

m a?n< - 2/Λ< - vn.\\

= lim sup | |#„. - 7/ - v + y - yn. + v - vn.\\

l ^ - y - v\\ - \\yn. - y\\ - \\vn. - v\\\

α:Wi - y - v\\ - l i m s u p | | ^ . - y\\ - l i m s u p | K . - v\\

^ Λ i - y - v\\ .
l

Since a?^ —̂  α? and X satisfies weak OpiaΓs condition, we have

lim suPi-̂ oo \\xn — x\\ = 0. Hence a?n< -> α? and xH —> ?/ + v. Therefore

y = x-ve(I-T)(x). % % D

If K is compact in Theorem 1, we obtain the following

COROLLARY 2. Let K be a nonempty compact convex subset of
a Banach space X and let T: K-* J%Γ(X) be nonexpansive such that
T(x) c cl (Iκ(x)) for each xeK. Then T has a fixed point.

We shall obtain fixed point theorems for nonexpansive mappings
or generalized contractions on star shaped subsets of Banach spaces.

DEFINITION 4. A subset K of a Banach space is called starshap-
ed if there exists an element x0 Θ K such that for x e K and
k(0 <k < 1), kxQ + (1 - k)x6K.
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DEFINITION 5. For a subset if of a Banach space X and a
bounded sequence {xn} in X, we define

AR(K, {xn}) = inf ίlim sup | |y - xn\\ \y e κ\

and

A(K, {xn}) =\ze K\lim sup \\z - * . | | = AR(K, {xn})\ .

The set A(K, {xn}) and the number AR(K, {xn}) are called, respective-
ly, the asymptotic center and the asymptotic radius of {xn} relative
to K.

PROPOSITION 4. The following hold:
(1) If K is convex, then A(K, {xn}) is convex;
(2) if K is closed, then A{K, {xn}) is closed;
(3) if K is weakly compact, then A(K, {xn}) is nonempty;
(4) if X is uniformly convex and K is bounded closed convex,

then A(K, {xn}) consists of exactly one point;
( 5) A(K, K}) c dK U A(X, {xn});
( 6 ) There exists a subsequence {xn.} of {xn} such that AR(K,{xi.}) —

AR(K, {xn.}) and A(K, {xni}) c A(K, {x%i.}) for any subsequence {xni)
o/KJ.

Proof. (1), (2), (3) and (4) are clear (cf. [6]). We prove at
first (5). Suppose that A(K, {xn}) ςt dK\J A(X, {xn}). Then there
exists x e int (K) such that x e A(K, {xn}) and x £ A(X, {xn}). We have

i n f j l i m s u p \\y — xn\\\y eX\ < l i m s u p \\x — xn\\

= inf Ilim sup | |y - xn\\ \y e K\ .

Hence there is veX such that

limsup \\v — xj\ < inf jlimsup \\y — xn\\\yeκ\ .

Since x e int (K), there exists λ e (0, 1) such that Xx + (1 — x)v e K.
Hence

inf -himsup \\y — # J | | ? / e i d ^ l i m s u p \\Xx + (1 — X)v — xn\

^ Xlimsup \\x — xn\\ + (1 — λ ) l i m s u p | |v — $ J | .

Therefore limsup^oo \\x — xn\\ <; l i m s u p ^ ^ (|v — α?n | |. This is a con-
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tradiction. Next we show (6). By Lim [13, Proposition 1], there
exists a subsequence {xni} of {xn} such that AR(K, {xnij}) = AR(K, {xn.})
for any subsequence {xnij} of {xn.}. Let x e A(K, {xn~}). For any sub-
sequence {xn..} of {xni},

lim sup \\x% - a? 11 ̂  lim sup \\xn. - a?|| = Aβ(jKΓ, K J )
j—yoo J i—>oo

= i4Λ(JΓ, {* }) ^ lim sup 11 x - x\\ .

Hence l i m s u p ^ | K . -x.\\ = Ai2(ίΓ, {xn..}). Therefore xe A(K, {xn..}).
D

We shall obtain the following theorem for nonexpansive map-
pings.

THEOREM 2. Let K be a nonempty weakly compact star shaped
subset of a uniformly convex Banach space X and let T: K—> J?Γ(X)
be nonexpansive. If for each x e dK, T(x) c K and Xx + (1 — λ) T(x) c K
for some λ 6 (0, 1) or T(x) c int (K), then T has a fixed point.

Proof Let x0 be a starcenter and choose a sequence {fcj, 0 <
kn < 1, that converges to 0. By Assad-Kirk [1], the mapping Tn:
K -> JT(X) defined by Tn(x) = knx0 + (1 - K) T(x) for all x e K, has a
fixed point xn. Consequently there exists yn e T(xn) such that xn —
knx0 + (1 — kn)yn. Since {xn} is bounded, we can take a subsequence
{xn.} of {xn} as (6) in Proposition 4. We rewrite {xn.} to {xj. Let
ze A(K, {xn}). Since Γ(^) is compact, there exists zne T(z) such that
IIzn — yn\\ S D(T(z), T(xn)) ^ \\z — xn\\, and there exists a subsequence
{zn.} of {zn} such that ^.->2eΓ(i2). By (6) in Proposition 4,
A(Kf {xj) c A(ίΓ, {^J). Hence z e A(ϋΓ, { .̂}). Since

we have

l i m s u p p - xni\\

^ Hm sup \\z - z%i\\ + l i i^sup \\zn. - ynt\\ + 1™ sup \\y%i - x%i\\

= limsup||«#< - yni\\
i—rOO

^ lim sup | |z — xn. \\ = inf |lim sup | |y — x%i|| | y e K\ .
i—>oo V ϊ—»oo J

If ^ e 3ίΓ, then w =^ Xz + (I — X)zeK for some λ e (0, 1) by hypothesis.
Suppose that z Φz. By uniform convexity of X, we have for some
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limsup ||w — x%ί\\ ^ (1 — δ)'mί jlimsup \\y — xn.\\\yeK\ .

This contradicts the choice of w. If ze A(X, {xni}), we have

AR(X, {xni}) ^ lim sup \\z — xni\\

^ lim sup ||2 ~ sΛ<|| + limsup ||sΛ< - yni\\ + limsup||i/W ΐ - xni\\
ΐ—>oo i—>oo i-+oo

= limsup | | 3 Λ ι - yni\\ ^ limsup ||z - xni\\ =
i o o i > o o

Hence 2 6 A ( I , K J ) . By uniform convexity of X, we obtain z =

zeT(z). D

The following theorem for generalized contractions is obtained.

THEOREM 3. Let K be a nonempty weakly compact star shaped
subset of a Banach space X and T: K—> J%Γ(X) be a generalized
contraction. If for each xedK, T(x)aK, then T has a fixed point.

Proof. As in Theorem 2, we obtain xneK such that x% e Tn(xn).
Consequently, there exists yn 6 T(xn) such that xn = knx0 + (1 — kn)yn.
Since {xn} is bounded, we can take a subsequence {xn.} of {xn} as (6)
in Proposition 4. We rewrite {xn.} to {xn}. Let zeA(K, {xn}). Since
T(z) is compact, there exists zn e T{z) such that

\\z% - yn\\ ^ D(T(z), T(xJ) ^ a(z)\\z - xn\\ ,

and there exists a subsequence {zn.} of {zn} such that zni—>zeT(z).
Since A(K, {xn}) c A(K, {xni}), z e A(K, {xni}). Also

.4 - » tιι =
If z 6 air, then 16 K by hypothesis. Hence

AR(K, K J ) ^ limsup | | ί - xni\\

^ l i m s u p \\z - zni\\ + lim sup \\zn. - yni\\ + lim sup || yni - xni\\
i—>oo ί—>oo i—»oo

= lim sup | |z n. ~ ^ . | | ^ lim sup α(«)11z - x%i\\
i—*oo i ->oo

= a(z)AR(K, {xKi}) .

Since 1 — α(«) > 0, AR(K, {xBj}) = 0, which implies that xni —»z and
ίcMi->2. Therefore « = « e Γ(«). If 2eA(X, {»mi}), we have

AR{X, {xj) ^ lim sup 1|I - a J I
ί-*oo

^ lim sup | | I - zn%\\ + limsup p % . - yni\\ + lim sup 112/n< - xnt\\
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= limsup \\znι- yni\\ ^ limjap a(z)\\z - xni\\

= a{z)AR{X, {xnι}) .

Since 1 — a(z) > 0, AR(X, {xnι}) = 0, which implies that xn. —• z and
xnt-*z. Therefore z = z e T{z). Π
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