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CONTINUOUS SELECTIONS AND
FINITE-DIMENSIONAL SETS

E. MICHAEL

Some known selection theorems are strengthened by
weakening the hypotheses on a finite-dimensional subset of
the domain.

1* Introduction• The following selection theorem was recently
obtained in [7] by C. Pixley and the author.

THEOREM 1.1. Let X be paracompact, Y a Banach space, ZaX
with dimA i? <; 0, and φ: X—•>^r(Y) l.s.c. with φ(x) convex for all
x e X — Z. Then φ has a selection.

Let us quickly define our terms: We write 2r = { S c 7 : S ^ 0 }
and JΓ(Y) = {Se2γ: S closed in Y}. A map φ: X —>2Y is lower semi-
continuous, or l.s.c, if {xeX:φ(x) Π V Φ 0} is open in X for every
open V in Y. A selection for a map φ:X-*2γ is a continuous
f:X->Y such that f(x) e φ(x) for every xeX. Finally, if ZaX,
then ά\mx Z <; n means that dim S <> n for every subset S of Z
which is closed in X.1

The purpose of this paper is first to generalize Theorem 1.1 to
the case where dimx Z <; n, and then to prove two other theorems
of this type in which different assumptions are made on φ(x) when
xeX—Z. Just like Theorem 1.1, all of these "hybrid" selection
theorems reduce to known results when Z = 0 or Z — X. Theorem
1.1, along with the special cases of Theorems 1.3 and 1.4 where
dim Z = 0, will be applied in [6],

In contrast to Theorem 1.1, the theorems to be proved in this
paper all have both a local and a global version. To state these
results succinctly, we introduce some more terminology: A map
φ: X-+2Y has the selection extension property, or SEP, if, whenever
A c X is closed, every selection g for φ \ A extends to a selection
for φ. If g only extends to a selection for φ\U for some neighbor-
hood U of A in X, then we say that φ has the selection neighbor-
hood extension property, or SNEP. As pointed out in [6], Theorem
1.1 can be strengthened to conclude that φ actually has the SEP.

Before stating Theorem 1.2, we recall the following concepts
from [4, p. 565], where n ^ — 1: A space S is Cn if every continu-
ous image of an ί-sphere (i ^ n) in S is contractible in S. A collec-

Observe that, for normal X, aimx Z^n is valid if either dim Z^n or άimX^kn.
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tion Sf of subsets of a metric space Y is uniformly equi-LCn if to
every ε > 0 corresponds a v(έ) > 0 such that, for every SeS^, every
continuous image of an i-sphere (i <; n) in S of diameter O(ε) is
contractible over a subset of S of diameter <ε. Since there is no
( —l)-sphere, the above properties are always vacuously satisfied
when n — — 1, and hence Theorem 1.2 really generalizes Theorem
1.1.

THEOREM 1.2. Let X be paracompact, Y a Banach space, Z c: X
with άixrix Z ^ n + 1, and φ'-X —>^(Y) l.s.c. m£/& $(#) convex for
all XGX— Z and with {φ(x): x β Z) uniformly equi-LC"\ Then φ has
the SNEP. Iff moreover, φ(x) is Cn for every xeZ, then φ has the
SEP.

Theorem 1.2 reduces to [3, Theorem 3.2"] when Z= 0 , and it
implies [4, Theorem 1.2] when Z — X (more generally, when Z is
open in X and φ{x) is a singleton for x e X — Z).

In our next theorem, a metric space Y is called an AR (resp.
ANR) if it is a retract (resp. neighborhood retract) of every metric
space E containing it as a closed subset. A collection S^ of sub-
sets of a topological space Y is called equi-LCn in Y if, for every
y £ Y, every neighborhood V of y contains a neighborhood W of y
such that, for any SeS^, every continuous image of an ί-sphere
(i <; n) in WΠ S is contractible in 7 f i S . It is easy to see that
every uniformly eqai-LCn collection of subsets of a metric space Y
is eqxύ'LCn in Y; for a partial converse, see Lemma 6.1(b).

THEOREM 1.3. Let X be paracompact, Y a complete metric ANR,
ZaX with A\mxZ ^ n + 1, and φ: X-^^(Y) l.s.c. with φ(x) = Y
for xeX — Z and with {φ(x): xeZ} equi-I/C* in Y. Then φ has the
SNEP. // moreover, Y is an AR and φ(x) is Cn for every xeZ,
then φ has the SEP.

Observe that, when Z—0, Theorem 1.3 reduces to the known
result that every complete metric AR (resp. ANR) has the extension
property (resp. neighborhood extension property) with respect to
paracompact spaces (see, for instance, C. H. Dowker [1]).

Our next result reduces to [4, Theorem 1.2] when Z= 0.

THEOREM 1.4. Let X be paracompact, AczX closed with
dimx (X — A) <; n + 1, ZaX — A with dim x Z <; m + 1 (where
m^n), Y complete metric, and φ:X—>^r{Y) l.s.c. such that
{φ(x): xeX — Z} is equi-LCn in Y and {φ(x)ι xeZ} is equi-LCm in Y.
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Then φ has the SNEP at A.2 If, moreover, φ(x) is Cn for all
x e X — Z and Cm for all xeZ, then φ has the SEP at A.

The paper is arranged as follows. Two known lemmas on l.s.c.
maps are stated in §2, some general results on selections are
established in §3, and a result which is implicitly contained in [4]
is recorded in §4. After these preliminaries, Theorems 1.2, 1.3 and
1.4 are then proved in §§5, 6 and 7, respectively.

2* Two lemmas on Ls*c* maps* The following two known
lemmas will be applied in the sequel.

LEMMA 2.1 [3, Example 1.3]. Let φ:X->2γ be l.s.c, AaX
closed, and g a selection for φ\A. Define φg: X-±2Y by φg(x) = φ{x)
if xeX — A and φg(x) = {g(x)} if xeA. Then φg is also l.s.c.

Henceforth, we shall freely refer to the map φg defined in
Lemma 2.1.

LEMMA 2.2 [4, Lemma 11.3]. Let φ:X->2γ be l.s.c. with Y a
metric space, let KdY be compact, and let ε > 0. Then {xeX:
K c Bc{φ{x))Y is open in Y.

3* Two properties of set-valued maps* In this section we
consider the following two properties of a map φ: X~>2Y, where Y
is a metric space.

(3.1) To every ε > 0 corresponds an α(ε) > 0 with the following
property: If A c X is closed, g is a selection for φ\A, and h: X —> Y
is continuous with d{h, φg) < a(e), then g extends to a selection /
for φ with d(f, h) < ε.4

(3.2) To every ε > 0 corresponds a /3(ε) > 0 with the following
property: If i c l i s closed, g is a selection for φ\A, h:X—>Y is
continuous with d(h, φg) < β(ε), and μ > 0, then there exists a con-
tinuous /: X-> Y with d{f, h) < ε and d{f, φg) < μ.

Property (3.2) (often with A — 0) is used—implicitly or ex-
plicitly—in the proofs of almost all general selection theorems
known to the author, including those in this paper. It is clear that
the slightly simpler property (3.1) (which is called the selection ap-
proximation property, or SAP, in [6, §5]) always implies (3.2); the

3 Bε(S) denotes the ε-neighborhood of S.
4 Here d is the metric on Y, and d(h, φg) < a denotes that d(h(x), φg{x)) < a for all

xeX. Similarly for d(f, h) < e, etc.



192 E. MICHAEL

following result shows that, under mild restrictions, the two pro-
perties are actually equivalent.

PROPOSITION 3.3. // Y is a complete metric space, and if φ(x)
is closed in Y for all xeX, then (3.2) implies (3.1). Moreover, one
can take a(ε) = β(β/2); in particular, if one can take /8(°°) = °o5

then one can also take α(°o) = oo.

Proof. Assume that φ satisfies (3.2) and let us show that it
satisfies (3.1) with α(e) = β(ε/2). Let f, = h. By induction, use (3.2)
to construct continuous maps fn: X->Y such that d(fn, φg) < β{2~nε)
and d(Λ+ 1,/J<2- ( +1)6 for all n^l. Let / = lim»/w. This / satisfies
(3.1) with α(e) = β(e/2).

PROPOSITION 3.4. Suppose φ:X-*2γ, with Y metric. Then:
(a) If φ satisfies (3.1) with α(oo) = oo, then φ has the SEP.
(b) // X is collectionwise normal6, if Y is a Banach space, and

if φ\B satisfies (3.1) for every closed BaX with α(<χ>) independent
of Bf then φ has the SNEP.

Proof, (a) Clear (see Footnote 5).
(b) Suppose i c l i s closed and g is a selection for φ\A. By

a theorem of G. H. Dowker [1], g can be extended to a continuous
h:X->Y. Let U = {xeX: d(h, φ) < α(<*>)}. Then U is open in X
(since φ is l.s.c.) and AaU, so there is an open 7 in I such that
AdVdVaU. Then d(h\V, φg\V) < α(<χ>), so by assumption # ex-
tends to a selection / for φ \ V. That completes the proof.

4. A lemma about nerves of coverings* If ^ is a covering
of X, then we write JW(̂ O for the nerve of ^ and Nι{^) for the
ί-skeleton of N(&). A function %: JV'(^) -> F is called a represen-
tation if tt|σ is continuous for every simplex σ of

LEMMA 4.1. Let Y be a Banach space and y c 2 F uniformly
equi-LC\ Then to every ε > 0 corresponds a γ(ε) > 0 with the
following property: If X is paracompact, φ: X—> S^ l.s.c, h: X—> Y
continuous with d(h, φ) < γ(ε), and μ > 0, then there exists a locally
finite open cover ^ of X and a representation u: Nn+1(%ί) -> Y such
that, if σ is a simplex of Nn+1(^) with vertices Ulf , Uά, and if
x 6 Uι Π Π Ujf then

5 That one can take α(oo) = oo simply means, in effect, that there exists a selection
/ for φg, with nothing of consequence being assumed or concluded about h. This use-
ful shorthand, which was introduced in [4], will be used throughout this paper.

6 This property lies between normality and paracompactriess.
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u{σ) c Bμ{φ{x)) n Bβ(h(x)) .

// every SeS^ is Cn, then one can take γ(°°) = <*>.

Proof. This result is, in effect, a slight generalization of [4,
Lemma 6.1]. In that lemma, it was assumed—in addition to our
present hypotheses—that dim X <J n + 1, and it was concluded—
in addition to our present conclusions—that the cover ^/ is of order
^n + 2 (so that N{&) = Nn+1(^)). The proof of [4, Lemma 6.1]
remains valid for our present result.

5* Proof of Theorem 1.2. By Propositions 3.3 and 3.4, it will
suffice to show that ψ satisfies condition (3.2)/ and that one can take
/3(co) = oo in case φ{x) is Cn for every xeZ. In fact, we will show
that φ satisfies (3.2) with β(e) = τ(ε), where τ(ε) is as in Lemma 4.1.

Let A, g and h be as in (3.2), with β(έ) = 7(ε). Our hypotheses
imply that {φg(x):xeX} is uniformly equi-LC% so we can pick an
open cover ^ of I and a representation u: Nn+\^) - > 7 as in
Lemma 4.1 (applied to φg). Now recall that, by DugundjΓs exten-
sion theorem, every convex subset of a Banach space has the ex-
tension property with respect to metric spaces. By inductively
climbing up the ί-skeletons of N{^) with ί > n + 1, we can there-
fore extend u to a representation v: N(^S) —> Y such that v{σ) c
conv v{σ) for every simplex σ of N{^/) with dim σ > n + 1. It
follows that v(σ) c conv W(<T [Ί Nn+1(^)) for every simplex σ of

From now on, the proof will closely follow the proof of Theorem
1.1 given in [7].

Let {Vv: Ue ^} be an open cover of X such that Vσ c U for all
Ue ^/. For each xe X, let σ(x) be the simplex of N(%f) spanned by
those Ue <%ί for which xeVu. Let S = X - Z. For each s e S, let

Gs - {x e X: v(σ.) c [Bμ{φg{x)) n Bβ(Λ(»))]} - £Γ. .

Then Gs is open in X by Lemmas 2.1 and 2.2, while seGs by the
properties of ^ and u stated in Lemma 4.1, our construction of v,
and the fact that Bμ(φg(s)) and BB(h(s)) are convex. Also, by the
last part of the definition of G8, σx c σs for every x e Gs.

Let G = \JseSGs, and let E = X - G. Then EaZ and £? is
closed in X, so d i m ^ ^ n + 1. Now {V̂  Γ) 2£ Ϊ7 e ̂ } is a locally
finite, relatively open cover of E, so it has a relatively open refine-
ment {Ov: Ue^} of (indexed) order £n + 2 with O . c F , for all

7 It is worth recording that this will also establish following result: If φ is as in
Theorem 1.2, then φ has property (3.1).
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. Let Wu= VuΠiOuUG). Then {WuiUe^f} is an open
cover of X, WuCzVuCU for all Ue^f, and every xeE is in Wυ

for at most n + 2 elements Ue^. Let f: X—>N(%f) be a canonical
map obtained by using a partition of unity on X subordinated to

ui Ue%S}, and define /: X-> F by f = voζ. Let us show that
, &,) < i" and d(f, h) < ε, as required by (3.2).
If xeE, then ξ(x) e Nn+1(%S), so

f(x) = v(f (a?)) = u(f (a:)) 6 u(σ.) c 5,(^(α)) Π Bε(h(x)) ,

where the last inclusion holds by our hypotheses on u. Now suppose
xeG. Then x e Gs for some s e S. Hence σx(zσs, so

/(») = *(£(*)) e v(σβ) c v(<τ.) c -B^,(aO) n B.(λ(«)) ,

where the last inclusion holds by the definition of Gs. That com-
pletes the proof.

6. Proof of Theorem 13* We begin by recalling a definition
from [5]. A metric space Y is a uniform ANR if to every ε > 0
corresponds a δ(ε) > 0 with the following property: If Y is em-
bedded isometrically as a closed subset in a metric space (£7, d)f then
there exists a retraction r: Bδ{oo)(Y) —> y such that d(z, r(z)) < ε
whenever ZGE and cί(£, F) < <5(ε). If one can take δ(oo) = oo (so
that the domain of r is always E), then F is called a uniform AR.

Before proving Theorem 1.3, we need the following lemma.

LEMMA 6.1. Let (Y, d0) be a metric ANR (resp. AR), and let
y c 2 y be eqai-LCn in Y. Then there exists a compatible metric
d ^ d0 on Y such that:

(a) (Y, d) is a uniform ANR (resp. uniform AR).
(b) S* is uniformly equi-LC™ with respect to d.

Proof. The existence of a metric d satisfying (a) was proved
in [5, Theorem l.l]8, and the existence of a metric d satisfying (b)
was proved in [4, Proposition 2.1]. Both results were proved with
the aid of [2, Theorem 1], and that theorem can similarly be applied
to obtain a metric d satisfying (a) and (b) simultaneously. We omit
the details.

Having established Lemma 6.1, we now proceed to the proof of
Theorem 1.3. We begin by remetrizing Y with a metric d as in
Lemma 6.1, with Sf = {φ(x):xeZ}; since the original metric d0 on
Y complete, so is the metric d^d0. Next, we embed (F, d) isometri-
cally in a Banach space (E9 d). Let <5(ε) and r: Bδ{oo)(Y) —> Y be as in

8 For AR's, it had previously been proved by H. Toruήczyk in [8, Proposition 2.2].
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the above definition of a uniform ANR. We shall regard φ as a
map from X to ^(E).

By Propositions 3.3 and 3.4, it will suffice to show that φ satisfies
condition (3.2),9 and that one can take /3(°°) — °o in case Y is an
AR and φ(x) is Cn for every x e Z. In fact, we will show that φ
satisfies (3.2) with β(ε) = τ(iδ(e/2)), where 7 is as in Lemma 4.1
and δ is as in the above definition of a uniform ANR.

We proceed as in the proof of Theorem 1.2, with a few modifi-
cations. Let A, g and h be as in (3.2), with β(e) = τ(P(ε/2)). Our
hypotheses imply that {φg(x):xeX} is uniformly equi-LCn, so we
can choose an open cover *U of X and a representation u: Nn+I(i^)->E
as in Lemma 4.1 (applied to φa), but with ε replaced by ε' = 4<5(ε/2)
and with μ replaced by μ' = d(μ/2). In terms of this ε', the above
definition of β(ε) becomes /3(ε)=τ(ε'), so that d(h, φa)<Ί(ε') Moreover,
our choice of ε' and μ' yields the following two assertions, whose
easy verification is left to the reader. (Recall that r: BHoo)(Y) —»Y
is our retraction.)

(1) If x e X, eeE, and e e Bε*(h(x)), then e e Bδiε/2)(Y) and
r(e)eBε{h{x)).

(2) If #eA, e e # and eeBμ,(g(x)), then r(e)eBμ(g(x)).
Now extend the representation u: Nn+1&) - > £ to a representa-

tion 0: N(&) —> ϋ? precisely as in the proof of Theorem 1.2. The
properties of ^ , u and v imply that, if σ is a simplex of N(&) and
if a; is in the intersection of its vertices, then v{&) c Bε>{h{x)), so
v(σ) a Bδ(oo)(Y) by (1). It follows that v(N(^)) is contained in the
domain of r, and we can define w = r<>v. Our proof now continues
just like the proof of Theorem 1.2, except that v is replaced by w
in the definitions of G8 and /. Everything goes through as before,
except that it requires a bit more care to check that s eGs and that
f(x) e Bε(h(x)) Π Bμ(φg(x)) when xeE.

(a) s e Gs: We must check that w(σs) c Bε(h(s)) and that w{σs) c
Bμ(φg(s)). For the first inclusion, observe that v{σs) aBε,(h(s)) by the
previous paragraph, so w(σs) c Bε(h(s)) by (1). For the second in-
clusion, we distinguish two cases: If s i A, then φg(s) = Y, so our
inclusion is clear because w(σs)aY. If seA, then φg(s) = {g(s)};
since u(σs) aBμ,(φg(s)) by Lemma 4.1, we have u(σs) c Bμ>(g(s)), hence
v(σ8) c Bμ>(g(s)) by the construction of v, so (2) implies that w{σs) c
Bμ{g{s)) - Bμ(φg(8)).

(b) /(sc) 6 Bε(h(x)) Π Bμ{φg{x)) when # e i?: Just as in the proof

of Theorem 1.2, we have v(ξ{x)) eBε,(h(x)) Π Bμ>(φg(x)) whenever xeE;
since /(a?) = r(v(ξ(x))), our assertion follows from (1) and (2).

That completes the proof.
9 It is worth recording that this will also establish the following result: If φ:

is as in Theorem 1.3, then Y can be remetrized so that φ has property (3.1).
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REMARK. Since the above proof of Theorem 1.3 is fairly com-
plicated, it may be worthwhile to outline an alternative proof for
the important special case where n — — 1: First of all, we now
only need part (a) of Lemma 6.1. Next, let us show that (3.2) is
satisfied with β(ε) == iδ(e/2), where δ is as in the definition of a
uniform ANR: With h and φg as in (3.2), define

θ{x) = φg(x) Π Bβω(h(x)) ,

f(x) = [conv

Standard facts about l.s.c. maps imply that ψ is l.s.c. Now ψ(x) =
[conv (θ(x))]~ for all x e 2 , s o f has a selection / ' by Theorem l.l.10

It is easy to check that f'(x) is in BδU/2)(Y) — and thus in the
domain of r — for all x e l , so we can define / = r ° / ' . It is not
hard to check that this / is an extension of g which satisfies all
the requirements of (3.2).

7 Proof of Theorem 1Λ. As observed in the introduction,
this theorem reduces to [4, Theorem 1.2] when Z= 0. The proof
of Theorem 1.4 is very similar to that of the older result given in
[4], so it will suffice to indicate the necessary modifications.

(1) Analogously to [4, Proposition 2.1], one proves that there
exists a compatible complete metric d on Y which simultaneously
makes {φ(x): x e X — Z) uniformly LCn and {φ(x): xeZ} uniformly
equi-LCm. (Observe that {φ(x):xeX} is therefore also uniformly
equi-LCm.)

(2) After the modification in (1) above, we can follow the
proof of [4, Theorem 1.2] essentially without change until we get
to the proof of [4, Lemma 7.3]. In that proof, the hypothesis that
{φ(x):xeX} is uniformly equi-LCw was needed to construct the maps
uσ>x (for dimσ = ΐ + 1) in the middle of p. 572 of [4]. Since {φ(x):
x 6 X} is uniformly equi-LCm in our present situation, we can con-
struct uσ>x as before when i <Ξ m. For i > m, however, uOt9 can be
defined as before only if xeX — Z, but not, in general, when xeZ.
To overcome this obstacle, it suffices to modify the proof of [4,
Lemma 7.3] when i > m by first of all shrinking the given open
cover f? of X to an open cover <&' = {Uf: Ue^} with the follow-
ing two properties:

(a) U'<zU for all C/e^.
(b) For the cover f/', the construction of suitable maps uσ>x

is possible for all xe X. More precisely: If σ is a simplex of
10 This is where we need the assumption that n — — 1. For n > — 1, there is no

reason to suppose that f satisfies the hypotheses of Theorem 1.2. That explains why,
in our proof of the general case of Theorem 1.3, we were unable to apply Theorem 1.2
and therefore had to imitate its proof instead.
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with dim σ = i + 1 and with vertices Ulf , Ui+2, and if
xeU[Π "- ΠU'i+2 then u\σ can be extended to a continuous u'x,σ:
σ —>Y such that u'x,σ(σ) c Bμ{φ(x)) and diam i4,σ(σ) < ε/2.

We construct <%/' as follows. Let S — X — Z. If 0 is a simplex
of Nί+1(%S) with dim σ — i + 1, and if & e S is in the intersection of
the vertices of σ, then (since xί Z) we can define ux,a9 Wx,a and Wx

precisely as in the middle of p. 572 of [4]. Now pick an open cover
{ί/*: Ue^} of X such that £7* c f/ for all £ 7 e ^ , and for s e S let

Clearly Gs is open in X and seGs. Let G = \JsesGs, and let 1? =
X — G. Then E czZ and i? is closed in X, so dim ϋ7 ̂  m + 1. Hence
the relatively open cover {U*ΓiE: Ue^} of E has a relatively
open refinement {0 :̂ Ue ^/} of (indexed) order ^ m + 2 with 0^ c C7*
for all Όs*2S. Now let U' - C7* n (Oσ U G) for all t/e ^ , and let
^/' = {[/': ί/e^/}. Clearly ^ ' is an open cover of X, so let us
verify that it satisfies conditions (a) and (b).

That (a) is satisfied is clear, so it remains to check (b). Now
if x e E, then (b) is trivially satisfied, since then xeU' for at most
m + 2 <̂  i + 1 sets Ue ^. So suppose xeG. Then we can choose
s eS such that x e Gs. Now if a and Ulf , Ui+2 are as in (b), then
x e Uΐ Π Π CΛ*+2, so the definition of Gs implies that

a e φΐ n n ϋf,2) c (u, n n ιr<+2).

Thus s is in the intersection of the vertices of σ, so us>σ and W8,σ

are defined and Ws c Wβ,σ. Hence a; e G c Ws c Wβ>(7. We now let
u'x,σ = ^s>σ. This choice of ^, σ satisfies (b) because x e Ws>σ. That
completes the proof.
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