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HOPF-C*-ALGEBRAS AND LOCALLY COMPACT GROUPS

VALERIA DE MAGALHAES I6RIO

We define Hopf-C*-algebras and show one can associate
to each locally compact group G a cocommutative Hopf-C*-
algebras {C*(G),d} (here C*(G) is the C*-algebra of G) with
involution and coidentity whose intrinsic group is isomorphic
and homeomorphic to G. We also show that if the associ-
ated Hopf-C*-algebras are isomorphic then the groups are
isomorphic and homeomorphic.

The problem of finding dual objects for a locally compact group
G has been extensively studied. As far as we know, the first one
to use Hopf algebras in this context was J. Ernest [5]. We should
mention also the work of M. Enock and J. M. Schwartz [4] who,
working with Kac algebras, established a duality between categories.
Our research is based on the work of P. Eymard [6] and M. E.
Walter [11]. We show that the C*-algebra C*(G) has a natural Hopf
structure (although in general it is not a Hopf algebra in the usual
sense) and we recover G from C*(G) using this Hopf structure.
Based in this example we define the general concept of Hopf-C*-
algebras. We hope we will be able to characterize all C*-algebras
coming from groups using Hopf-C*-algebras in the near future.

In §1 we establish some notation and prove Some elementary
results needed in the sequel. In §2 we define the concept of Hopf-
C*-algebra and prove that two isomorphic Hopf-C*-algebras have
isomorphic intrinsic groups. We end up this section stating without
proof a theorem that characterizes all isometric (algebra) isomorphism
between the duals (as Banach spaces) of two cocommutative Hopf-
C*-algebras. The last section is devoted to proving that we can
associate to each locally compact group G a Hopf-C*-algebra whose
intrinsic group is isomorphic and homeomorphic to G.

We take this opportunity to thank Marc A. Rieffel for his nu-
merous suggestion and constant encouragement.

1. Notation and preliminaries. If X is a set and K is a sub-
set of X, we denote by K° the set theoretic complement of K; if
f: X— Z is a function from X into a set Z the restriction of f to
K is denoted by f|K. By Xx we mean the characteristic function
of K. If X is a locally compact Hausdorff space, we denote by
C,(X) (respectively, C.(X)) the algebra of all complex-valued conti-
nuous function on X with compact support (respectively vanishing
at infinity).
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All vector spaces are over the complex numbers. If B is a
Banach space, we denote by B* its dual space. If @: B, — B, is a
linear map between Banach spaces, the transpose of @, denoted @,
is the map 0¢: ¥ e B -¥0ecB¥. If B is a commutative Banach
algebra we denote its spectrum by o(B); as a set we take it to be
the set of all nonzero complex-valued homomorphisms of B.

If 2~ is a Hilbert space, we denote by < (5#) the algebra of
all bounded operators on 52 Inner products are always denoted
by (-]-) or by (-]-). when we want to emphasize the Hilbert space
we are working in. If XS . (5#), we denote by X’ its commutant.

If A is a C*-algebra and = is a *-representation of A in some
Hilbert space, we denote this Hilbert space by 5#.. The set of all
positive elements of A is written A*. If A has an identity element,
we denote it by 1,. If A is a von Neumann algebra, then A4,, A4,,
A, denote the predual of A, the set of all invertible elements in 4
and the group of all unitaries of A respectively.

All topological groups are assumed to be Hausdorff. Approxi-
mate identities are always assumed to have norms bounded by 1.
By an isomorphism we mean a bijective homomorphism.

Let A be a C*-algebra. We denote by M(A) the algebra of all
double centralizors on A (see [2] for the definition and properties of
double centralizers). It is well known that M(A) can be identified
with the idealizer of A in A** (i.e., the largest C*-subalgebra of
A** in which A is a two-sided ideal) and we will use this identi-
fication whenever convenient. The strict topology of M(A), denoted
S(M(A): A), is the locally convex topology generated by the family
of pseudonorms {\,, 0,: @ € A}, where \,(b) = |/ab]| and p,(b) = ||ba]|,
beA. It follows (cf. [2]) that S(M(A4): A) is a Hausdorff topology,
A is S(M(A): A) dense in M(A) and that M(A) is S(M(A): A)-complete.
It is easy to see that any net in M(A) coverging strictly (i.e., in
the strict topology) must converge in the weak* topology of A**.

PROPOSITION 1.1. Let A, B be C*-algebras and let ¥': A — M(B)
be a *-homomorphism. Then:

(1) There exists a unique weakly* continuous *-homomorphism
U: A** — B** extending V.

(ii) If there exists a net {&;} & A such that ¥(e;) — 1y in the
strict topology of M(B) then ¥(M(A)) S M(B), ¥|M(A) is the unique
*-homomorphism from M(A) into M(B) extending ¥ and

1.1 T (x) = strict — lim ¥ (x2,) = strict — lim ¥ (e;x)

for all ®e€ M(A). Moreover, if (e;) 18 an approximate identity for
A, then ¥(lyw) = lywm-
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(iii) If ¥(A)2 B, then there exists a met {e}< A with ¥(e;) —
1, strictly.

(iv) Ty is 1-1 if and only if ¥ is 1-1.

(v) IfU:A—Bis a *-isomorphism, then ¥y o: M(A) — M(B)
and T: A** — B** are also *-isomorphisms.

REMARKS. (1) Assuming the existence of a net {e} with
¥(e;) — 145 strictly one can prove directly (i.e., without using
double duals) that ¥ can be extended to a *-homomorphism ¥: M(4)—
M(B) by

T(x)b = lim ¥ (xe)d ,
b7 (x) = lim ¥ (e;x) ,

for e M(A), be B. Moreover this extension is unique. The proof
is very easy once one knows that any x-homomorphism ¥: A — M(B)
satisfies

1¥(xa)b — T (xa)b|| < [l2]|[|¥(a)b — ¥(ab]l ,
107 (a,x) — b¥ (am@)]| = 2] [[6¥(a,) — b¥(ar)|l ,

for all a,, a,€ A, be B, x € M(A).

(2) The existence of a net as above is necessary even for the
commutative case if we wish to get a unique extension ¥7: M(A) —
M(B). E.g. let A=C(R),B=C=M(C),¥:A— M(B) the zero
map. Of course the zero map M(A) — M(B) extends ¥. Let us
show there are other *-homomorphisms extending ¥. Let SR be
the Stone-Cech compactification of R. Then M(A) = C(BR) = Cy(R),
where C,(R) is the set of all bounded continuous functions from
R into C. Let x,e R°. Every function fe A extends uniquely to
Fe M(A) with f(x,) = 0. Define 7: M(A) — M(B) = Cby ¥(f) = F(x,).
Then ¥ is a *-homomorphism extending ¥ and ¥ = 0.

Proof of proposition 1.1. (i) follows easily from [3; 2.1]. As
for ~(ii), assume {e;)%A is a net with ¥(e;)) — 1, strictly. Let
z2e U (M(A)), say z = ¥ (x), x € M(A). Then, for all be B,

2b = zlim ¥ (e)b = lim ¥ (@) (e;)b = lim ¥'(xe,)b € B
(since we; € A). Similarly,
bz = lim b¥(e;x)e B .
Thus z € M(B); moreover, for all b€ B,

lim 6% (xe;) = lim (b2)¥ (e;) = bz ,
lim Z'(e;x)b = lim ¥'(e;)(zb) = 2b ,
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so that (1.1) holds. The uniqueness is an easy corollary of (1.1).
Now assume that {e;} is an approximate identity for A. Then
¢; — 1,4 strictly, so in particular e, — 1,.,, in the weak* topology
of A**; but ¥ is weakly* continuous, so ¥(c;) — ¥(ly.) weakly.
Since ¥'(e;) — 1,5 strictly, we get F(1y.) = 1y and (ii) holds.

If ¥(A)2 B, let {u:ne4} £ B be an approximate identity for
B. Choose ¢;€ A such that ¥(e;) = u,; for all e 4. Then {e;: M€ 4}
is the desired net and (iii) follow.

As for (iv), clearly if ¥|,, is 1-1, then 7 is 1-1. Suppose that
¥ is 1-1: if e M(A) and ¥(x) =0, then 2a, are A and ¥(xa) =
T (@)¥(a) =0 = ¥(ax) for all ac A, so that x = 0.

Suppose ¥: A — B is a *-isomorphism. Applying (ii) and (iii) to
¥ and ¥* and using the uniqueness of the extensions given by (i),
we get ¥(M(A)) S M(B), @)~ (M(B)) S M(A) and T @)™, (T¥ are
the identity maps on B**, A** respectively. Hence the proposition
follows. 1l

REMARK 1.2. The above proposition remains true if we change
all “homomorphisms” to “anti-homomorphisms”: just consider the
C*-algebra B° opposed to B (i.e., B® has the same underlying Banach
space but its multiplication is given by (x, ¥) — yx) and compose ¥
with the natural map M(B) — M(B").

Let A and B be C*-algebras and let A()B be their algebraic
tensor product. If a is a norm on A(®B, the completion of A®B
with respect to a will be denoted A ®,B; the dual norm of a [9]
will be denoted by a*. We will denote by «, the least C*-norm
among all C*-norms on A(e)B having finite dual norms. It follows
that a, and «af are cross norms and a, is equal to Guichardet’s
x-norm (cf [9], [7]). We will denote by v the Lu.b. of all C*-sub-
cross pseudonorms on A®B;y is in fact a C*-cross norm on A®B
[7]. Since we will use this norm most of the time, we will denote
the completion of A(®)B with respect to it simply by A ® B. Gui-
chardet [7] proved that if G is a locally compact group with C*-
algebra C*(G), then C*(G xG) = C*(G) Q C*(G).

If A and B are von Neumann algebras, we will denote their
usual tensor product by AXB. It follows that

(A®B)4< = A:k®l>¥k°B*[9] .

PrOPOSITION 1.3. Let A and B be C*-algebras. Then there ex-
ists a unique weakly* continuous surjective =-homomorphism
v: (ARQB)**— A**R@B** extending the identity on A®B.

Proof. Let C = A®B and let p, N, 7 be the universal represen-
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tations [3; 2.7.6] of A, B, C respectively, generating the von Neu-
mann algebras ¥, B, €. Then p@® M\ extends to a nondegenerate
x-representation, also denoted o@ N, of C on 5% QR 2#; generating
the von Neumann algebra AXB [7]. We then have the following
commutative diagrams (ef [3; 12.11]):

A Ly B % c*, 26
/ /" a N
L 7 L 4 J i l“"g’”
A B -
C =3 U®D

where 6, 7, 0 are weakly* continuous *-isomorphism and (o @ \)~ is
the unique surjective normal *-homomorphism satisfying (0o ® M) 7=
O N Also, 6 Q7 defines a weakly* continuous *-isomorphism
0RT: AR B — A** ® B**. Hence we can define a surjective weakly*
continuous *-homomorphism v by 7= (@& ) QN0 C** =
(AR B)** — A** @ B**. 1t is clear that 7|,., is just the identity
map. The uniqueness follows from the weak* density of A®B in
(A®RB)** and the weakly™* continuity of . ]

Again let A and B be C*-algebras. Since A and B can be
naturally identified with two-sided ideals in M(A) and M(B) respec-
tively, A ® B can be identified with a two-sided ideal in M(4) ® M(B)
[7, Corollary 5, page 31]. Thus, by Proposition 3.7 of [2], there is
a unique =*-homomorphism p: M(A)Q M(B) — M(A ® B) such that
Uiz coincide with the natural embedding 4 & B<=> M(AQ B). At
this point it should be remarked that we do not know when g will
be injective; we believe that ker g == {0} in general. Of course, if
A and B are commutative, then g is injective since in this case
v = a, (see [9]). Even in this case g will not be surjective [1]. In
any case,

Ker pt = {x € M(4) Q M(B): x(A® B) = 0}

and g is continuous with respect to the strict topologies S(M(A4) ¥
M(B): A® B) and S(M(AQ B): A B).

2. Hopf-C*-algebras. In this section we define the concept of
Hopf-C*-algebras and study some of their properties. We remark
that our “Hopf-C*-algebras” are not Hopf algebras in general since
the comultiplication takes values in M(A @ A) instead of A ® A as
is the case for Hopf algebras.

Let A be a C*-algebra and let d: A — M(A ® A) be a *-homo-
morphism. As we have seen in the end of §1, there are x-homo-
morphism
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Vi MAQA) QMA) — MARARA),
Vo M(AAQMARA) — MARQRARA) .

Since A is a two-sided ideal in M(4), M(AQA)RA and AQM(ARA)
can be identified with two-sided ideals in M(A® A) ® M(A) and
M(A) ® M(A K A) respectively, [7, Corollary 5, page 31], so we can
define

T@RQD,¥IRQd): ARA— MARARA),

where I: A — A is the identity map. By Proposition 1.1, these maps
extend uniquely to normal *-homomorphisms

@D T(IQD:(AQA™ — (AQARQ 4)*™ .

LEMMA 2.1. Let A be C*-algebra and let ¥, ¥, d be as above.
Assume there is an approvimate identity {exAed}S A with
d(e;) — Lyusa Strictly. Let I' = A X A and define a partial order
wn I" by

Ay o) = (N, A) if and only of M= N\, and N S\, .

For v= M, Mel,let uy=¢,@e¢, Then {u:vel} is an ap-
proximate identity for AQ A and ¥ (d R Du,, T',(IQdu, — 1ygiean
strictly. In particular

[T@dRQDNMARA) S MARARA),
[T IO MARQA))SMARPARA) .

Proof. The proof that {u;:~vel} is an approximate identity
for AQ A and that ¥ (d® I, T,(IQ AU — Lyusues strictly is
straightforward. The last part of the lemma is just part (ii) of
Proposition 1.1. O

Let 7: AR® A — A& A be the automorphism defined by z(a®b)=
b®a,a,becA. Let 7: (AR A)** — (A A)** be the extension of 7
given by Proposition 1.1. Then ¥ is a weakly™ continuous x-iso-
morphism with 7* equal to the identity map and T(M(A R A)) =
MAR®A).

REMARK ON NOTATION. From now on, if ¥: A—B (or ¥: A —
M(B)) is a *-homomorphism or a =-anti-homomorphism, 4 and B
C*-algebras, we will denote by ¥ the extension to the double duals
given by Proposition 1.1 or Remark 1.2; if ¥(M(A))SM(B), we will
denote by ¥ the map ¥, ,: M(A) — M(B).
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DEFINITION 2.2. Let A be a C*-algebra and let ¥, ¥, be as
above. We say that {4, d} is a Hopf-C*-algebra if and only if:

(i) d: A—>MA QR A) is a 1-1 *-homomorphism;

(ii) there exists an approximate identity {e; ne A4} S A with
d(e)) — lyugy strictly;

(iii) (coassociativity) the following diagram is commutative:

A P ma®a
@.1) dl lm«z@m—

We call d a comultiplication. By an involution of {4, d} we mean
*-anti-isomorphism j: A —A of period two satisfying

(2.2) ((®IN)d=17dj.

If there is such a j, we say that {4, d, j} is an ‘nvolutive Hopf-
C*-algebra. We say that {4, d} is cocommutative (also called sym-
metric by some authors) if and only if 7d =d. If e:A—Cis a
nonzero x-homomorphism satisfying

(2.3) EXR®Nd=1=1IRe)d,

we say that ¢ is a coidentity for {4,d}. In the case {4, d} has
both an involution j and a coidentity ¢, we write {4, d, 7, €}.

REMARK. Condition (ii) of the above definition insures that
d: A** (AR A) preserves identities, that d: M(A) — M(ARA) is the
unique *-homomorphism extending d and that [¥ (dQI)]"(MARA))S
MAQARA), [T (IR (MARA))SMAR AR A) (these inclusions
are not needed in the sequel; we include them here simply to show
that we can stay in the double centralizers algebras). In the case
of Hopf-von Neumann algebras, the comultiplication preserves iden-
tities by assumption (see [5]).

DEFINITION 2.8. Two Hopf-C*-algebras {A4,, d}, {4,, dJ} are iso-
morphic if and only if there exists a *-isomorphism 6: 4, — 4, with
OROd, =dpe If {A4,d, s} and {4, d,, j.} are involutive Hopf-
C*-algebras we require further that g7, = j,0. If the Hopf-C*-algebras
have coidentities ¢, ¢,, we also assume that ¢, = ¢,0.

PRrOPOSITION 2.4. Let {A, d} be a Hopf-C*-algebra. If +,nc A%,
define a linear functional 4y on A by {a, ¥n)=<{d(a), ¥y&Q7), a € A.
Then the map m: (3, ) € A* X A* —yne A* defines a multiplication
in A* making it a Banach algebra. Moreover, if {4, d} is cocom-
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mutative, A* is commutative and if {4, d} has a coidentity ¢, c is
the identity of A*.

Proof. If +, ncA*, then Q@ nec(AX® A)* with ||+ Q7| =
[lyn|l, so it makes sense to define % as above. It follows that
Jyne A* with ||yn]| < [|4]]|n]l. Since m is clearly a bilinear map,
to show that A* is a Banach algebra it is enough to prove the as-
sociativity of m. We claim that for all x € (A& A)** , ¢, pe A%,
we have

(2.4) @, 9y @7 =T @dRXDI"%, vy Qo7 ,
(2.5) @,y Qo) = (¥:IQD]2, v Qs Q7 .

We will prove (2.4); (2.5) can be handled in a similar way. Since
[T(d®I)]" is weakly* continuous and A(®A is weakly* dense in
(A A)**, it is enough to show (2.4) holds for x € A®A; by linearity,
it suffices to consider x =a®b,a,bcA. Solet x=a®b,a,becA,
and let 4, ¢, p€ A*. By Theorem 2.1 of [10], we can write =
Sy, ¢=9-¢,09=h-n, where f,9,hc A and ', ¢', '€ A*. Then:

(x, pp @ 1) = <a, v$)<b, Ny = {d(a), ¥ & ¢><b, 7y
= Ld(a), £y ®g-¢<b, h-n") = {da)(f & 9), ¥ & ¢")<bh, 7"
= da)(f Q9 Rbh, v R Q7 = (¥(d R I)(a & b)]
(fRIXh), v ¢ 7"
= T, ([dRI)(a®b), fv ®g-¢ Qh-7")
=T @R D"z, vy ¢ X7 .

Hence (2.4) follows. We are now ready to show the associativity of
m. Let acA,, g€ A*. Using (2.1), (2.4) and (2.5), we get:

a, (¥)n) = <d(a), ¥¢ @7y = [T:(d ® )] d(a), ¥ Q¢ D 7y
=TI D] d), v Q¢ RN = {d(a), ¥y Qs X7
= {a, ¥(¢7)) .
Thus (Yv¢)) = (¢7) for all 4, ¢, ne A*, so m is associative and A*

is a Banach algebra.
Suppose {4, d} is cocommutative. It is easy to see that <z,

RN = @), n R4y for all xe (AR A)** 4, ne A*. Hence, if
ac A and 4, ne A*,

la, ¥y = {d(a), ¥ @ 7> = {Td(a), n @ ¢ = {d(a), P ® ¥
= {a, 7y ,

so that 47 = ny for all 4, pe A* and thus A* is commutative.
Finally assume {4, d} has a coidentity ¢. We claim that



HOPF-C*-ALGEBRAS AND LOCALLY COMPACT GROUPS 83

(2.6) @, e =<K )2, ¥,
(2.7) @,y Qe =KUIRe)x, ¥,

for all xe (A Q A)**, e A*. Again we will only prove (2.6) and it
suffices to work with x = a® b, a, b€ A. But in this case,

(x, e @) = {a, &<, ¥ = (@b, ¥> = {(e @ I)(a @ b), ¥
={(e® )z, ¥,

so (2.6) follows. Now, if ae A and € 4*, using (2.3), (2.6) and
(2.7), we get:

{a, &) = (d(a), e @y = (e ® I)"d(a), ¥ = a, ¥ ,
{a, y&) = {d(a), ¥y Q&) = (I ¢e)"d(a), ¥> = <a, ¥,

so that ey =+ =+¢ for all € 4%, i.e., ¢ is the identity of A*. []

REMARK 2.5. If zeA** and +, 7eA*, then (=, y7) = (d(x),
v & 9.

Let {A,d} be a cocommutative Hopf-C*-algebra. It is well
known that the spectrum o(A*) of A* is locally compact and it is
contained in the closed unit ball of A**. If ¢ is a coidentity for
{A, d}, then g(A*) is compact and contained in the unit sphere of
A**, Note that in this case (x,¢) =1 for all xeco(4*): indeed,
(x, &) = (&, &) = (&, &)% so (x, ey is either 0 or 1; but if (x,&) =0
we have, for all yr€ A*, (x, ¥) = (&, Pe) = (&, <z, &) = 0,80 2 =0,
a contradiction; hence {x, ¢) = 1.

Denote by e the identity element of A**. Let v: (A® A)** —
A** ® A** be the weakly* continuous surjective *-homomorphism
given by Proposition 1.3.

LEMMA 2.6. Let ze(A® A, neA*. Then (&, ®,n)=

(@), v @ N, where v Q,Ne (AR A and + Q@ ne(d** R A*), =
A* Qyay A*[9] are the natural extensions of 4 Q@ n: A©OA — C.

Proof. Let x€(AQ® A)**. Pick a net {x;} £ A®A converging
to 2 in the weak™ topology of (A ® A)**. Since v is weakly* con-
tinuous and coincides with the identity map A®A, we get:

@, ¥ @, = lim {x;, @, 7) = im (v(®@), $» @7 = (v(@), » @) .

PROPOSITION 2.7. 0(A*) = {xc A**: 0% 0 and vd@) =z @ «}. It
Sfollows themn that o(A*)U{0} is a monoid (i.e., a semigroup with
identity) under the multiplication inherited from A**. Also, if



84 VALERIA DE MAGALHAES IORIO

xeo(A*), then x* co(A*) and if {4, d} has a coidentity, then d(A*)
18 also a monoid.

Proof. Let xco(A*) and let @ c A*@©A*, say @ = 3%, 4 Q7.
Applying Lemma 2.6 and Remark 2.5, we get

(@), @) = 3 (d(@), 4: @ 7y = X {d(@), % @7
= 20 ®, ¥y = 20, ¥){x, Ny = 20 Q &, 4 @ 1.
=&®uz 0) .
Thus vd(z) and « ® x, considered as linear functionals on (A**@A**)*,
agree on A*@®A*; but (A** ® A**)x = A* R, A* so A*@®A* is norm
— ~ %o
dense in (A** Q A**), and hence vd(x) =2&@2x. Conversely, if
Fd(x) = @ x, applying again Remark 2.5 and Lemma 2.6 we get

(@, 4> = @), y @) = Crd(@), v @) = @z, y @7
= &, ¥ <=, )
for all 4, efl*; thus, if 2 #0,xe0(A4*). Algo, if xc€0(A*), then
2* #= 0 and vd(z*) = d(x)* = (xR x)* = 2* Y x*, so z* co(4*).
As remarked before, property (ii) of Definition 2.1 implies that

d(e) = 1,uen; since v is surjective, Y(Lyuuss) = e®e, 50 vd(e) =e® e
and therefore eco(A*). If x, yeo(A*), then

vd(wy) = vd@)yd(y) = @Ry R y) = sy Qay ,
so 2y € 0(A*)U {0}. Thus o(4A*) U {0} is a monoid. Moreover, if ¢ is
a coidentity for {4, d}, ¢ is a *-homormorphism, so
(ry, &) = &(xy) = &@)é(y) =1

for all z, yeo(A*). Thus in this case a2y #0 and o(4*) is a
monoid. O

LEMMA 2.8. If xec(A*) is invertible, then x is unitary.

Proof. Let us show first that x™*€0d(4*). We have:
@™ = (@) = @R =" Q™

so x'eo(A*). Now a*x is also invertible, so z*z, (x*x) e o(4*);
hence [|z*z|| < 1 and [|(z*x)™*|| = 1, so ||z*z|| =1 = ||(*x)"*]]. Con-
sidering the commutative C*-algebra generated by z*x and (x*z)7,
we see that 2*x correspond to a strietly positive function f with
Iflle=1=1{f"|o. But then f =1, so x*x =e. Similarly we get
lzx*|] = 1 = ||(xx*)"?]] and so xx* = e. Hence x is unitary. |
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Now let H = g(A*)N Af*. By the preceding lemma, H = g(A*)N
Azx*, It follows that H is a topological group with respect to the
weak™ topology of A**. By Proposition 2.7, we get

(2.8) H={xecA*: vdx) =2 Qa}.

H is called the intrinsic group of {A, d}. We remark that even if
the Hopf-C*-algebra {4, d} is not cocommutative we can define its
intrinsic group H by (2.8); it is always a topological group. We
then have the following proposition.

PROPOSITION 2.9. If {4, d.}, {4,, d)} are two isomorphic Hopf-
C*-algebras with intrinsic groups H,, H, respectively, then H, is
isomorphic and homeomorphic to H,.

Proof. Let 6: A, — A, be a *-isomorphism with ( ® 6)~d, = d,6.
Then (0 ® 6)d, =d,f and §: A** — AF* is a weakly* continuous
x-isomorphism. It is clear that |, : H, — §(H,) is a homeomorphic
isomorphism, so all we have to show is taht 6(H, = H,. Let
Y (A, Q A — AF* Q@ Ar*,1=1,2 be the surjective *-homo-
morphisms given by Proposition 1.3. It is easy to see that
%0 ® 60~ = (@ ® §)yy,. Now if xec H, then v,d,(x) = 2@ x, so

7.d:0(@) = 7,0 ® ) dy(x) = (@ ® O)v,d,(x) = O(2) Q 6(=) ;

also f(x) is unitary (since # is a *-isomorphism and x is unitary),
so f(x)e H,, Hence §(H) < H,. Applying the same argument to 672,
we get 6(H,) = H,. ]

The argument used in part (i) of the following proposition was
suggested to us by Mare A. Rieffel.

PROPOSITION 2.10. Let {A,d} be a -cocommutative Hopf-C*-
algebra. Then:

(i) o(A*) is a linearly independent set in A**.

(ii) If A* is semisimple, then o(A*) gemerates A** as a von
Neumann algebra.

(i) If § is am involution for {A, d}, then j' is an isometric
automorphism of A*.

Proof. Suppose (i) does not hold. Let
x = i ax;

be a dependency relation of shortest length among elements of
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o(A*), x #x, and o, # 0 for all 1 =1, ---, n. Then, by Proposition
2.1,

7&-(‘”) =3 aﬁg(wt) =3 ax,Q;

@) =2 @ =3, 00, Q x; .

Since the «; are linearly independent, so are the z,&) x;; hence

o0; =0 if 1+ 5 and a? =a, for all 1 =1, ..., n. Since a, = 0 for
all 7, we get » =1 and a, = 1, so that x = x, acontradiction. This
proves (i).

As for (ii), represent A** faithfully as a von Neumann algebra
in some Hilbert space 257 i.e., A** & Z(5#). Since o(A*) is self-
adjoint, the von Neumann algebra generated by o(4*) in <& (57) is
o(4%)", the double commutant of o(A*). Clearly d(A4*)" < A**. We
want to show A** S o(A4*)”’. Let yeco(4*) and let e Z(2F),.
Defide two linear functionals +r, 4, on A** by

(&, gy = <oy, ¥y and (@, 9y = {yx, ¥

for all xe A**. Since + is o-weakly continuous, 4, ¢, A*. If
x € 0(A*), then (x, 4y = {2y, ¥> = Y, ¥) = <&, ¥, 80 (B, ¥, — ¥y =0
for all xeo(A*). Since A* is semisimple, r =, and {xy, ¥)=
(yz, 4y for all xe A*. But € Z(57), was arbitrary, so 2y = yw
for all xe A*. Hence A** Z g(A*)”. This proves (ii).

Finally let 5 be an involution for {4, d}. Since j is a bijective
linear map, so is j'. Also, by cocommutativity of {4, d}, equation
(2.2) becomes

2.9) Q4 d=dj.
Now let ac 4, 4, ne A*. Using (2.9) we get:

@, 3*0pn)y = (@), ) = {dj(a), + @7
= ® 1)), ¥+ @7 = da), (1 & )¢ Q1)
= (d(a), 3" ) Q@ 7'(0)) = La, J*WP)3*(M)) -

Hence j'(vn) = 7%(y)j'(n) for all 4, ne A*, so j* is an automorphism
of A*. Itisin fact an isometry since j is a surjective isometry. []

REMARK. We have also characterized all isometric (algebra) iso-
morphisms between the duals (as Banach spaces) of two cocommu-
tative Hopf-C*-algebras. Since we will not need this result in the
sequel, we will state the theorem without proof. We remark the
theorem can be proved using an argument due to Martin Walter;
he proved the same type of theorem when the algebras are Fourier-
Stieltjes algebras of locally compact groups (cf. [11; Theorem 2]).
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THEOREM 2.11. Let {A, d.}, i =1, 2, be cocommutative Hopf-C*-
algebras and let @: Af — AF be an isometric isomorphism. Denote
by H,; the intrinsic group of {4, d.}, by o(A¥) the spectrum of Af
and by e, the identity element of A¥*. Then x, = @' (e,) € H, and
there exists a *-preserving weak™ homeomorphism a: AF* — A¥* such
that:

(i) L=, O(y)) = <w(x), ¥ for all e AF*, e Af;

(ii) a(o(A) = o(AD);

(i) a(H,) = H;;

(iv) alg: H,— H, is either an isomorphism or am anti-iso-
morphism.

3. The algebra C*(G) as a Hopf-C*-algebra. Let G be a
locally compact group and let _Z(G) be the algebra of all regular
Borel measures on G. It is well known that _#Z(G), as a Banach
space, is isometrically isomorphic to C.(G)*. Whenever convenient,
we will identify .Z(G) with C.(G)*. We fix a left Haar measure
on G. Integration with respect to it will be denoted by d3 and
integrals without explicit domains of integration are to be taken
over G. We identify L'(G@) with the measures in .#(G) which are
absolutely continuous with respect to the Haar measure.

Let 3(G) denote the family of all strongly continuous unitary
representations of G. It is well known that every 7 € 3(G) extends
to a *-representation of _#Z(G), also denoted by 7, which is nonde-
generate when restricted to LYG), defined by

3.1) ()] 7) = §<n<s>em> dps)
re #ZQ), & ness. If pe #(G), define
(3.2) Il ll+ = supfllz() || we 3(G)} .

Then ||-||.« define a seminorm in _#(G) which is actually a norm,
since the left regular representation of G is faithful on . Z(G). It
is in faect a C*-norm, since it is the supremum of C*-norms. The
completion of L*G) with respect to this norm 1is called the
C*-algebra of G and denoted by C*(G). We will denote by C*(_#Z(G))
the completion of _Z(G) with respect to ||:||... Note that ||-||.. <

”'”x(m-

As we have remarked before, Guichardet [7] proved that
C*(GX @) = C*GF) ® C*(@). Our goal in this section is to show that
we can define a comultiplication d: C*(G) — M(C*(G X G@)), an involu-
tion j: C*(@G) — C*(G) and a coidentity e: C*(G) — C so that {C*(G),
d, j, e} is a cocommutative involutive Hopf-C*-algebra with coidentity.
We will show also that G is isomorphic and homeomorphic to the
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intrinic group H of {C*(G), d}, so that this Hopf-C*-algebra deter-
mines the group. We remark that we need neither the involution
nor the coidentity to show that G = H, although we believe they
will be needed in the characterization problem.

Let 4 be the family of all neighborhoods of the identity e of
G. We fix an approximate identity {e;: he 4} € LYG) for LNG) (in
the L'-norm) satisfying

(i) =0
(3.3) (ii) e; =0 on A%

(i) Se@)dg -1

It is clear that {e;} is also an approximate identity for C*(G).
If pe #Z(G), it is easy to see that the maps L, R.: LYG) —
LY(@) given by

L(f)=p=f and RuJ(f) = fxp, felXG),

extend to bounded linear maps L,, R, C*(G) — C*(G) with ||L,|| <
el and ||R,|| = || #¢]].. It follows that T, = (L, R, € M(C*(G))
and that T: pe #Z(G)— T.e M(C*(G)) is a =-homomorphism. Thus
T, = ||L.]| = || Ru|] = || ¢]l~- A standard argument shows that T
is in fact an isometry with respect to the norm |||/, on . Z(G), so
it extends to an isometric =-isomorphism T:C*(_Z(G)) — M(C*(®))
preserving identities. Hence we can identify ' (G) and C*(_Z(G))
with subalgebras of M(C*(@)), and we will do so whenever conveni-
ent.

If K is a closed subgroup of a locally compact group H, then
#(K) can be naturally embedded in .#(H) as a =-subalgebra:
given pe #(K) define fie Z(H) by fi(E) = ((EN K) for all Borel
sets FC H. If pe #(K), meX(H) and pe3(K) is the restriction
of © to K, then

G4 @@l = | @@ = | e®kndue)
= (p(ee )

for all ¢, nesz = 57,. It follows that the embedding g — g is
continuous (in fact norm decreasing) with respect to the C*-norms
of #Z(K) and .#Z(H). Moreover, if every poe X(K) is the restric-
tion of some we3(H), then (3.4) implies that the mapp — [ is in
fact an isometry with respect to the C*-norms of _#Z(K) and
#(H), so it extends to an injective x-homomorphism C*(_Z(K))—
CH*(_#(H)) = M(C*(H)).

Now suppose H =G x G and K = {(z, r): t€G}. Note that in
this case every pe3(K) is the restriction of some zeX(H) (e.g.,
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define n(x, v) = o(z, 1), L, Y€ G). Since K is isomorphic and homeo-
morphic to G we get a 1-1 x-homomorphism d:C*(_Z(G)) —
M(C*(GX@®) with d(#Z (G)S # (G x G). To simplify notation, let
A = C*(G). Since AQA=C*(GxG@G) and A is a C*-subalgebra of
C*(_#(Q)), restricting d to A we get an injective x-homomorphism
d: A— MAR A).

Let pe #Z(G) and let fi = d(u)e #Z(GXG). It iseasy to check
that for all fe L'(G X G) and for a.e. (1, 9) e G X G we have:

[ W) = @ = |67 59w,
(3.5)

PG, %) = (B )5, v) = |AE A8, w6 )dpu)

where 4 is the modular function of G. (In the last equation of
(3.5) we get 4(87")* because 4.k, §) = (x)4(y) for all z,veG.)

Let T :MARA)QMA > MARARA) and T, MA)R
MARA) > MARARA) be the (unique) =-homomorphism ex-
tending the natural injection AR AR A= MAR AR A) (see end
of §1). If pe Z(GSM(A) and yve #Z(GXGFZ M(ARA), it is easy
to check that ¥,(v Q ¢)=yx ¢ (the product measure) and ¥,(x QR v)=
2 X v,

LEMMA 3.1. IfgeL{G X @), then U (d®IDg, T,IQ d)g € A4 (Gx

GX@), where I. A — A s the identity map (recall that A = C*(G)).
Moreover, if Fe LG X G X G) we have, for a.e. (£, 9,3 G X GXG:

(F.@® Do)<F1Gs, v, 5) = || F6™5, 5%, v, 79)g(s, Hdsdt
[F+@.@® Do, v, 8) = |[o66, DF s, 587, 5t a8, Dasat
(36) - |

[(¥(ID d)g)+ F](k, v, 3) = S F(&™g, t7'y, t7'3)9(8, t)dadt

[F+ @@ Do), v, 8) = | [3(t, HFs™, vt 3t)g(6, tidsat

where 6(8,t) = 4B 4(t™) for all 8,teG and 4 is the modular
Sfunction of G.

Proof. We will prove the first two equalities; the other ones
can be handled similarly. To simplify notation, let ¥ =¥ ,(d ® I).
Given g€ L} (G x @), approximate g in the L'-norm by a sequence
{9.} € L(G)®LYG). Then g,—g in AQA so 4(g,) — (9 in
M(A® A). Define a linear functional § on C.(G X G X G) by

0> = [[Pe, 3, (s, Hasat,
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PeC,(GxG@x@G). It is easy to see that this defines a bounded
linear functional with ||4]| < ||g|l.. Under the identification .Z (G x
Gx@) = C.(GXGx@* 60 corresponds to a regular Borel measure
thal we will denote again 4. Using equations (3.5) it follows easily
that

(g )+ F — 0« F |, = [| Fll, [|gn — gll, — 0
| Fx4p(g,) — F0, = || F. ]9, — gl —0

for all Fe LG X G X G), so that 4(g,) — 6 strictly. Hence +(g)=
0e #Z(Gx@). The first two equations now follow from the defini-
tion of 4. 1

COROLLARY 8.2. Ifve Z(G X @G),9eL}G X @) and FeLY{(GX
GX @), then, for a.e. (1,9, 3)€G X G X G, we have:

[¥,d ® D+g)«F(x, Y, 3)

- Saxa[wd & Dg=F](E™"g, 7'y, 73)dv(8, 1)
[F+¥(d @ D+, v, 3)

=, 06 BT (@@ Dgls5™, v57, 5t )du(s, b
[T ® d)(v+9)*F1(x, v, 3)

- SGanﬁ(I @ d)g=F](87', t7, 173)dv(8, 1)
[F+¥(IQ d)(»+g)](x, v, 3)

= Smau, SIF«U,(I® d)glxs™, vt st™)du(, 1)

(3.7

where 08, t) = AB )24t for all 3,tcG.

LEMMA 3.3. (e)) converges im the strict topology of M(AX A)
to the point mass 0., at the identity (e, e) of G X G.

Proof. Using the definition of d, (3.3) and Theorem 20.15 of
[8], it follows that d(e)*g — g and gxd(e;) — ¢ in the L-norm for
all g e L{(Gx@). Since ||-|l« = ||-]. and LY (G X G) is dense in C*(G X G)
we get the desired result. ]

LEMMA 3.4. If ve #Z(G X @), then (T (dRI)) (), ¥.IXRd)"
W e Z(G X GxG). Morewer, if FeL(G X G XG), we have for
ae (1,9,3)eG@XGEXG
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[(F@R DY @)Fl, v, = _FEs, 87, £9dvG, B

[F+@ @@ DY O b, ) =06, HFa8™, 57, st)du(e, b
(3.8)
(@I@ D) 6):Fls, v, 9 = F&E™s, 17, 5)dvG, b

GX@

[F+ @@ Ay O 5 =] 0, HFas™, v, stdv(s, b

GXG

where 6(3,t) = A4B871)4(t™) for all 8,t€@.

Proof. Again we will just prove the statements for
=T (dRI). Let{e;ned}<S LYG) be as before and let I'=4x 4.
For v =\, M) el let u;, =¢, ®e, By Lemma 2.1, {w;} is an ap-
proximate identity for AQ A=C*(GXG) and W(u;) — O, strictly
in M(AR®R AR A). By part (ii) of Proposition 1.1, we get

(3.9) J(v) = striet — lim yr(v=11;) = striet — lim 4r(u1,%p) .

Also, as we have seen in the proof of Lemma 3.3, d(e;)*g — ¢ and
g*d(e;) — g in the L*-norm for all g L)(G X G). Then it follows
easily that ~(uw)*F — F and Fxy(1;) > F in the L*-norm for all
FeI{G x G x G).

Now let ve #Z(G X G) and define be . Z(G X G X @) = C.(GX
G x@)* via the linear functional

P,y =| P68 bdvs, b,
GXG
PeC. (G xGxG). Using Corollary 3.2, the definition of ¥ and that
(1) — 0. o Strictly we get
[|p(p )« F — D« F||, — 0 and || Fxy(*xv) — FxJ||,— 0

for all Fe LG X G X G). Hence (v+u,)F— JF and Fy(v=u;) — FP
for all FeAR AR A. Thus, by (8.9)

FO) =Pe ZGxGxG).

The first two equations in (3.8) now follow firom the difinition of ¥.

]
COROLLARY 3.5. [T, (IR d)]d=[¥,dRI)]d.

Recall that 7: A®Q A —> AR A is the automorphism given by
a@®b) =bRa,a,be A.

LemMMA 3.6. If ve #Z(GX@),thenT(v)e #Z(GXG)and T(W)(E)=
v(E°) for all Borel sets E < G X G, where E° = {(y, v): (x, 9) e E}.
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Proof. Let {u:vel'} be as in the proof of Lemma 3.4. It
follows that {z(w,):vel'} is an approximate identity for both
LG x@G) (in the L'-norm) and C*(G x G). Applying Proposition 1.1
we get

T(v) = strict — lim z(v xu,) = strict — lim z(u, *v)

for all ve #Z(GXG). On the other hand it is easy to see that, for
all g LY(G x G), L]

[[z(xu)xg — v'*g ||, — 0 and [|g*z(*p) — g=°||, — 0,

where '€ _Z (G X @) is the measure defined by v(E) = v(E° for all
Borel sets ESGxG. Thus, since ||-||« = ||-]l; and LY(GXG) is dense
in C*(GXG), we must have T(v) = ' e Z (G XG).

LEMMA 3.7. The map j:heLNG)—h*ecL(Q) extends to a
x-qnti-isomorphism j: A — A of period two.

Proof. j: LY{G)— LY@) is clearly a x-anti-isomorphism of period
two. Thus, if we can show that j is an isometry with respect to
the C*-norm, the lemma follows. Let 7e€23(G). We denote 5~
simply by &#. Let 5#* be the dual space of 57 and consider the
natural conjugate linear isometry 6:£e€ 27 — (-|6)» € 5#*. Then ¢
is surjective and

(¢]/¢\)PZ" = (0_1("//’)[0_1@5))%
for all ¢, 4 € 57* or, equivalently,

&1 = (B0D]6(8)) 5

for all ¢, pe2#. We will drop the subscripts 57, 27* from the
inner products in what follows. Define T: e G — 0n(y)07' € & (S7*).
It is easy to see that 7 e X(G) and, identifying & with o#**, T=x.
If he LY(G) and &, pe 27, we haue:

EmGym) = @®E|7)
ORI

= |F® 0 z@0e n)as
= [e)@E0m1 02108

= {4 iE @0 0g)as
= (7(h*)07|02) = (£]607F(W")0n)



HOPF-C*-ALGEBRAS AND LOCALLY COMPACT GROUPS 93

so that n(j(h)) = 67'%T(h*)§. But then, since 4 is an isometry onto,
z(GR) ]| = |ZT(h*)||. Since 7eX(G) was arbitrary and 7 — 7 is a
1-1 correspondence, we get:

i) |l = sup{l|Z(R*)||: e (@)} = [[A* [l = [[P]]ex .

Hence j is an isometry with respect to ||-]|.. O
LEMMA 3.8. If ve Z(GXG), then (j R 7)) (V) =v* e Z(GXQG).

Proof. First assume that the lemma is true for v = g € LG X G):
then we can apply the argument used in the proofs of Lemmas 3.4
and 3.6 to get the desired result. So it is enough to show
(TR 7)(g) = g* for all ge L}(GXG). But the mapge L{(GXG) — g*
is continuous with respect to |||l (by Lemma 3.7, changing G by
GX@) and 7 7 is also continuous, so it is enough to show these
maps agree on the ||-||.-dense subset LY{(G)@LYG). An easy com-
putation shows this is indeed the case. O

THEOREM 3.9. Let G be a locally compact group, A = C*@),
d: A— MAQ A) as before satisfying (3.5), j: A — A as in Lemma
3.7. Then {A, d, j} is an involutive cocommutative Hopf-C*-algebra
with coidentity e, where

(3.10) e(h) = gh@)dg
for all heLNG).

Proof. We have already shown that {4, d} is a Hopf-C*-algebra
(Lemma 3.8 and Corollary 3.5). Let heL'(G). By Lemma 3.6,

Fan)(E) = d0E) = |6 9@ = | & 9hEds = dE)

for all Borel sets F < GXG. Hence 7d =d and {4, d} is cocom-
mutative.

We have already shown (Lemma 38.7) that j is a =-anti-iso-
morphism of period two, so to show that j is an involution for
{A, d} all we have to prove is that (j ® j)~d = Tdj. Since {4, d} is
cocommutative, we have to show in fact that (J ® j)"d = dj. Let
he LY(G). By Lemma 3.8,

(4 ® 5)~d(h) = d)* = d(&¥) ;
but, if e #Z(G), then for all Borel sets E S GXG we have

IBE) = |1, De® = (1, ape = d@E)
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so we get
(G ® 7 d(h) = d(h*) = d(j(h)) .

Hence ( ® 7)~d = dj.

Let ¢ be the one-dimensional representation of G given by
e:teG@—1eC. Then ¢ extends to a *-representation ¢: A —C, i‘e.,
¢ is a nonzero *-homomorphism. It is clear that ¢ satisfy (3.10).
If geL"(GX@), one can show easily that (¢ ® I)g, IR ¢)g e L'(G)
and, for a.e. 1 €G,

® Do) = (96, 0ds and I @) = [otz, 9as

From this it follows (by the argument used in Lemmas 3.4 and
3.6) that X I)~ (), IR ) (v)e AZ(G) for all ye #(GXG) and, for
all Borel sets BS G,

@D B = | Lwde,
IReye)B) = | %@dv(s, 1.
Thus, if e L}(G) and B< G is a Borel set,

(e ® I)"d(h)(B) = SZB(t)h(t)dt) ,

U@eram®) = | enes,

so (e ®I)dh) =h = AR e)dh) for all he LNG). Hence e ® I)d=
I=({I®e)d and ¢ is a coidentity for {4, d}. O

DerFINITION 3.10. Let G be a locally compact group and let
{4, d, j, e} be as in Theorem 3.9. We say that {4, d, j, ¢} is the
Hopf-C*-algebra associated with G.

LEMMA 3.11. Let G be a locally compact group with associated
Hopf-C*-algebra {4, d, j, e}. If we identify (as in [6]) A* with the
Fourier-Stieltjes algebra B(G) of G, then the multiplication induced
in A* by d (cf. Proposition 2.4) coincide with pointwide multipli-
cation in B(G).

Proof. Let «,,€ A* be associated with u, ve B(G) respec-
tively, i.e.,

> = B@u@ds and (b, ) = [
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for all e L'(G). We have to show that
(3.11) (> = (@@

for all h e LY(G). Since u, ve B(G), there exist x, 7,€ 3(G), &, 7, €
T = Sy by T € 4, = 577, such that

w(t) = (M@ 7)z, and v(x) = (7,(2)& |72,
for all xe G (cf. [6], Definition 2.2]). Define
7 (8, 9) € GXG — m,(y) @ my(v) € F (L Q ) -
Then 7€ 3(G X G). Define
u®v: (x5 9)eGXG—ulv(y) eC.
Then:

(u @ V)&, 9) = u@)v) = (751(8)51l771)9@1(7r2(1))§2[772)9f2
= (m(2)& &® 752(9)52‘”1 ® 772)%1&%’2 = (7(g, 1?)5177)%11822’2 s

where ¢ =£Q¢&,7=7Q7%,. Hence u@veB(G X G). Now, if
g € L{G)®LYG), a simple computation shows that

<g: "lf‘u ® ¢v> = <g! "#u®v> .

Since LY(G)@®LYG) is dense in C*(G X G), we get 4, @ v, = Yz,
Hence, by [6;(2.6) Remark 3°], if ve Z(G X @),

(3.12) Oy pa@ s> = Sm w@u)dy(E, 1) .

Now, let he LX(G). Then d(h) e .Z(GxG) so, by (3.12),

Chy Pruroy = A(R), Y & Yy = gu(g)v(g)h(g)d?’ .
Hence (8.11) holds and lemma follows. O

THEOREM 38.12. Let G be a locally compact group with associat-
ed Hopf-C*-algebra {A,d, j,e}. Then G is isomorphic and homeo-
morphic to the intrinsic group of {4, d}.

Proof. By Lemma 3.11, we can identify the commutative Banach
algebras B(G) and A* = (C*(G@))*. Then, by [11, Theorem 1], G=
o(A*)N A**; but the right hand side is just the intrinsic group of
{4, d}, so the theorem follows. O
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REMARK. We could have proved the above theorem directly.
Under the natural inclusion G=->(C*(G))*, it is clear that GSa(4A*) N A**.
However, to show that this inclusion is onto, we would have to
repeat the argument used by Walter (ef. [11, p.28]). In view of
this we decided to apply Walter’s theorem.

As a corollary of Theorem 8.12 and Proposition 2.9, we get:

THEOREM 3.13. If G, and G, are two locally compact groups
whose associated Hoph-C*-algebras are isomorphic, then they are
homeomorphic and isomorphic.
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