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THE STRONG APPROXIMATION THEOREM AND
LOCALLY BOUNDED TOPOLOGIES ON F(X)

JOo-ANN COHEN

To within equivalence, the only valuations on the field
F(X) of rational functions over F' that are improper on F
are the valuations v,, where p is a prime polynomial of
F[X], and the valuation v, defined by the prime polynomial
Xt of F[X']. It is classic that if F' is a finite field, the
set 9" defined by, 9”={p:p is a prime polynomial over
F} U {co}, has the Strong Approximation Property, that is,
for any finite subset G of &, any ¢ 9”’\G, any family
(@g)gec of elements of F'(X) indexed by G, and any M >0,
there exists a nonzero element % in F(X) such that
v,(h —ay,) > M for all p in G and v,(h) =0 for all » in
NG U{q)). We shall first prove that Z” satisfies this
condition when F' is infinite as well. We then apply this
result to obtain a characterization of all locally bounded
topologies on F(X) for which the subfield F' is bounded.

1. The strong approximation theorem. Here, &° is the set
of prime polynomials in F[X] and &' is the set . U {c}.

THEOREM 1 (The strong approximation theorem). For any finite
subset G of ', any qe F'\G, any family (a,),e¢ 0f elements of
F(X) indexed by G, and any positive number M, there exists a
nonzero b in F(X) such that v,(h—a,)=M for all pcG and v;(h)=0
for all de FP'\(G U {q}).

Proof. Let S = Z'\{g}. By [5, Theorem 2.2, p. 322], it suffices
to show that for distinet elements » and s in S and M > 0, there
exists an & in F(X) such that v.(h —1)> M, v,(h) > M and vy(h) = 0
for all d e S\{r, s}.

Case 1. «¢S. Then r and s are distinct prime polynomials
and so there exist polynomials f and ¢g in F[X] such that f »*+ +
gs¥ = 1. Define h by, h = gs¥*. Then h— 1= —fr"* and so
v (h—1) =M+ 1> M. Furthermore, v,(h) =2 M + 1> M. As h is
a polynomial in F[X], vs(h) = 0 for all de€. & and so in particular
va(h) = 0 for all d e S\{r, s}.

Case 2. 7 = c. Then s and ¢ are distinct prjme polynomials
in F[X]. As v, and », are independent valuations on F(X), there
exist polynomials f and ¢ such that ».(f/g — 1) > M and v,(f/9) > M
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[1, Theorem 1, p. 134]. Choose a positive integer ¢ such that
tdegg>(M+ 1)deg s+ deg f + M. By the division algorithm, there
exist polynomials w and z in F[X] such that ¢’ = ws"*'g + z where
degz < (M + 1l)degs + degg. So fq'= fws"'g + fz and hence
flg = fws"*/q* + fz/q'g. Let h be defined by h = fws”*'/¢’. Then
vs(h) = M + 1 > M and for all prime polynomials » which are distinct
from ¢, v,(h) = 0. So it suffices to show that v (h — 1) > M.

Observe that v..(f/g — h) = v..(f?/gq") = deg g + tdegq — deg f —
degz>degg + (M + 1)degs +deg f+ M — degf— (M + 1)deg s —
deg g =M. Therefore v. (h—1)=v.(h— flg+ flg—1) = min {v. .(h—fl9),
V(flg — 1)} > M.

Case 8. s = o. Then r and ¢ are distinct prime polynomials.
Let f be a polynomial such that ».(f — 1) > M. Choose a positive
integer ¢ such that tdegq > (M + 1)degr» + M. By the division
algorithm, there exist polynomials w and z in F[X] such that
Q'f = wr" + z where degz < (M + 1)deg». Then f = wr”*'/q* +
z/q. Let h be defined by % = z/q¢*. Then v.(f — h) = v, (wr"*/q") =
M+1>M and so v,(h — 1) =v.(h— f + f — 1) = min {v,(h — f),
v,(f — 1)} > M. Furthermore,

Vo(h) =tdegqg —degz> M+ 1)degr + M — (M + 1)degr»r = M .
Finally for d e .Z\{q}, v,(h) = 0.

Case 4. o € S\{r, s}. Then 7, s and ¢ are distinct prime poly-
nomials in F[X]. By Case 1, there exists a polynomial f in F[X]
such that »,(f — 1) > M and »,(f) > M. Choose ¢t so large such that
tdegqg > (M + 1)(deg » + deg s) and let w and z be polynomials in
F[X] such that fq' = wr¥*'s”+ + z where degz < (M + 1)(deg r +
degs). Then f= wri+is¥+/q* + z/q'. Define h by h = z/q’. Then
v,(f — h) = v (wr"s"+q")y = M + 1 > M and similarly »,(f — h) > M.
Hence v,(h — 1) > M and »,(h) > M. Furthermore for all polynomials
p in F\{g}, v,(h) = 0. So it suffices to show that v,(h) =0. As
V.(h) =t deg g—deg 2> (M+1)(deg r+deg s)— (M-+1)(deg »+deg s) =0,
v,(h) = 0.

2. Locally bounded topologies on F(X). Let R be a ring
and let .7~ be a ring topology on R (that is, .7 is a topology on
R making (2, y) >« — y and (z, y) — xy continuous from R X R to
R). A subset S of R is bounded for .7~ if given any neighborhood
V of 0, there exists a neighborhood U of 0 such that SUZV and
USC V. & 1is a locally bounded topology on R if there is a
bounded neighborhood of 0 for ..
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A norm ||--|| on a field K is a function from K to the nonnega-
tive reals satisfying ||z|| = 0 if and only if x =0, ||z — y|| < ||| +
||l and ||y ||<||z]||||y|| for all z, ¥ in K. Observe that a subset of
K is bounded in norm if and only if it is bounded for the topology
defined by the norm; in particular the topology defined by a norm
is a locally bounded topology.

A subset I of a field K is an almost order of K if (1) 0,1€el,
(2) —I<S 1, (8) II = I, (4) there exists a nonzero element & in I such
that (I + I) = I, and (56) for each xe K*, there exist y, z in I'*

1

such that z = yz™.

LEMMA 1 [6, Theorems 5 and 6]. If .7 1is a mondiscrete, locally
bounded ring topology on a field K, then there is an almost order
I of K that is a bounded neighborhood of zero. Conversely, if I is
an almost order of K, then there exists a unique nondiscrete, locally
bounded ring topology 7~ on K for which I is a bounded neighbor-
hood of zero. Furthermore, the topology .7~ defined by I 1s Haus-
dorff if and only if I + K.

In [7] we investigated locally bounded topologies on the quotient
fields of certain Dedekind domains. We recall the results of that
paper.

Let K be the quotient field of a Dedekind domain R that is not
a field, & the set of nonzero prime ideals of R and 2,6 a set

{l+ly *++, | +|s} of = mutually inequivalent proper absolute values on
K such that for each 7€[l, n] and each pe.2? the topology .7
defined by |-:|; is distinct from the topology .7, defined by the

valuation v,. Let &' be defined by &' = P U.Z,. For each subset
S of Z', we define O(S) by O(S) = {xe K: v,(x) = 0 for all pe SN
and |z]; <1 for all |--|,e SN A}

We placed the following conditions on K, R and .Z’:

I. Class Number Condition (CC). The class number of K over
R is finite.

II. Approximation Condition (AC). For any finite subset G of
', any veFP'\G, any family (a,),c; of elements of K indexed by
G, and any positive numbers M and ¢, there exists a nonzero element
h in K such that v,(h —a,) = M for all peGN.ZF |h—a., e
for all |--,eG N .Z, and heO(F'\(G U {7})).

III. Discreteness Condition (DC). The only ring topology on K
for which O(Z"') is a neighborhood of zero is the discrete topology.
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IV. Euclidean Condition (EC). There exist positive numbers
B, *++, B. such that if a, be R with b 5= 0, then there exist ¢, » in
R satisfying a = bg + 7, |7|; < |b],8; for all ¢ in [1, n].

LEMMA 2 [7, Lemma 2]. If S is a nonempty, proper subset of
P, them O(S) is an almost order for a wunique, Hausdorff, non-
discrete, locally bounded ring topology .75 on K.

LEMMA 3 [7, Theorem 38, Statement 3]. Let .7 be a Hausdorf,
nondiscrete, locally bounded rimg topology on K with the following
property.

V. Boundedness Condition (BC). For any M >0, the set
O A N{yeK:|yl; <M for all |--|,e. 2.} is a bounded set for .7~

If &2 has exactly one element, then 9~ = .9 for some non-
empty, proper subset S of F'.

THEOREM 2. Let F be a field and X an indeterminate over F.
Let & be the set of all prime polynomials over F, v, the valuation
on F(X) defined by v.(f/g) =deg g —degf and let F,={|--|.} where
Y] = 27%9 for all y in F(X). Then F(X), F[X] and &' = 2 U P,
satisfy (CC), (AC), (DC) and (EC). Moreover, if 7 1is a Hausdorf,
nondiscrete, locally bounded rimng topology on F(X) for which the
subfield F is bounded, then 7 satisfies (BC) and hence 7 = T
for some monempty, proper subset S of F'.

Proof. As F[X] is a principal ideal domain, (CC) holds. By
Theorem 1, (AC) holds. Furthermore, (DC) holds. Indeed, as
O(F") = F,if .7~ is a ring topology on F(X) for which O(Z) is a
neighborhood of zero, then the set F'n FX = {0} is a neighborhood
of zero for .. Thus 7 is discrete. By the division algorithm,
(EC) holds with B, = 1. So it suffices to prove that (BC) holds when
.7 is a locally bounded topology on F(X) for which the subfield F
is bounded.

Notice that for M > 0, O(F)N{ye F(X): |yl. = M} = {ye F[X]:
degy < N} where N = InM/In2. Consequently, if .7~ is a locally
bounded topology on F(X) for which the subfield F is bounded, then
7~ satisfies (BC) and therefore by Lemma 3, .9 = 7 for some
nonempty, proper subset S of .

COROLLARY [7, Corollary 4]. If F is a finite field and 7 is a
Hausdorff, nondiscrete, locally bounded topology on F(X), then there
exists a nonempty, proper subset S of F' such that I = T



THE STRONG APPROXIMATION THEOREM 63

The following theorem is a generalization of Theorem 2 of [3].

THEOREM 3. Let .7 be a Hausdorff, nondiscrete, locally bounded
ring topology on F(X) for which the subfield F is bounded. The
following statements are equivalent.

1° 7 is a field topology.

2° 7 is the supremum of finitely many valuation topologies
7, where pe 7.

3° There exists a monzero element a im F(X) such that
lim,_.a" = 0.

4° 7 1s defined by a norm.

Proof. Let S be a nonempty, proper subset of <’ such that
I =T

To show that 1° implies 2°, it suffices to show that S is finite.
As 7 is a field topology and O(S) + 1 is a neighborhood of 1 in
.7, there exists a y in O(S)\{0} such that (yO(S) + 1)7* < O(S) + 1.
If S is infinite, pick p e SN & such that v,(y) = 0. By Theorem 1,
there exists a z in F(X) such that v,(z + y™) > 0 and ze€O(S\{p}).
Then v,(2) =v,(z + y* —y™) = min{v,(z + y™), v,(y™)} =0 and so
2€0(S). Hence yz + 1eyO(S) + 1 and v,(yz + 1) = v,(yz + ¥y ™) =
v,(¥) + v,(y + 275 > 0. Therefore, v,(yz + 1)™*) < 0. But (yz + 1)~'¢
O(S) + 1 and v, (w) = 0 for all weO(S) + 1. Contradiction! There-
fore S is finite.

To prove that 2° implies 3°, we note that if S is any nonempty,
finite subset of &' and a is any nonzero element of F(X) such that
Ja]., <1 when |[-:].e€8 and v,(a) >0 for all p in SN.Z then
lim,,,a* =0 in .75. The existence of such an element is guaranteed
by Theorem 1. The statement 3° implies 4° is a special case of
Cohn’s theorem [4, Theorem 6.1]. Finally the proof that 4° implies
1° is the same as that for normed algebras found on p. 77 of [2].
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