THE STRONG APPROXIMATION THEOREM AND LOCALLY BOUNDED TOPOLOGIES ON F(X)

JO-ANN COHEN

To within equivalence, the only valuations on the field F(X) of rational functions over F that are improper on F are the valuations v_p , where p is a prime polynomial of F[X], and the valuation v_{∞} , defined by the prime polynomial X^{-1} of $F[X^{-1}]$. It is classic that if F is a finite field, the set \mathscr{T}' defined by, $\mathscr{T}'=\{p\colon p \text{ is a prime polynomial over } F\}\cup\{\infty\}$, has the Strong Approximation Property, that is, for any finite subset G of \mathscr{T}' , any $q\in\mathscr{T}'\setminus G$, any family $(a_g)_{g\in G}$ of elements of F(X) indexed by G, and any M>0, there exists a nonzero element h in F(X) such that $v_p(h-a_p)>M$ for all p in G and $v_p(h)\geqq 0$ for all p in $\mathscr{T}'\setminus (G\cup\{q\})$. We shall first prove that \mathscr{T}' satisfies this condition when F is infinite as well. We then apply this result to obtain a characterization of all locally bounded topologies on F(X) for which the subfield F is bounded.

1. The strong approximation theorem. Here, $\mathscr S$ is the set of prime polynomials in F[X] and $\mathscr S'$ is the set $\mathscr S \cup \{\infty\}$.

THEOREM 1 (The strong approximation theorem). For any finite subset G of \mathscr{S}' , any $q \in \mathscr{S}' \backslash G$, any family $(a_g)_{g \in G}$ of elements of F(X) indexed by G, and any positive number M, there exists a nonzero h in F(X) such that $v_p(h-a_p) \geq M$ for all $p \in G$ and $v_d(h) \geq 0$ for all $d \in \mathscr{S}' \backslash (G \cup \{q\})$.

Proof. Let $S = \mathscr{G}' \setminus \{q\}$. By [5, Theorem 2.2, p. 322], it suffices to show that for distinct elements r and s in S and M > 0, there exists an h in F(X) such that $v_r(h-1) > M$, $v_s(h) > M$ and $v_d(h) \ge 0$ for all $d \in S \setminus \{r, s\}$.

Case 1. $\infty \notin S$. Then r and s are distinct prime polynomials and so there exist polynomials f and g in F[X] such that $f r^{M+1} + gs^{M+1} = 1$. Define h by, $h = gs^{M+1}$. Then $h - 1 = -fr^{M+1}$ and so $v_r(h-1) \ge M+1 > M$. Furthermore, $v_s(h) \ge M+1 > M$. As h is a polynomial in F[X], $v_d(h) \ge 0$ for all $d \in \mathscr{S}$ and so in particular $v_d(h) \ge 0$ for all $d \in S \setminus \{r, s\}$.

Case 2. $r=\infty$. Then s and q are distinct prime polynomials in F[X]. As v_{∞} and v_s are independent valuations on F(X), there exist polynomials f and g such that $v_{\infty}(f/g-1)>M$ and $v_s(f/g)>M$

[1, Theorem 1, p. 134]. Choose a positive integer t such that $t \deg q > (M+1) \deg s + \deg f + M$. By the division algorithm, there exist polynomials w and z in F[X] such that $q^t = ws^{M+1}g + z$ where $\deg z < (M+1) \deg s + \deg g$. So $fq^t = fws^{M+1}g + fz$ and hence $f/g = fws^{M+1}/q^t + fz/q^tg$. Let h be defined by $h = fws^{M+1}/q^t$. Then $v_s(h) \geq M+1 > M$ and for all prime polynomials p which are distinct from q, $v_p(h) \geq 0$. So it suffices to show that $v_\infty(h-1) > M$.

Observe that $v_{\infty}(f/g-h) = v_{\infty}(fz/gq^t) = \deg g + t \deg q - \deg f - \deg z > \deg g + (M+1) \deg s + \deg f + M - \deg f - (M+1) \deg s - \deg g = M$. Therefore $v_{\infty}(h-1) = v_{\infty}(h-f/g+f/g-1) \ge \min \{v_{\infty}(h-f/g), v_{\infty}(f/g-1)\} > M$.

Case 3. $s=\infty$. Then r and q are distinct prime polynomials. Let f be a polynomial such that $v_r(f-1)>M$. Choose a positive integer t such that $t\deg q>(M+1)\deg r+M$. By the division algorithm, there exist polynomials w and z in F[X] such that $q^tf=wr^{M+1}+z$ where $\deg z<(M+1)\deg r$. Then $f=wr^{M+1}/q^t+z/q^t$. Let h be defined by $h=z/q^t$. Then $v_r(f-h)=v_r(wr^{M+1}/q^t)\geq M+1>M$ and so $v_r(h-1)=v_r(h-f+f-1)\geq \min{\{v_r(h-f),v_r(f-1)\}}>M$. Furthermore,

 $v_{\scriptscriptstyle \infty}(h)=t\deg q-\deg z>(M+1)\deg r+M-(M+1)\deg r=M$. Finally for $d\in \mathscr{T}ackslash\{q\},\ v_d(h)\geqq 0$.

Case 4. $\infty \in S \setminus \{r, s\}$. Then r, s and q are distinct prime polynomials in F[X]. By Case 1, there exists a polynomial f in F[X] such that $v_r(f-1) > M$ and $v_s(f) > M$. Choose t so large such that $t \deg q > (M+1)(\deg r + \deg s)$ and let w and z be polynomials in F[X] such that $fq^t = wr^{M+1}s^{M+1} + z$ where $\deg z < (M+1)(\deg r + \deg s)$. Then $f = wr^{M+1}s^{M+1}/q^t + z/q^t$. Define h by $h = z/q^t$. Then $v_r(f-h) = v_r(wr^{M+1}s^{M+1}/q^t) \ge M+1 > M$ and similarly $v_s(f-h) > M$. Hence $v_r(h-1) > M$ and $v_s(h) > M$. Furthermore for all polynomials p in $\mathscr{P}\setminus \{q\}$, $v_p(h) \ge 0$. So it suffices to show that $v_\infty(h) \ge 0$. As $v_\infty(h) = t \deg q - \deg z > (M+1)(\deg r + \deg s) - (M+1)(\deg r + \deg s) = 0$, $v_\infty(h) \ge 0$.

2. Locally bounded topologies on F(X). Let R be a ring and let \mathscr{T} be a ring topology on R (that is, \mathscr{T} is a topology on R making $(x, y) \to x - y$ and $(x, y) \to xy$ continuous from $R \times R$ to R). A subset S of R is bounded for \mathscr{T} if given any neighborhood V of R0, there exists a neighborhood R1 of R2 or R3 is a locally bounded topology on R3 if there is a bounded neighborhood of R3 for R5.

A norm $||\cdot||$ on a field K is a function from K to the nonnegative reals satisfying ||x|| = 0 if and only if x = 0, $||x - y|| \le ||x|| + ||y||$ and $||xy|| \le ||x|| ||y||$ for all x, y in K. Observe that a subset of K is bounded in norm if and only if it is bounded for the topology defined by the norm; in particular the topology defined by a norm is a locally bounded topology.

A subset I of a field K is an almost order of K if (1) 0, $1 \in I$, (2) $-I \subseteq I$, (3) $II \subseteq I$, (4) there exists a nonzero element h in I such that $h(I+I) \subseteq I$, and (5) for each $x \in K^*$, there exist y, z in I^* such that $x = yz^{-1}$.

LEMMA 1 [6, Theorems 5 and 6]. If \mathcal{F} is a nondiscrete, locally bounded ring topology on a field K, then there is an almost order I of K that is a bounded neighborhood of zero. Conversely, if I is an almost order of K, then there exists a unique nondiscrete, locally bounded ring topology \mathcal{F} on K for which I is a bounded neighborhood of zero. Furthermore, the topology \mathcal{F} defined by I is Hausdorff if and only if $I \neq K$.

In [7] we investigated locally bounded topologies on the quotient fields of certain Dedekind domains. We recall the results of that paper.

Let K be the quotient field of a Dedekind domain R that is not a field, $\mathscr T$ the set of nonzero prime ideals of R and $\mathscr T_\infty$ a set $\{|\cdot\cdot|_1, \, \cdot\cdot\cdot, \, |\cdot\cdot|_n\}$ of n mutually inequivalent proper absolute values on K such that for each $i\in [1,n]$ and each $p\in \mathscr T$, the topology $\mathscr T_i$ defined by $|\cdot\cdot|_i$ is distinct from the topology $\mathscr T_p$ defined by the valuation v_p . Let $\mathscr T'$ be defined by $\mathscr T'=\mathscr T\cup\mathscr T_\infty$. For each subset S of $\mathscr T'$, we define O(S) by $O(S)=\{x\in K: v_p(x)\geq 0 \text{ for all } p\in S\cap \mathscr T_\infty\}$ and $|x|_i\leq 1$ for all $|\cdot\cdot|_i\in S\cap\mathscr T_\infty\}$.

We placed the following conditions on K, R and \mathscr{P}' :

- I. Class Number Condition (CC). The class number of K over R is finite.
- II. Approximation Condition (AC). For any finite subset G of \mathscr{S}' , any $\gamma \in \mathscr{S}' \backslash G$, any family $(a_g)_{g \in G}$ of elements of K indexed by G, and any positive numbers M and e, there exists a nonzero element h in K such that $v_p(h-a_p) \geq M$ for all $p \in G \cap \mathscr{S}$, $|h-a_{|\cdots|_k}|_2 \leq e$ for all $|\cdots|_2 \in G \cap \mathscr{S}_{\infty}$ and $h \in O(\mathscr{S}' \backslash (G \cup \{\gamma\}))$.
- III. Discreteness Condition (DC). The only ring topology on K for which $O(\mathscr{P}')$ is a neighborhood of zero is the discrete topology.

- IV. Euclidean Condition (EC). There exist positive numbers β_1, \dots, β_n such that if $a, b \in R$ with $b \neq 0$, then there exist q, r in R satisfying a = bq + r, $|r|_i \leq |b|_i \beta_i$ for all i in [1, n].
- LEMMA 2 [7, Lemma 2]. If S is a nonempty, proper subset of \mathscr{S}' , then O(S) is an almost order for a unique, Hausdorff, non-discrete, locally bounded ring topology \mathscr{T}_S on K.
- Lemma 3 [7, Theorem 3, Statement 3]. Let \mathcal{I} be a Hausdorff, nondiscrete, locally bounded ring topology on K with the following property.
- V. Boundedness Condition (BC). For any M > 0, the set $O(\mathscr{S}) \cap \{y \in K: |y|_i \leq M \text{ for all } |\cdot\cdot|_i \in \mathscr{S}_{\infty}\}$ is a bounded set for \mathscr{T} .
- If \mathscr{T}_{∞} has exactly one element, then $\mathscr{T}=\mathscr{T}_{\mathcal{S}}$ for some non-empty, proper subset S of \mathscr{T}' .
- THEOREM 2. Let F be a field and X an indeterminate over F. Let $\mathscr T$ be the set of all prime polynomials over F, v_{∞} the valuation on F(X) defined by $v_{\infty}(f/g) = \deg g \deg f$ and let $\mathscr T_{\infty} = \{|\cdot|_{\infty}\}$ where $|y|_{\infty} = 2^{-v_{\infty}(y)}$ for all y in F(X). Then F(X), F[X] and $\mathscr T' = \mathscr T \cup \mathscr T_{\infty}$ satisfy (CC), (AC), (DC) and (EC). Moreover, if $\mathscr T$ is a Hausdorff, nondiscrete, locally bounded ring topology on F(X) for which the subfield F is bounded, then $\mathscr T$ satisfies (BC) and hence $\mathscr T = \mathscr T_s$ for some nonempty, proper subset S of $\mathscr T'$.
- Proof. As F[X] is a principal ideal domain, (CC) holds. By Theorem 1, (AC) holds. Furthermore, (DC) holds. Indeed, as $O(\mathscr{T}') = F$, if \mathscr{T} is a ring topology on F(X) for which $O(\mathscr{T}')$ is a neighborhood of zero, then the set $F \cap FX = \{0\}$ is a neighborhood of zero for \mathscr{T} . Thus \mathscr{T} is discrete. By the division algorithm, (EC) holds with $\beta_1 = 1$. So it suffices to prove that (BC) holds when \mathscr{T} is a locally bounded topology on F(X) for which the subfield F is bounded.

Notice that for M>0, $O(\mathscr{S})\cap\{y\in F(X)\colon |y|_{\infty}\leq M\}=\{y\in F[X]\colon \deg y\leq N\}$ where N=lnM/ln2. Consequently, if \mathscr{T} is a locally bounded topology on F(X) for which the subfield F is bounded, then \mathscr{T} satisfies (BC) and therefore by Lemma 3, $\mathscr{T}=\mathscr{T}_{\mathcal{S}}$ for some nonempty, proper subset S of \mathscr{S}' .

COROLLARY [7, Corollary 4]. If F is a finite field and \mathcal{F} is a Hausdorff, nondiscrete, locally bounded topology on F(X), then there exists a nonempty, proper subset S of \mathscr{S}' such that $\mathcal{F} = \mathcal{F}_S$.

The following theorem is a generalization of Theorem 2 of [3].

THEOREM 3. Let T be a Hausdorff, nondiscrete, locally bounded ring topology on F(X) for which the subfield F is bounded. following statements are equivalent.

- 1° Is a field topology.
- 2° I is the supremum of finitely many valuation topologies \mathcal{T}_n where $p \in \mathcal{P}'$.
- 3° There exists a nonzero element a in F(X) such that $\lim_{n\to\infty}a^n=0.$
 - 4° I is defined by a norm.

Proof. Let S be a nonempty, proper subset of \mathscr{S}' such that $\mathcal{I} = \mathcal{I}_{s}$.

To show that 1° implies 2° , it suffices to show that S is finite. As \mathcal{I} is a field topology and O(S) + 1 is a neighborhood of 1 in \mathscr{T} , there exists a y in $O(S)\setminus\{0\}$ such that $(yO(S)+1)^{-1}\subseteq O(S)+1$. If S is infinite, pick $p \in S \cap \mathscr{P}$ such that $v_p(y) = 0$. By Theorem 1, there exists a z in F(X) such that $v_p(z+y^{-1})>0$ and $z\in O(S\setminus\{p\})$. Then $v_p(z) = v_p(z + y^{-1} - y^{-1}) \ge \min\{v_p(z + y^{-1}), v_p(y^{-1})\} \ge 0$ and so $z \in O(S)$. Hence $yz + 1 \in yO(S) + 1$ and $v_y(yz + 1) = v_y(y(z + y^{-1})) = 0$ $v_{x}(y) + v_{x}(y+z^{-1}) > 0$. Therefore, $v_{x}((yz+1)^{-1}) < 0$. But $(yz+1)^{-1} \in$ O(S) + 1 and $v_p(w) \ge 0$ for all $w \in O(S) + 1$. Contradiction! Therefore S is finite.

To prove that 2° implies 3° , we note that if S is any nonempty, finite subset of \mathscr{G}' and a is any nonzero element of F(X) such that $|a|_{\infty} < 1$ when $|\cdot\cdot|_{\infty} \in S$ and $v_{p}(a) > 0$ for all p in $S \cap \mathscr{S}$, then $\lim_{n\to\infty} a^n = 0$ in \mathcal{I}_s . The existence of such an element is guaranteed by Theorem 1. The statement 3° implies 4° is a special case of Cohn's theorem [4, Theorem 6.1]. Finally the proof that 4° implies 1° is the same as that for normed algebras found on p. 77 of [2].

REFERENCES

- 1. N. Bourbaki, Algèbre Commutative, Ch. 5-6, Hermann, Paris, 1964.
- Topologie Générale, Ch. 9, Paris, Hermann, 1958.
 J. Cohen, Locally bounded topologies on F(X), Pacific J. Math., 70 (1977), 125-132.
- 4. P. M. Cohn, An invariant characterization of pseudo-valuations on a field, Proc. Cambridge Phil. Soc., 50 (1954), 159-177.
- 5. J. Goldhaber and G. Ehrlich, Algebra, The MacMillan Company, London, 1970.
- 6. Hans-Joachim Kowalsky and Hansjürgen Dürbaum, Arithmetische Kennzeichung von Korpertopologien, J. Reine Angew. Math., (1953), 135-152.
- 7. E. Nichols and J. Cohen, Locally bounded topologies on global fields, Duke Math. J., **44** (1977), 853-862.
- 8. O. T. O'Meara, Introduction to Quadratic Forms, Springer-Verlag, Berlin, 1963.

Received May 15, 1978.

NORTH CAROLINA STATE UNIVERSITY RALEIGH, NC 27650