HOLOMORPHIC MAPPING OF PRODUCTS OF ANNULI IN C^{n}

Eric Bedford

Let $\Omega_{1}, \Omega_{2} \subset C^{n}$ be bounded pseudoconvex Reinhardt domains with the property that $z_{1} \cdots z_{n} \neq 0$ for all $\left(z_{1}, \cdots, z_{n}\right) \in \bar{\Omega}_{j}$. A holomorphic mapping $f: \Omega_{1} \rightarrow \Omega_{2}$ is discussed in terms of the induced mapping on homology f_{*} : $H_{1}\left(\Omega_{1}, \boldsymbol{R}\right) \rightarrow H_{1}\left(\Omega_{2}, \boldsymbol{R}\right)$. Specifically, there is a norm on $H_{1}\left(\Omega_{j}, R\right)$ which must decrease under f_{*}. As a consequence we prove that a domain Ω as above is rigid in the sense of H. Cartan: if $f: \Omega \rightarrow \Omega$ is holomorphic and $f_{*}: H_{1}(\Omega, \boldsymbol{R}) \rightarrow$ $H_{1}(\Omega, \boldsymbol{R})$ is nonsingular, then f is an automorphism.

1. Introduction. Let $A\left(R_{j}\right)=\left\{z \in C: 1 / R_{j}<|z|<R_{j}\right\}$ be an annulus in the complex plane. If $f: A\left(R_{1}\right) \rightarrow A\left(R_{2}\right)$ is a holomorphic mapping, then the topological behavior of f is restricted in terms of the moduli R_{1} and R_{2} (see Schiffer [6] and Huber [4]). With the methods of Landau and Osserman [5] it will be possible to generalize this result to certain domains which are (topologically) the products of plane annuli. Domains satisfying (2) are also shown to be rigid; see Theorem 2 and Remark 1. In [1] the homology group $H_{2 n-1}$ was used to prove rigidity; here we discuss H_{1}.

Let $\Omega \subset C^{n}$ be a complex manifold and let

$$
\mathscr{F}=\left\{u \in C^{2}(\Omega), 0<u<1, u \text { pluriharmonic }\right\}
$$

If $\gamma \in H_{1}(\Omega, \boldsymbol{R})$ is a homology class, then a seminorm on γ may be defined by

$$
\begin{equation*}
N\{\gamma\}=\sup _{u \in \mathscr{F}} \int_{\gamma} d^{o} u \tag{1}
\end{equation*}
$$

where $d^{c}=i(\bar{\partial}-\partial)$, (see Chern, Levine, and Nirenberg [2]). If $F: \Omega_{1} \rightarrow \Omega_{2}$ is a holomorphic mapping, then the map on homology $F_{*}: H_{1}\left(\Omega_{1}, \boldsymbol{R}\right) \rightarrow H_{1}\left(\Omega_{2}, \boldsymbol{R}\right)$ must decrease this norm.
2. Computation of the intrinsic norm. We will compute this norm for domains $\Omega \subset C^{n}$ satisfying
Ω is connected, bounded, pseudoconvex, Reinhardt (i.e.,

$$
\begin{equation*}
\left.\left(e^{i \theta_{1}} z_{1}, \cdots, e^{i \theta_{n}} z_{n}\right) \in \Omega \text { if } z \in \Omega \text { and } \theta_{1}, \cdots, \theta_{n} \in \boldsymbol{R}\right) \text {, and if } \tag{2}
\end{equation*}
$$ $z \in \bar{\Omega}$, then $z_{1} \cdots z_{n} \neq 0$.

Let $\omega \subset \boldsymbol{R}^{n}$ be the logarithmic image of Ω, i.e.,

$$
\omega=\left\{\left(\xi_{1}, \cdots, \xi_{n}\right) \in \boldsymbol{R}^{n}:\left(e^{\xi_{1}}, \cdots, e^{\xi_{n}}\right) \in \Omega\right\}
$$

Since Ω satisfies (2), ω is convex. Choosing a point $\zeta \in \Omega$, we define $\gamma_{j} \in H_{1}(\Omega, \boldsymbol{R})$ to be the homology class of the circle $\theta \rightarrow\left(\zeta_{1}, \cdots\right.$, $\left.e^{i \theta} \zeta_{j}, \cdots, \zeta_{n}\right), 0 \leqq \theta \leqq 2 \pi$. Thus $\left\{\gamma_{1}, \cdots, \gamma_{n}\right\}$ forms a basis for $H_{1}(\Omega, \boldsymbol{R})$. For $u \in \mathscr{F}$, we set

$$
u^{0}\left(r_{1}, \cdots, r_{n}\right)=\frac{1}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} u\left(r_{1} e^{i \theta_{1}}, \cdots, r_{n} e^{i \theta_{n}}\right) \cdot d \theta_{1} \cdots d \theta_{n}
$$

Since d^{c} is linear and invariant under complex rotations,

$$
\int_{r_{j}} d^{c} u=\int_{r_{j}} d^{c} u^{0}
$$

for all $u \in \mathscr{F}$. Let $\mathscr{F}^{0}=\left\{u \in \mathscr{F}: u=u\left(r_{1}, \cdots, r_{n}\right)\right\}$. We note that every element of \mathscr{F}^{0} has the form $u=c+c_{1} \log r_{1}+\cdots+c_{n} \log r_{n}$. For $u^{0} \in \mathscr{F}^{0}$, the function $\mathfrak{l}\left(\xi_{1}, \cdots, \xi_{n}\right)=u^{0}\left(e^{\xi_{1}}, \cdots, e^{\xi_{n}}\right)$ is affine (linear plus constant). A simple computation gives

$$
\int_{r_{j}} d^{c} u^{0}=\int_{r_{j}} \frac{\partial u}{\partial r_{j}} r_{j} d \theta_{j}=2 \pi \frac{\partial \mathrm{l}}{\partial \xi_{j}} .
$$

Thus we conclude that

$$
N\left\{a_{1} \gamma_{1}+\cdots+a_{n} \gamma_{n}\right\}=2 \pi \sup _{\mathfrak{l} \in \mathscr{L}}\left(a_{1} \frac{\partial \mathfrak{l}}{\partial \xi_{1}}+\cdots+a_{n} \frac{\partial \mathfrak{l}}{\partial \xi_{n}}\right)
$$

where

$$
\mathscr{L}(\omega)=\{\mathfrak{l}(\xi) \text { affine }: 0<\mathfrak{l}(\xi)<1, \xi \in \omega\}
$$

We define the norm

$$
\|\mathfrak{Y}\|=\max _{\bar{\omega}} \mathfrak{l}-\min _{\bar{\omega}} \mathfrak{l}
$$

so that \mathscr{L} is identified via the map $\mathfrak{l} \rightarrow \mathfrak{l}-\mathfrak{l}(0)$ with $\Gamma=\{\mathfrak{l}$ linear: $\|\mathfrak{l}\| \leqq 1\}$. Clearly $\Gamma=-\Gamma$ and Γ is convex. Let R_{Γ}^{n} denote the Banach space \boldsymbol{R}^{n} with Γ as its unit ball. By (3) the unit ball B of $H_{1}(\Omega, \boldsymbol{R})$ is

$$
B=\left\{\gamma=\sum_{j=1}^{n} a_{j} \gamma_{j}:\left|\sum_{j=1}^{n} a_{j} \frac{\partial \mathfrak{l}}{\partial \xi_{j}}\right|<\frac{1}{2 \pi} \text { for } \mathfrak{l} ;\|\mathfrak{l}\|<1\right\}
$$

which is $1 / 2 \pi$ times the unit ball of $\left(\boldsymbol{R}_{\Gamma}^{n}\right)^{\prime}$.
If $\omega=-\omega$, then $\left(\boldsymbol{R}_{\omega}^{n}\right)^{\prime}=\boldsymbol{R}_{2 \Gamma}^{n}$, and thus B is naturally identified in R_{ω}^{n} as $B=(1 / \pi) \omega$. If ω is any convex set, then the convex set $\tilde{\omega}=\pi B \subset R^{n}$ satisfies $\tilde{\omega}=-\tilde{\omega}$ and has the same unit ball, B, as ω. For a general convex set ω, we may assume that $0 \in \omega$ and let $\rho(\xi)$ be its support function, i.e., $\rho(\xi)$ is the distance from 0 of the hyper-
plane which supports ω and has outward normal ξ. It follows that

In terms of the basis $\left\{d \theta_{1}, \cdots, d \theta_{n}\right\}, \Gamma$ may be identified as a subset of $H^{1}(\Omega, \boldsymbol{R})$, and so H^{1} inherits the dual norm. Thus, for each $a \in$ $H^{1}(\Omega, \boldsymbol{R})$ with $a \in \partial \Gamma$, there exists $\gamma \in H_{1}(\Omega, \boldsymbol{R})$ such that $\gamma \cdot a=N\{\gamma\}$.

For $u \in \mathscr{F}, \mathfrak{I} \in \Gamma$, we will use the notation:

$$
\begin{aligned}
L u(\xi) & =u^{0}\left(e^{\xi}\right) \\
\tilde{\mathfrak{I}}(z) & =\mathfrak{I}(\log |z|) .
\end{aligned}
$$

It is useful to know, given a homology class $\gamma \in H_{1}(\Omega, Z)$, whether there is an imbedded annulus $\varphi: A(R) \rightarrow \Omega$ such that $\varphi_{*}(|z|=1)=\gamma$ and $N\{|z|=1\}=N\{\gamma\}$. We do not know this in general, but this happens when $\omega=-\omega$. For integers m_{1}, \cdots, m_{n}, we define the map $\varphi: A(R) \rightarrow C^{n}$ by $\varphi(\tau)=\left(\tau^{m_{1}}, \cdots, \tau^{m_{n}}\right)$, and thus $\varphi_{*}(|z|=1)=\sum m_{j} \gamma_{j}$. It is easily seen that $\varphi(A(R)) \subset \Omega$ for $\log R=\mu$ if $\left(\mu m_{1}, \cdots, \mu m_{n}\right) \in \omega$. By the identification $B=(1 / \pi) \omega$, we have

$$
\begin{equation*}
N(\sigma)=\frac{\pi}{\mu}=N\left\{\varphi_{*}(\sigma)\right\}=N\left\{\sum m_{j} \gamma_{j}\right\} \tag{4}
\end{equation*}
$$

for $\mu=\log R$ and $\mu\left(m_{1}, \cdots, m_{n}\right) \in \partial \omega$.
3. Extremal functions. To study holomorphic mappings we will need to know that the function achieving the supremum in (1) is unique.

Proposition 1. If γ is the homology class of $\{|\boldsymbol{z}|=1\}$ in the annulus $A(R)$, then

$$
u=\frac{\log R|z|}{2 \log R}
$$

is the unique function in \mathscr{F} satisfying

$$
\begin{equation*}
N\{\gamma\}=\int_{r} d^{o} u . \tag{5}
\end{equation*}
$$

If $v \in \mathscr{F}$ satisfies

$$
c N\{\gamma\}=\int_{\gamma} d^{c} v
$$

then

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|v\left(r e^{i \theta}\right)-u(r)\right| d \theta \leqq 4(1-c)
$$

for $1 / R<r<R$.
Proof. The first assertion is well known. The idea of the proof is that if $v \in \mathscr{F}$, and if $\{u>v\}$ is nonempty, then the homology class of $\gamma^{\prime}=\partial\{u>v\}$ is homologous to γ. Thus if v satisfies (5), then

$$
\int_{r} d^{c}(u-v)=\int_{r^{\prime}} d^{c}(u-v)=0
$$

Thus $V(u-v)=0$ on γ^{\prime}, and by unique continuation, $u=v$ on $A(R)$. For details, see Landau and Osserman [5], or [1].

For the second assertion, we consider the Laurent expansion

$$
v(z)=c u(z)+c_{0}+\operatorname{Re} g(z)
$$

where $g(z)=\sum_{j \neq 0} c_{j} z^{j}$. Since $\operatorname{Re} g(z)$ is a bounded harmonic function on $A(R)$, it has nontangential boundary limits a.e. on $|z|=R$ and $|z|=1 / R$. It follows that

$$
\int_{0}^{2 \pi} \operatorname{Re} g\left(r e^{i \theta}\right) d \theta=0
$$

for $1 / R \leqq r \leqq R$. Since $v \in \mathscr{F}$, it follows that $c_{0}+c \leqq 1$ and $\operatorname{Re} g(z) \leqq 1-c-c_{0}$ for $|z|=R$; and $c_{0} \geqq 0$, $\operatorname{Re} g(z) \geqq-c_{0}$ for $|z|=$ $1 / R$. Therefore

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\operatorname{Re} g\left(r e^{i \theta}\right)\right| d \theta \leqq 2(1-c)
$$

for $r=R$ and $r=1 / R$. Since $\operatorname{Re} g$ is harmonic on $A(R)$, this bound holds for $1 / R \leqq r \leqq R$. Thus

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|u(r)-v\left(r e^{i \theta}\right)\right| d \theta \leqq 1-c+c_{0}+\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\operatorname{Re} g\left(e^{i \theta}\right)\right| d \theta
$$

which gives the desired estimate.
Proposition 2. Let Ω satisfy (2), and let $\gamma \in H_{1}(\Omega, \boldsymbol{R})$ be given. If u satisfies (5), then $u(z)=u^{0}(z)$ for all $z \in \Omega$ such that $\log |z|$ belongs to the convex hull of $\{\xi \in \partial \omega: L u(\xi)=0$ or 1$\}$. In particular, if

$$
\begin{align*}
& \text { there exist } \\
& p_{0} p_{1} \in \bar{\omega}, L u\left(p_{1}\right)=1, L u\left(p_{0}\right)=0 \\
& c=\left(c_{1}, \cdots, c_{n}\right)=p_{1}-p_{0} \text { and the } \tag{6}\\
& \text { set }\left\{c_{1}, \cdots, c_{n}\right\} \text { is rationally } \\
& \text { independent }
\end{align*}
$$

then $u(z)=u^{0}(z)$ for all $z \in \Omega$.
Proof. Let us begin by recalling that $\int_{r} d^{c}\left(u^{0}-u\right)=0$ for all $\gamma \in H_{1}(\Omega, \boldsymbol{R})$. Thus there is a holomorphic function $f \in \mathscr{O}(\Omega)$ such that $u=u^{0}+\operatorname{Re} f$. If the first part of the proposition is proved, then it follows that $\operatorname{Re} f(z)=0$ on $S=\{z \in \Omega: \log |z|=\lambda c, \lambda \in R\}$, if $p_{0}=0$. If (6) holds there is a one-dimensional complex manifold $M=$ $\left\{\left(\tau^{c_{1}}, \cdots, \tau^{c_{n}}\right): \tau \in \boldsymbol{C}\right\} \cap \Omega$ which is dense in S. Since M is complex, it follows that $f=0$ on M. Thus $f=0$ on S, and so $f=0$ on Ω.

Now we establish the first part of the proposition. Let $p_{0}, p_{1} \in$ $\partial \omega$ be such that $L u\left(p_{0}\right)=0$ and $L u\left(p_{1}\right)=1$. Without loss of generality we may assume that $p_{1}=-p_{0}$. We first consider the case where the ratios c_{j} / c_{k} are all rational. Thus there are integers (m_{1}, \cdots, m_{n}) such that $c_{j}=\mu m_{j}$ for some $\mu \in \boldsymbol{R}$. The mapping $\varphi_{m}(\tau)=\left(\tau^{m_{1}}, \cdots, \tau^{m_{n}}\right)$ maps the annulus $A\left(e^{\mu}\right)$ into Ω, and the logarithmic image of $\varphi\left(A\left(e^{\mu}\right)\right)$ is the segment $\left(p_{0}, p_{1}\right)$. It follows that $u(\varphi)$ and $u^{0}(\varphi)$ both satisfy (5), and thus by Proposition $1 u(\varphi)=u^{0}(\varphi)$ on A. Since this argument applies to all mappings $\varphi(\tau)=\left(e^{i \theta_{1}} \tau^{m_{1}}, \cdots, e^{i \theta_{n}} \tau^{m_{n}}\right)$, we conclude that $u(z)=u^{0}(z)$ for all z such that $\log |z| \in\left(p_{0}, p_{1}\right)$.

For general c, we may take a sequence $\left\{c^{s}\right\}, c^{s}=\mu_{s}\left(m_{1}^{s}, \cdots, m_{n}^{s}\right)$, $\mu_{s} \in \boldsymbol{R}, m_{i}^{s} \in \boldsymbol{Z}$ such that $\pm c^{s} \in \bar{\omega}$ and c^{s} converges to p_{1}. As before we set $\varphi_{m^{s}}=\varphi_{s}: A\left(e^{\mu_{s}}\right) \rightarrow \Omega$. Thus

$$
u^{0}\left(\varphi_{s}(z)\right)=\frac{\log e^{\mu_{s}}|z|}{2 \log e^{\mu_{s}}}+\varepsilon(s)
$$

where $\varepsilon(s)$ is a function on $A\left(e^{\mu_{s}}\right)$ such that

$$
\left.\lim _{s \rightarrow \infty}\|\varepsilon(s)\|=0 \text { (here }\|\varepsilon(s)\|=\sup _{A\left(e^{\mu_{s}}\right)}|\varepsilon(s)|\right)
$$

If σ is the class of $\{|z|=1\}$ in $A\left(e^{\mu_{s}}\right)$ then

$$
\int_{\sigma} d^{c} u^{0}\left(\varphi_{s}\right) \geqq(1-\|\varepsilon(s)\|) N\{\sigma\}
$$

Since

$$
\int_{\left(\varphi_{s}\right) * \sigma} d^{c} u=\int_{\left(\varphi_{s}\right) * \sigma} d^{c} u^{0}
$$

we have

$$
\int_{\sigma} d^{c} u\left(\varphi_{s}\right) \geqq(1-\|\varepsilon(s)\|) N\{\sigma\}
$$

By Proposition 1, then,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|u\left(\varphi_{s}\left(r e^{i \theta}\right)\right)-u^{0}\left(\varphi_{s}(r)\right)\right| d \theta \leqq 4\|\varepsilon(s)\|
$$

Clearly the same holds if φ_{s} is replaced by $\varphi(\gamma)=\left(e^{i \theta_{1}} \tau^{m_{1}}, \cdots, e^{i \theta_{n} \tau^{m_{n}}}\right)$ with $\theta_{1}, \cdots, \theta_{n} \in \boldsymbol{R}$.

Finally we will show that $u(r)=u^{0}(r)$ for $r=\lambda c, 0<\lambda<1$. If this does not hold, then there exists $\delta>0$ such that $\left|u(z)-u^{0}(|z|)\right|>\delta$ for all z such that $|z-r|<\delta$. Now we may cover the set $T=$ $\left\{z \in \Omega:\left|z_{j}\right|=r_{j}\right\}$ with K balls (K large) of radius δ and centers $q_{1}, \cdots, q_{K} \in T . \quad$ At least one of these balls has the property that

$$
\frac{2 \pi}{K} \leqq \text { measure }\left\{0<\theta<2 \pi:\left|\varphi_{s}\left(\rho e^{i \theta}\right)-q_{j}\right|<\delta\right\}
$$

where $\varphi_{s}(\rho)=r$. Denote $\operatorname{Arg}\left(q_{j}\right)$ by $\left(\psi_{1}, \cdots, \psi_{n}\right)$. It follows that

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left|u\left(\widetilde{\mathscr{O}}_{s}\left(\rho e^{i \theta}\right)\right)-u^{\rho}(r)\right| d \theta \\
& \quad \geqq \delta \text { measure }\left\{0<\theta<2 \pi:\left|\widetilde{\varphi}_{s}\left(\rho e^{i \theta}\right)-r\right|<\delta\right\} \geqq \frac{2 \pi \delta}{K}
\end{aligned}
$$

where $\widetilde{\mathscr{\varphi}}_{s}=\left(e^{-i \psi_{1}} \tau^{m_{1}}, \cdots, e^{-i \psi_{n}} \tau^{m_{n}}\right)$. Since this contradicts our previous estimate, we conclude that $u(z)=u^{0}(z)$ if $|z|=r$, which was what we wanted to prove.

Proposition 3. Let $\omega \subset \boldsymbol{R}^{n}$ be a bounded convex set. Given $c \in \boldsymbol{R}^{n}, c \neq 0$, there exists $u \in \mathscr{F}, p_{0}, p_{1} \in \partial \omega$ such that $p_{1}-p_{0}=\lambda c$, $\lambda \in \boldsymbol{R}$, and $L u\left(p_{j}\right)=j$ for $j=0,1$. Furthermore, there exist $u_{1}, \cdots, u_{n} \in \mathscr{F}$ satisfying (6) and such that $L u_{1}, \cdots, L u_{n}$ are linearly independent.

Proof. Let us first suppose that $\partial \omega$ is smooth and strictly convex. Let $\alpha: S^{n-1} \rightarrow \partial \omega$ be the Gauss map, i.e., the outward normal to $\partial \omega$ at $\alpha(\xi)$ is ξ. Consider the map $\beta: S^{n-1} \rightarrow S^{n-1}$ given by

$$
\beta(\xi)=\frac{\alpha(\xi)-\alpha(-\xi)}{|\alpha(\xi)-\alpha(-\xi)|}
$$

Clearly $\beta(\xi) \cdot \xi>0$, and thus β has degree 1 , so that β is onto. Let ξ_{0} be a vector such that $\beta\left(\xi_{0}\right)=c /|c|$. Then we take $p_{1}=\alpha\left(\xi_{0}\right), p_{0}=$ $\alpha\left(-\xi_{0}\right)$, and $\operatorname{grad} L u=\beta(\xi)$.

For general ω, we take an increasing sequence $\left\{\omega_{j}\right\}$ of smoothly bounded strictly convex sets. If $u^{j}, p_{v}^{j}, p_{1}^{j}$ have the desired properties on ω_{j}, we pass to a convergent subsequence to obtain u, p_{0}, p_{1}.

Now we show that we can obtain the family $\left\{u_{1}, \cdots, u_{n}\right\}$. Let us suppose that we have found $\left\{u_{1}, \cdots, u_{j}\right\}$ with $\left\{L u_{1}, \cdots, L u_{j}\right\}$,
$1 \leqq j<n$, linearly independent and satisfying (6). Pick $c \in$ $\bigcap_{k \leq j} \operatorname{Ker} L u_{k}, c \neq 0$. It follows that if u_{j+1} satisfies the conclusion of the first part of the proposition, then $\left\{L u_{1}, \cdots, L u_{j+1}\right\}$ are linearly independent. Now we perturb c slightly so that (6) is satisfied and the set is still independent.
4. Application to holomorphic mappings. Let $F: \Omega_{1} \rightarrow \Omega_{2}$ be a holomorphic mapping of domains satisfying (2). Then by the integer matrix T_{F} we will denote the map on integral homology classes $F_{*}=T_{F}: Z^{n} \rightarrow Z^{n}$ in terms of basis $\left\{\gamma_{1}, \cdots, \gamma_{n}\right\}$. It follows that $T_{F}\left(B_{1}\right) \subset B_{2}$ and $T_{F}^{\prime}\left(\Gamma_{2}\right) \subset \Gamma_{1}$, where T_{F}^{\prime} is the transpose of T_{F}, and T_{F}^{\prime} gives the action of F^{*} on H^{1}. If $\mathfrak{Y}(\xi)=\sum c_{j} \xi_{j}$, then $F^{*} d^{\tilde{\mathscr{C}}}$ represents the same cohomology class as $T_{F}^{\prime}(c)$. Writing $u(z)=\tilde{l}(F(z))$ we have $L u(\xi)=T_{F}^{\prime}(c) \cdot \xi$.

Theorem 1. Let Ω_{1}, Ω_{2} satisfy (2), and assume that $\omega_{1}=-\omega_{1}$, $\omega_{2}=-\omega_{2}$. Let T be an $n \times n$ matrix with integer entries. There exists a holomorphic mapping $F: \Omega_{1} \rightarrow \Omega_{2}$ with $T_{F}=T$ if and only if $T\left(\omega_{1}\right) \subset \omega_{2}$. Furthermore $T\left(\omega_{1}\right)=\omega_{2}$ (i.e., F_{*} is an isometry) if and only if F is a proper covering map, and in this case F has the form

$$
F(\boldsymbol{z})=\left(e^{i \theta_{1}} z^{t_{1}}, e^{i \theta_{n}} z^{t_{n}}\right)
$$

where $\theta_{1}, \cdots, \theta_{n} \in \boldsymbol{R}$ and t_{1}, \cdots, t_{n} are the rows of T.
Proof. Let $F: \Omega_{1} \rightarrow \Omega_{2}$ be given. Since F_{*} must be normdecreasing, and since $1 / \pi \omega_{j}=B_{j}$, it follows that $T\left(\omega_{1}\right) \subset \omega_{2}$. Conversely, if $T\left(\omega_{1}\right) \subset \omega_{2}$, we set $F\left(z_{1}, \cdots, z_{n}\right)=\left(z^{t_{1}}, \cdots, z^{t_{n}}\right)$. Exponentiating the inclusion $T\left(\omega_{1}\right) \subset \omega_{2}$, we obtain $F\left(\Omega_{1}\right) \subset \Omega_{2}$.

Now we assume that T_{F} is an isometry, and let $\left\{u_{1}, \cdots, u_{n}\right\} \subset$ $\mathscr{F}^{0}\left(\Omega_{1}\right)$ be the set constructed in Proposition 3. We may assume that $d^{c} u_{j} \in \partial \Gamma$, so there exists $\left\{\gamma_{1}, \cdots, \gamma_{n}\right\} \subset H_{1}\left(\Omega_{1}, \boldsymbol{R}\right)$ such that $N\left\{\gamma_{j}\right\}=\int_{r_{j}} d^{c} u_{j}$. Now we pick $u_{1}^{\prime}, \cdots, u_{n}^{\prime} \in \mathscr{F}^{0}\left(\Omega_{2}\right)$ such that the cohomology class of $d^{c} u_{j}$ is the same as $F^{*}\left(d^{c} u_{j}^{\prime}\right)$. Thus

$$
\int_{r_{j}} d^{c} u_{j}=N\left\{\gamma_{j}\right\}=N\left\{F_{*} \gamma_{j}\right\}=\int_{r_{j}} F^{*}\left(d^{c} u_{j}\right) .
$$

Since F is holomorphic,

$$
\int_{r_{j}} F^{*}\left(d^{c} u_{j}\right)=\int_{r_{j}} d^{c}\left(u_{j}^{\prime}(F)\right)
$$

Since u_{j} satisfies (6), we conclude by Proposition 2, that $u_{j}=$ $u_{j}^{\prime}(F)$. This gives n independent equations which have the form

$$
\sum_{i=1}^{n} c_{i j} \log \left|z_{i}\right|=\sum_{i=1}^{n} c_{i j}^{\prime} \log \left|F_{i}(z)\right|
$$

for $j=1, \cdots, n$. Thus $\log \left|F_{i}(z)\right|=\sum a_{i j} \log \left|z_{j}\right|, i=1, \cdots, n$. Since $T_{F}=T$, it follows that $a_{i j}=t_{i j}$, and so F has the desired form. Thus

$$
\frac{\partial F_{i}}{\partial z_{j}}=\frac{t_{i j}}{z_{j}} F_{i}
$$

so that $\operatorname{det}\left(\partial F_{i} / \partial z_{j}\right)=\left(\prod_{k=1}^{n} F_{k} / z_{k}\right) \operatorname{det} T \neq 0$. Since $T\left(\omega_{1}\right)=\omega_{2}$ it follows that F is in fact a covering map and is proper.

Conversely, we shows that if F is a covering, then F_{*} is an isometry. We consider first the one-dimensional case $f: A\left(R_{1}\right) \rightarrow A\left(R_{2}\right)$, where f is a d-to-1 covering. If $\varphi: A\left(R_{2}^{1 / d}\right) \rightarrow A\left(R_{2}\right)$ is given by $\varphi(z)=z^{d}$, then taking a suitable branch of $\varphi^{-1}(f)$ we obtain a biholomorphism between $A\left(R_{1}\right)$ and $A\left(R_{2}^{1 / d}\right)$. Since $R_{1}=R_{2}^{1 / d}, f_{*}$ is an isometry.

For the general case, we consider integral homology classes $\gamma^{\prime}=\sum m_{j} \gamma_{j}^{\prime} \in H_{1}\left(\Omega_{2}, \boldsymbol{Z}\right)$. Let $\varphi: A^{\prime} \rightarrow \Omega_{2}$ be an imbedding of an annulus so that $\varphi_{*}(\sigma)=\gamma^{\prime}$ and (4) holds. If we set $A=F^{-1}\left(\varphi A^{\prime}\right)$, then $F_{\mid A}: A \rightarrow \varphi A^{\prime}$ is a covering. F is proper, so $F^{-1} \gamma^{\prime}$ is a closed curve in Ω_{1}; thus A is a 1-dimensional annulus and so $\left(F_{1 A}\right)_{*}$ is an isometry. We let σ be the generator of $H_{1}(A, Z)$, and we let $\gamma=\gamma_{\sigma}$ be the induced element of $H_{1}\left(\Omega_{1}, \boldsymbol{Z}\right)$. Thus $F_{*}(\gamma)=\gamma^{\prime}$, and so $N\{\gamma\} \geqq$ $N\left\{\gamma^{\prime}\right\}$. On the other hand, since $A \subset \Omega_{1}$,

$$
N\left\{\gamma^{\prime}\right\}=N\left\{\sigma^{\prime}\right\}=N\{\sigma\} \geqq N\{\gamma\}
$$

and so $N\{\gamma\}=N\left\{F_{*}(\gamma)\right\}$. Since this holds for all integral classes in $H_{1}\left(\Omega_{2}, \boldsymbol{R}\right)$, it follows that F_{*} is an isometry.

THEOREM 2. Let Ω_{1}, Ω_{2} satisfy (2). If $F: \Omega_{1} \rightarrow \Omega_{2}$ is a holomorphic mapping such that $F_{*}: H_{1}\left(\Omega_{1}, \boldsymbol{R}\right) \rightarrow H_{1}\left(\Omega_{2}, \boldsymbol{R}\right)$ is an isometry, then F is a covering map of the form

$$
F(z)=\left(c_{1} z^{t_{1}}, \cdots, c_{n} z^{t_{n}}\right)
$$

where $c_{1}, \cdots, c_{n} \in C$ and t_{1}, \cdots, t_{n} are the rows of T_{F}. In particular, if $\Omega_{1}=\Omega_{2}$ and F_{*} is nonsingular, then F is a biholomorphism.

Proof. We repeat the appropriate portion of the proof of Theorem 1 and conclude that if F_{*} is an isometry, then

$$
c_{0 j}+\sum_{i=1}^{n} c_{i j} \log \left|z_{i}\right|=c_{0 j}^{\prime}+\sum_{i=1}^{n} c_{i j}^{\prime} \log \left|F_{i}(z)\right|
$$

for $j=1, \cdots, n$. Thus $\left|F_{j}(z)\right|=b_{j}\left|z_{1}\right|^{b_{1 j}} \cdots\left|z_{n}\right|^{b_{n j}}$, and so F has the desired form since $F_{*}=T_{F}$. As before, $\operatorname{det}\left(\partial F_{i} / \partial z_{j}\right) \neq 0$. To show that F is a covering, we show that F^{\prime} is proper. We have already
shown that $F(z)=\left(c_{1} z^{t_{1}}, \cdots, c_{n} z^{t_{n}}\right)$ and so for $\mathfrak{l}^{\prime} \in \Gamma_{2}, \underline{L \mathfrak{l}^{\prime}}(F) \in \Gamma_{1}$. We set $U_{j}(z)=\sup _{t \in \partial \Gamma_{j}} \tilde{\mathrm{l}}(z)$. By the convexity of ω_{j}, U_{j} is an exhaustion for $\Omega_{j}: \partial \Omega_{j}=\left\{z \in \bar{\Omega}_{j}: U_{j}(z)=1\right\}$. As was noted above,

$$
T_{F}^{\prime} \mathfrak{l}^{\prime}=\tilde{\mathfrak{l}}^{\prime}(\log |F|)
$$

for $l^{\prime} \in \Gamma_{2}$. Since F_{*} is an isometry, $F^{*} \Gamma_{2}=\Gamma_{1}$, and so

$$
U_{1}(z)=U_{2}(F(z))
$$

Thus F is proper.
In case $\Omega_{1}=\Omega_{2}$, then $F_{*} B_{1} \subset B_{1}$. Since T_{F} has integer coefficients and is invertible, $\operatorname{det} T_{F}= \pm 1$. Thus T_{F} preserves volume, and so $T_{F} B_{1}=B_{1}$. The inverse mapping is easily constructed as $G(z)=$ $\left(\zeta^{s_{1}}, \cdots, \zeta^{s_{n}}\right)$ where $\zeta_{j}=z_{j} / c_{j}$ and s_{j} is the j th row of the inverse $S=T^{-1}$.

Remark 1. It follows that domains satisfying (2) are rigid in the sense of H. Cartan [2]: if $f: \Omega \rightarrow \Omega$ is holomorphic and induces a nonsingular mapping on $H_{1}(\Omega, \boldsymbol{R})$, then f is an automorphism. By topological considerations, it follows that if f_{*} is nonzero on the generator of $H_{n}(\Omega, \boldsymbol{R})$, then f_{*} is nonsingular on $H_{1}(\Omega, \boldsymbol{R})$ and is thus an automorphism. If T is a complex 1-dimensional torus and if $D \subset C$ is a disk, then $T \times D$ is a complex manifold homeomorphic to $A(R) \times A(R)$ but is not rigid. We would expect, however, that a bounded domain in C^{n}, homeomorphic to $A(R) \times \cdots \times A(R)$, would be rigid.

Remark 2. The problem of finding nontrivial automorphisms (i.e., other than $z \rightarrow\left(e^{i \theta_{1}} z_{1}, \cdots, e^{i \theta_{n}} z_{n}\right)$) of domain satisfying (2) is thus reduced to finding $T \in G L(n, Z)$ such that $T B=B$. For instance, if $1 \leqq p<\infty$, this argument shows that the automorphisms of the domain

$$
\Omega=\left\{z \in C^{n}: \sum_{j=1}^{n}\left(\log \frac{\left|z_{j}\right|}{R_{j}}\right)^{p}<1\right\}
$$

are generated by the nontrivial automorphisms $z \rightarrow\left(z_{1}, \cdots, z_{j}^{-1}, \cdots, z_{n}\right)$ and $z_{j} \rightarrow z_{k}$ if $R_{j}=R_{k}$. Since a "generic" norm on R^{n} does not have any nontrivial isometries, a "generic" domain satisfying (2) has only trivial automorphisms.

Remark 3. Let us consider domains satisfying (7) for some fixed j :
Ω is connected, bounded, pseudoconvex, Reinhardt, if $z \in \bar{\Omega}$, then $z_{1}, \cdots, z_{j} \neq 0$, and there are points $P_{j+1}, \cdots, P_{n} \in \bar{\Omega}$ such that the k th coordinate of P_{k} is 0 .

Let $p: \boldsymbol{C}^{n} \rightarrow \boldsymbol{C}^{j}$ be projection onto the first j variables, and set $\Omega_{0}=$ $p(\Omega)$. Looking at the logarithmic image of Ω, which is convex, one may deduce that $\Omega_{0} \times\{0\} \subseteq \Omega$. By the norm-decreasing property of inclusion $i: \Omega_{0} \rightarrow \Omega$ and projection $p: \Omega \rightarrow \Omega_{0}$, it follows that i_{*} and p_{*} are isometries of H_{1}. Thus the norm of a domain satisfying (7) may be computed in terms of Ω_{0}, which satisfies (2).

Remark 4. The following observation extends Proposition 2.
Proposition 4. Let Ω satisfy (2), and assume that for each $p \in \partial \omega$ there is a unique supporting hyperplane at p. Then for each homology class $\gamma \in H_{1}(\Omega, \boldsymbol{R})$ there is a unique function $u \in \mathscr{F}^{0}$ such that $N\{\gamma\}=\int_{i} d^{c} u$.

Proof. We show that the $\mathfrak{l} \in \mathscr{L}$ which achieves the supremum in (3) is unique. Suppose, to the contrary, that $\mathfrak{l}_{1}, \mathfrak{l}_{2} \in \mathscr{C}$ have this property. Then so does $\mathfrak{l}=\left(\mathfrak{l}_{1}+\mathfrak{l}_{2}\right) / 2$. Since \mathfrak{l} is extremal, there must be points $p^{\prime}, p^{\prime \prime} \in \partial \omega$ such that $\mathfrak{Y}\left(p^{\prime}\right)=0$ and $\mathfrak{l}\left(p^{\prime \prime}\right)=1$. Thus we must have $\mathfrak{I}_{1}\left(p^{\prime \prime}\right)=\mathfrak{I}_{2}\left(p^{\prime \prime}\right)=1$, and so the half spaces $\left\{\xi: \mathfrak{l}_{1}(\xi) \leqq 1\right\}$ and $\left\{\xi: l_{1}(\xi) \leqq 1\right\}$ both support ω at $p^{\prime \prime}$. By assumption, then, \mathfrak{l}_{1} is a multiple of \mathfrak{l}_{2}. Since $\mathfrak{l}_{1}\left(p^{\prime}\right)=\mathfrak{l}_{2}\left(p^{\prime \prime}\right)=0$, it follows that $\mathfrak{l}_{1}=\mathfrak{l}_{2}$, which completes the proof.

Example. If $\Omega=A(R) \times A(R)$, then the homology class $\gamma=$ $\gamma_{1}+\gamma_{2}$ has norm $\pi / \log R$. For $0 \leqq \lambda \leqq 1$, the function

$$
u_{2}=\frac{1}{\log R}\left(\lambda \log \left|z_{1}\right|+(1-\lambda) \log \left|z_{2}\right|\right)
$$

belongs to \mathscr{F}^{0} and satisfies (5), and so the extremal function is not unique.

A slight modification of the proof of Proposition 4 shows that uniqueness holds if $\gamma=\sum a_{j} \gamma_{j}$ does not have the property:

$$
\begin{align*}
& \text { if } t_{0}>0 \text { is such that } t_{0} a \in \partial \Gamma, \\
& \text { then there is a segment } I \subset \partial \Gamma \tag{8}\\
& \text { containing } t_{0} a \text { with } I \perp \alpha .
\end{align*}
$$

Clearly there is a dense subset of H_{1} where (8) does not hold.

References

1. E. Bedford and D. Burns, Holomorphic mapping of annuli in \mathbf{C}^{n} and the associated extremal function, Ann. Scuola Norm. Sup. Pisa, 3 (1979), 381-414.
2. H. Cartan, Sur les fonctions de plusieurs variables complexes, Math. Z., 35 (1932), 760-773.
3. S.-S. Chern, H. Levine, and L. Nirenberg, Intrinsic norms on a complex manifold, Global Analysis. Papers in Honor of K. Kodaira. Princeton Univ. Press, 1969, 119-139.
4. H. Huber, Ueber analytische Abbildungen von Ringgebieten in Ringgebiete, Compos. Math., 9 (1951), 161-168.
5. H. Landau and R. Osserman, On analytic mappings of Riemann surfaces, J. Analyse Math., 7 (1959-60), 249-279.
6. M. Schiffer, On the modules of doubly connected domains, Quart. J. Math., 17 (1946), 197-213.

Received April 24, 1978.
Princeton University
Princeton, NJ 08544

