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QUASI-METRIZABLE SPACES

JacoB KOFNER

A construction is given which yields to any quasi-
metrizable not non-archimedeanly quasi-metrizable space
another quasi-metrizable space which is not s-orthocompact.
It is shown that (o-)orthocompactness does not imply non-
archimedean quasi-metrizability and is neither summable
nor multiplicative nor (CH) hereditary in completely regular
quasi-metric spaces.

It is proved that quasi-metric spaces are preserved under
perfect mappings.

0. Let T be the completely regular quasi-metric space without
any o-interior preserving base presented in [8]. T has been invented
to show that a sufficient condition for quasi-metrizability due to S.
Nedev ([12]) and to P. Fletcher and W. F. Lindgren ([3]), namely
the existence of a o-interior preserving base, is not necessary. In
§1 of the present paper some further analogs of well known metric
theorems are proved to be false. A general construction on quasi-
metric spaces is given, which when applied to the space T yields a
(completely regular perfect subparacompact submetrizable) quasi-
metric non-o-orthocompact extention T, while T is shown to be
hereditarily orthocompact. 7T~ supples i.a. an answer to a question
of P. Fletcher concerning the oc-orthocompactness of quasi-metric
spaces [private communication].

It is shown further that (o-)orthocompactness is neither multipli-
cative nor summable in completely regular quasi-metric spaces. In
fact, the product of the space T with the Sorgenfrey line is shown
to be non-g-orthocompact, and T~ is shown to be the union of an
open set homeomorphic to T and a discrete set of cardinality of the
continuum. Together with the continuum hypothesis the above
construction provides an example of a regular Lindelof quasi-metrie
space that is not hereditarily o-orthocompact.

In §2' it is shown that a perfect image of quasi-metrizable space
is quasi-metrizable, in analogy to the metric case. VThis result answers
a question posed first by S. Nedev and M. M. Coban ([13]). It is
further proved that non-archimedean quasi-metric spaces are preserved
under perfect mappings. In [13] S. Nedev and M. M. Coban have
proved the same result for v-spaces. Hence each of the three increas-
ing classes of spaces, namely non-archimedean quasi-metric spaces,
quasimetric spaces and 7-spaces, is preserved under perfect mappings.

1 The results of §2 had been included in [9].
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All spaces below are T,. D denotes the set {0} U {1/7:7=1,2, ---}.

1. A generalized metric d on a space X is a quasi-metric (non-
archimedean quasi-metric) provided that always d(x, 2) < d(x, ¥) +
d(y, 2)(d(x, 2) < max {d(z, y), d(y, 2)}).

A collection a@ of subsets of a space X is interior preserving
provided that intN{4d: deca’} =N{int A: Aca’} for every a' Ce,
and it is g-interior preserving provided that « is countable union
of interior preserving collections. A space is non-archimedeanly
quasi-metrizable iff it has a o-interior preserving base ([8], [3]). A
space is (o-)orthocompact provided that every open cover has a (o-)
interior preserving open refinement ([14], [2]). A space X is perfect,
provided that any open set of X is F', and subparacompact provided
that every cover of X has a o-discrete closed refinement. A space
X is submetrizable provided that there exists a metrizable topology
which is coarser than that of X.

The space T has the complex plane as its underlying set. A
base of neighborhoods in a point ¢te T consists of the sets C{, r) =
{tyuft: |t — @&+ ri)| <7r},r >0, ie., C, r) is an open circle with
radius r together with its “southern pole” ¢. It is shown in [8]
that the space T is submetrizable, quasi-metrizable via a quasi-metric
which is continuous in the second variable, but not non-archimedeanly
quasi-metrizable. Moreover, the same arguments as in [8] prove the
following lemma.

LEMMA. Let T, be a subset of the second category in the plane
topology and let & = {U(t): t € T,} be a collection of subsets of T such
that for each te T,, U(t) is a T-neighborhood of t contained in C(t, r.).
Then & is not g-interior preserving in T and {UE) N T, te Ty} s
not o-interior preserving in the subspace T, of T.

PROPOSITION 1. T is a perfect, subparacompact and hereditarily
orthocompact space’.

Proof. Let us show that any open cover { of an open set V has
a closed o-discrete refinement in T, so that T is perfect and subpara-
compact.

For each G € { let G° denote the interior of G in the plane topology.
Set {"={G"Ge(l} and set V' = J. Note that {* has a closed o-
discrete refinement even in the plane topology. Set FF=V — V' and
set F,={teF:C(, 1/n)CG for some Ge{}. We have FF=UF,.
Let us show that any F, is o-discrete.

For teT,r >0 set C7'(t, r) = {t': t € C(t’, )}. Note that C'(¢, r)
"2 After this result was obtained, I learned from H. Junnila that he also has proved
that the space T is orthocompact in a different way.
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is an open circle with radius » together with its “northern pole”
t. Set S, r)=C&, r)UC™'(¢, 7). The space X with the plane as
its underlying set with the basic neighborhoods S(z, ») is semimetri-
zable ([6], [7]) and its topology is coarser than that of T yet finer
than the plane topology. Now for any ¢t e F, we have S(¢t, 1/n)NF, =
{t}. Otherwise pick some t'€ S(t,1/n) N F,, t' +#t. Then t'€C(t, 1/n)
or t'eC'(t,1/n) and tecC({, 1/n). In the first case, for instance,
t'eCt,1/n)—{t} G €’ and t' € V' and this contradicts ¢’ € F. Hence
for every te F, the trace of S(¢,1/n) on F, is {t}.

Since the open collection {S(¢, 1/n): t€ F',} in the semi-metrizable
space X has a closed o-discrete refinement, ¥, is a union of countably
many sets that are closed and discrete in X, and hence in 7.

We have proved that { has a o-discrete closed refinement. Thus
T is perfect and subparacompact. A perfect space is hereditarily
orthocompact if it is o-orthocompact ([2]). Let % be an open cover
of T. For each Hen let H® denote the interior of H in the plane
topology. Set 7° = {H°: Hen} and set T, = U7°. Note 7° has a o-
locally finite open refinement even in the plane topology. Let E =
T—-T,FE,={tcE: Ct, 1/n)ec H for some Hen}. We have E =
Usr-. E,. We shall construct for every E, an open interior preserving
collection which refines {C({, 1/n): t € E,} and covers E,.

Let B be a base of the plane topology, 8 = Ui, B:, Where 3,
are point finite and for every Ue B, diam U = sup{|t — ¢'[: ¢, t' e U} <
1/Ek.

For teFE,, t' e Ct,1/2n) let k(t,¢') be the smallest £ such that
there exists Uep, with ‘e UcC C(t, 1/n), and let U(¢, t') be such a
U. Let us note that if one has sequences ¢; € F,, t; € C(t, 1/2n), t; + t},
then (1) k(t;, t;) — oo = |t; — t;] — 0.

We put U(t) = U{U(@, t'): t' € C(t, 1/2n)} U {t}. Obviously, U(t) C
C(t, 1/n).

The collection {U(t): t € E,} is interior preserving. Otherwise pick
some t,€ T such that N{U(%):t, € U(t)} is not a neighborhood of ¢,.
Since any U(¢) is an union of some U(¢, t') € By..., and any B, is interior
preserving, there exist sequences t;€ F, and t;€ C(t;, 1/2n) such that
(2) t,e U(t;, t;) for any 7 =1,2, --- and (3) k(t;, t;) — . From (3)
and (1) it follows that |t; — t;| — 0, from (2) and from the definitions
of U(t, t') and g, it follows that [t} — ¢,| < diam U(¢;, t;) < 1/k(t;, t;)—0,
so |t, — t;] — 0 and since all ¢t; € E and E is closed in the plane topology
we have t,€ E. However, for some ¢; we have ¢, t;, and ¢, € U(t;) —
{t;} c C&;, 1/n) — {t;}Cc H e ”®, hence t,e T,. Thus t,e T,NE — a con-
tradiction.

We have proved that » has a o-interior preserving refinement.
Hence T is o-orthocompact, and therefore, as mentioned above, it is
hereditary orthocompact.
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REMARK. By the same arguments it can be proved that the
space X of H. W. Martin’s Example 3 of [11] is orthocompact; this
answers Question 1 of [11].

Let (X, d) be a quasi-metric space, B(x,r) be a d-sphere, and
set X7 = X x D. We define a generalized metric d° on X~ such
that for » <1 the d” -spheres B” (=, 1/5), r) = B(x, r/J) X {1/3} and
Bv((“’} O>y ’I”) = Ul/:i<r Bv(<xr 1/-7>7 T) U {<x) 0>}' For » > 1 we put all
d”-spheres B Kz, y),r) = X . It follows that d~ is a quasi-metric
and that if X is Hausdorff that so is X".

THEOREM 1. (i) X~ is a union of countably many disjoint
clopen subspaces homeomorphic to X and a discrete subspace of the
same cardinality as that of X.

(ii) If d is continuous in the second wvariable then so is d”.

(iii) If X s perfect (subparacompact, submetrizable) then so is
X"

(iv) If X is mot mon-archimedeanly quasi-metrizable then X~
18 mot o-orthocompact.?

Proof. (i) is obvious. (ii) follows from the following ecriterion
due to R. Stoltenberg [15]: a quasi-metric d is continuous in the
second variable iff for every x2ze€ X, 0 < r» <+ one has cl B(x, r)C
B(x, ). (iii) The topology of the product of X with the metric
space D is coarser than that of X7, hence X~ is submetrizable if X
is. The rest follows from (i). (iv) Let { be a o-interior preserving
refinement of the open cover {B"({x, 0>,1): x€ X}, and let 7;: X - X~
be defined by =w;(x) = <{x,1/5). Then {z;'G:Gel,j=1,2,---} is a
o-interior preserving open collection in X. It is also a base in X
because if U is a neighborhood of x€ X, B(x,1/7) cU and (x,0)¢
G €, where G B ({z,0),1), then one has x € 7;(G) C7;'(B"({x,0),1))=
B(x, 1/5)c U, 7' (G) e 7). This completes the proof.

The following proposition is a consequence of Proposition 1 and
Theorem 1.

PROPOSITION 2. The space T s perfect, subparacompact, sub-
metrizable, quasi-metrizable via a quasi-metric which is continuous
in the second wvariable, but is mot g-orthocompact.

The notion of neighbornet due to H. Junnila (]5]) helps to unify
some definitions.

A reflexive binary relation U on a space X is a mneighbornet
provided that for any ze€ X the set U(x) is a neighborhood of z.
A sequence (U,> of neighbornets is basic provided that for any

3 Some constructions non-orthocompact mon-quasi-metrizable spaces based on quite
a different idea have been given in [4].
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x € X the sequence (U,(x)> is a base of neighborhoods of = ([5]).
A neighbornet U (a sequence of neighbornets (U,)) »efines a cover
{ of X provided that for any x € X there exists some G € { such that
U) c G(U,(x) G for some n). A neighbornet U, is double (normal)
provided that there exists another neighbornet U, (a sequence of
neighbornets U, U,, ---) such that U,DU; (U, U}, any n = 0).
A space X is orthocompact (has the Lebesque property, is pre-
orthocompact) iff for any open cover { of X there exists a transitive
(normal, double) neighbornet which refines {, countably orthocompact
(countably preorthocompact) iff for any countably open cover { of
X there exists a transitive (double) neighbornet which refines X;
g-orthocompact (has the o-Lebesque property, is o-refinable) iff for
any open cover { of X there exists a sequence of transitive (normal,
double) neighbornets which refines {, and non-archimedeanly quasi-
metrizable (quasi-metrizable, a v-space) iff there exists a basic sequence
transitive (normal, double) neighbornets ([5], [2], | 3], [8])-

REMARKS. H. Junnila mentioned in a letter to the author that
the “-construction preserves the Lebesgue property, any since T is
orthocompact and therefore has the Lebesgue property, T is an
example of a quasi-metric space with the Lebesgue property which
is not g-orthocompact.

We note that o-orthocompactness does not imply the orthocom-
pactness in quasi-metric spaces. A o-orthocompact non-orthocompact
quasi-metric space was found by P. Fletcher. E. K. van Douwen
and H. H. Wicke [1] have constructed an example of a regular non-
archimedianly quasi-metrizable space [ which is not countably ortho-
compact. Moreover, it can be shown that I is not even countably
preorthocompact.

I (C) _ n.-a.quasi-metrizable

orthocompact —_ (/)
ﬂ(T‘) \ o-orthocompact / M(T)

Lebesgue property _ (/™) ﬂ(TV) ©) quasi-metrizable
@) g-Lebesgue property ﬂ(?)
C

preorthocompact &A ﬂ( 3] % y-space

o-refinable

Let us consider the following diagram:

All implications of the diagram are obvious. Those marked with
T, T, I, and C are irreversible by the counterexamples indicated,
where C is an arbitrary compact nonmetrizable space. The problem
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of the reversibility of the other implications is open.

PROPOSITION 3. (o-)orthocompactness is not summable in quasi-
metric spaces, namely, T~ is a sum of an open set homeomorphic
to T and a discrete subspace.

Proof. Since T is the countable union of disjoint open and closed
mutually homeomorphic subsets, the desired result follows from
Theorem 1.

PROPOSITION 4. (0-)orthocompactness is not multiplicative, namely
the product of the space T with the Sorgenfrey line Z is mot o-
orthocompact; neither is T X T.

Proof. Z is homeomorphic to closed subspace of T, hence it is
enough to show that T X Z is not o-orthocompact. Let te T, z€ Z,
a= 2 eTx Z. The sets S(a,r) =C{, r) X[2,2 + r), r>0 form
a base of neighborhoods of a. The set {t} x [z, z + 7) will be called
I(a, 7).

The underlying set of T is a plane. Any line parallel to z-axis
is a discrete set in T. Hence the plane P, = Kz, y,2):y +2 =0,
(e,yyeT,ze Z} is a discrete set in T x Z while any subspace of
T x Z whose underlying set is a plane P parallel to P, = {{x, v, 2):
y—2=0,{x,y>eT, zc Z} is homeomorphic to T, and the orthogonal
projection 7: P — T is a homeomorphism.

Let us show that the open cover { = {S(a, 1): a € P,} of a clopen
set F' =UC has no o-interior preserving refinement 7. Otherwise let
S(a) be some member of 7 containing a € P,. One has S(a) C S(a, 1).
For some k the subset P,(k) = {acP;: S(a, 1/k) < S(a)} is of the
second category in the plane topology of P,. Since the sets I(a, 1/k)
with ae P, (k) have the same “height”, hence the intersection of
U {l(a, 1/k): @ € P,(k)} with some plane P parallel to P, denoted by
P, is of the second category in the plane topology of P. Therefore
the set T, = n(P,) with T, T is of the second category in the plane
topology. Let te T, ¢t =n(b) and {b} = I(a, 1/k)N P. The set 7(S(a) N P)
will be called U(t). Since tern(l(a,l/k) N P)cCn(S(a, 1/k) N P)c U(t)
hence U(t) is a neighborhood of ¢ in T. Since the collection of all
S(a) is o-interior preserving in T X Z, hence the collection of all
S(a) N P is o-interior preserving in the subspace P of T X Z, and
since = is a homeomorphism, we get that the collection of all U(¢),
where t € T, is o-interior preserving. We also have U(t)=n(S(a) N P)C
7(S(a, 1) N P) < 0(¢, 1), and since T, is of the second category in the
plane topology, we get a contradiction to the lemma. Hence { has
no o-interior preserving refinement and T x Z is not g-orthocompact.



QUASI-METRIZABLE SPACES 87

PropPoOSITION 5. (CH) The (0-)orthocompactness is not hereditary
i quasi-metric spaces, namely there exists a regular Lindelof non-
archimedean quasi-metric space T which is mot hereditary oc-ortho-
compact.

Proof. If the continuum hypothesis is valid, then there exists
an uncountable subspace T, of T such that the trace of T, on each
nowhere dense subset in the plane topology is countable ([10]). Note
that T — T, is dense. T, is of the second category in the plane
topology, and the subspace T, of T is Lindelof. Indeed, if { is an
open cover of T, and {’ is a subcollection of { which covers some
dense set in 7, then the complement of U{’ in T, is countable by the
definition of T,. The same arguments imply that the spaces obtained
from the plane by scattering the points of T, is also Lindelof.

Let B(t, r)(By(t, 7)) be spheres of some quasi-metric of the plane
(of the subspace T, of T) and B(t, r) C By(t, r) for te T,., We define
a space T? with the underlying set (T, x D) U (S — T,) x {0}), and
with the generalized metric d* on T* such that for » < 1 d*-spheres
Bx(<t, 0>, ) = B((t, r) x [0, r)) N T* for te€S — T, and, B*({t, x), r) =
B, (&t, z), r) for teT,. For » > 1 all BXt, xy, r) = T+. It follows
that the subspace T, x D of T* is isometric to T,, d* is a quasi-metric
and T* is regular. Since T, is of the second categoy in the plane
topology, it follows from the lemma that T, is not non-archimedeanly
quasi-metrizable and T, is not o-orthocompact, neither is the subspace
T, x D of T*. Since S x {0} is Lindelof and for each x e D — {0}, T, x
{x} is Lindelof, the desired space T* is Lindelof.

2. A quasi-uniformity on X is transitive provided that it has
a base consisting of transitive binary relations ([3]).

THEOREM 2. Let f be a perfect map from X onto Y. If the
space X s quasi-uniformizable via a (transitive) quasi-uniformity
with a base of cardinality < m, then so is Y.

Proof. Let %Z be a quasi-uniformity on X with a base <& of
cardinality < m. For any Ue % the binary relation U” = {(y, ¥’) e
Y xY: U\ W) 2 f'(y)} is reflexivein Y. If U, c U, then U} CU;.
If U,-U,cU, then U'ocU'cU);. Thus {U'|\Uec.<Z} is a base of
cardinality < m for a quasi-uniformity Z* on Y which is transitive
if Zr is transitive.

We shall show that 7 is compatible with the topology of Y,
i.e., for any ye Y, ECY one has that yccl £ if, and only if, for
each Uez, U'(y) N E + Q.

For Ue Z,ye Y define Uy, (y) = (U (). As U*(y) =Y —
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FX —-U(f"(y)) and f is a surjection, we obtain U¥(y) C Uy(y).

If now U'(y) N E = @ for every Ue %, then also Uy(y) N E # &
and A(U) ={zefW): URR) N fY(E) + 2} + D.

Since A(U,)c A(U,), whenever U,c U,, it follows that {A(U)|U € '}
is a filter base on the compact set f7'(y) with a limit point
xe f7(y).

For any Ue % let U ez, U'-U' CU and let ze U'(x) N A(U").
One obtains U'(z) N fY(E) # @ and Ulx) N fY(F) # @. Since Z is
compatible with the topology of X, xzeel f7}(#), and since f is con-
tinuous, ¥ = f(x) ecl f(F) = cl E.

Let now yeclE and let Ue %. Then U'(y) N E # @. Indeed,
(fY(w)) is a neighborhood of f7'(y), i.e., f™(y) CintU(f *(y)). Thus
Eg¢ f( X —-U(/f"'(%)). Otherwise EcC f(X — int U(f(y))) and since
S is closed, cl EC f(X —int (f () Cf(X — () =Y — {y}.

Therefore, © = EN(Y — f(X —U(f(y))) and as it was men-
tioned above, Y — f(X — U(f (%)) = U*(y), so that @ = ENU"(y).
The theorem is proved.

Since a space is (non-archimedeanly) quasi-metrizable iff it is
uniformizable via a (transitive) quasi-uniformity with a countable
base, the two following corollaries are valid.

COROLLARY 1. A perfect image of a quasi-metrizable space s
quasi-metrizable.

COROLLARY 2. A perfect image of a mon-archimedeanly quasi-
metrizable space is non-archimedeanly quasi-metrizable.

REMARK. A direct proof of the last result is given by the
author in [9].
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