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THE SESSILE LIQUID DROP I. SYMMETRIC CASE

ROBERT FINN

Quantitative estimates are derived, describing the size
and shape of a symmetric (idealized) liquid drop, resting in
gravitational equilibrium on a plane surface 77. The free surface
interface is determined by the conditions that its mean cur-
vature be a given (increasing) linear function of distance from
Π, that it enclose with Π a prescribed volume V, and that the
angle formed with Π be a prescribed constant γ. The estimates
apply to drops of all sizes, and some are asymptotically exact
in the limiting cases of large or small wetted area on 77. It is
shown that a number of qualitative features of behavior are
determined by the ratio F/sin γ/2. This ratio is in turn related
to a ratio that appears in the study of the circular capillary
tube, thus indicating a reciprocity between th,e two problems,
which becomes exact in both limiting cases.

As corollaries of the method, the uniqueness of the sym-
metric solution is proved, and a new proof of existence is
given.

The results are compared with calculations and with mea-
surements in some particular cases.
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1* Introduction* The existence of a stationary (sessile) liquid
drop of prescribed volume V and minimizing potential energy, rest-
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ing on a homogeneous plane Π in the presence of a uniform gravity
field directed toward the plane, and making with the plane a pre-
scribed angle 7 at the boundary of the wetted surface, has been
proved by Gonzalez [6], who proved also that the drop is simply
connected and rotationally symmetric relative to an axis orthogonal
to the plane. (Cf. fig. 1; see also [7, 8].)

The result of Gonzalez leads naturally to the question, whether
the solution he obtained is uniquely determined, that is, can there
be more than one energy minimizing drop for prescribed V and
7?

We show in the present work that for each 7 in the range
0 < 7 ^ 7Γ, the set of all simply connected symmetric solution sur-
faces is described by a one parameter family, along which V varies
strictly monotonically from zero to infinity. Our result, in addition
to providing a new (and simpler) existence proof for equilibrium
surfaces, thus settles affirmatively the above uniqueness question.
In conjunction with Gonzalez's work, it shows additionally that
every symmetric sessile drop is energy minimizing in the class of
all drops with the same V and 7.

In § 4.2 we show—under some restrictions—that the symmetric
configuration is unique in a class of drops that need not be sym-
metric or energy minimzing.1

We study here also a related question, whether, if some fluid
is removed from a drop (e.g., by evaporation), the vertex height
q(V; 7) decreases monotonically. We show in § 7 that whenever the
ratio (F/sin 7/2) is sufficiently large, the answer is negative; it
turns out the ratio q{ F; 7)/sin 7/2 tends to a constant Qm =
g^Vsin 7/2, uniformly in 7 as (F/sin 7/2) —> 00. Further, the
ratio q/q^ exceeds unity if F/sin 7/2 is large enough (independent
of 7).

This latter statement turned out, to our surprise, to be not
entirely new. Nonmonotonicity of q in F (for fixed 7 and sufficiently
large F) was observed by Bowditch [10, pp. 985-6] as a consequence
of a formal asymptotic expansion due to Laplace; it can be inferred
also from recent work of Concus [3]. Our approach differs from
those of the authors just cited, and it has the virtue, besides pro-
viding a strict mathematical proof, of showing that the controlling
parameter is (F/sin7/2), rather than F alone. Thus, in the case
of small 7 (as occurs for water on a glass surface) monotonicity can
fail for arbitrarily small values of F. Figure 6 shows some configu-
rations in a neighborhood of the extremal case,2 with 7 = ττ/2 (the

1 H. Wente has since used the same method to show that every stationary surface
is necessarily symmetric-

2 I am indebted to Heidi Bjorstad for performing the calculations.
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curves are sketched between the initial and end points). Relevant
parameters of extremal configurations for several choices of 7 are
listed in Table 1.

In § 6 we show that if (F/sin 7/2) is sufficiently small (we give
an explicit estimate), then the height and also the "size" of the
drop become monotone in F, in the sense that when fluid is remov-
ed symmetrically, the resulting drop lies entirely interior to the
original one.

The above results—especially for the monotonicity question—
depend on general estimates for the size and shape of symmetric
drops. These estimates are developed in § 3, 8, 9. They comprise the
main substance of the paper and represent, we think, its chief in-
terest. We shall present explicit estimates, in closed form, relating
the radius r of the wetted surface, the volume V of the drop, the
boundary angle 7, the height q of the drop, and the base meniscus
height u0 of a related "capillary" problem. The estimates contain
some features that suggest natural lines of organization; for example,
it turns out (§8.1) that (in our normalization) the inequality ττ/6 <
[(1-f r3)/r3(l + r2)] F/sin 7 < π holds uniformly among all possible drop
configurations for which 0 < 7 ^ π/2, and an analogous relation holds
in the remaining range. Also, (1/r2) F/sin 7/2 is asymptotically con-
stant for large r, uniformly in 7. Its deviation from a constant is
estimated explicity for any r, and a new asymptotic relation appears
as r ^ O . Similar comments apply to the ratio3 (sin 7)/ru0 of the as-
sociated capillary problem; it is shown the two ratio F/sin 7 and
(sin Ύ)/U0 admit bounds in terms of each other for any r, and are
determined asymptotically in terms of each other, both for small
and for large r (§9).

In general terms, we have shown that if 0 < 7 ^ 7 < π, then
F/sin 7 tends to zero like (sin Ύ/uof, and to infinity like Iog2(sin 7/̂ 0) >
as sinτ/%0 tends to the respective limits. The radius r of the wet-
ted surface (or of the capillary tube) does not enter explicitly into
these asymptotic relations. Taken from another point of view, each
of the ratios F/sin 7 and sin j/u0 determines, to within positive
bounds, the radius r of the wetted surface (or of an associated
capillary tube), and vice versa; by adjoining multiplicative functions
of 7 that are bounded above and below, the determination becomes

3 The symbol γ appearing here should be replaced by (π/2) — γ to obtain the conven-
tional contact angle (measured within the fluid) for the capillary problem (as used in
[5] and in [14]). Our choice of notation is based on the geometry of the sessile drop,
for which the conventional choice for γ has been made. This symbol will be used in
the text only when a specific reference to boundary angle is intended. Generic angles
measured along solution curves will be denoted by ψ. The notation permits each such
ψ to be interpreted alternatively as boundary (contact) angle.
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asymptotically exact both for small and for large values of the
ratios.

Similar comments apply to the drop height q above the base
plane (or, equivalently, the height of the meniscus in a capilla-
ry tube). Here the crucial ratio is (//sin 7, for which bounds
above and below are obtained that become equalities asymptotically
(§ 8.2).

These and the previously mentioned asymptotic results seem of
particular theoretical interest, both for the sessile drop and the
capillary tube. The results ar e summarized in § 9; some of the re-
levant quantities were also calculated independently for various
choices of r, and appear in Table 2.

If 7 > π/2 (as occurs for a "nonwetting" liquid-solid interface),
the methods provide estimates for the maximum diameter R of the
drop, and for the difference between R and the radius r of the
wetted circle, in terms of V and sin 7 (§8.1).

In § 8.3 we compare our estimates with the results of a formal
asymptotic calculation due to Laplace, for a particular configuration
that was considered by him.

The reformulation in terms of the related capillary problem has
led to a number of technical simplifications, and has enabled us to
profit from earliar studies of that problem in [5, 14]. It was neces-
sary here in the initial steps to rederive and extend for the present
situation some results that were given in those references in other
contexts, and thus there is a small overlap with the previously
published material. The ideas are developed further here, leading
to results that should be of interest also for the original capillary
problem. The papers [5,14] contain also a number of additional
contributions to that problem, that in turn apply to the questions
considered in the present work.

With the single exception of the (brief) § 4.2, only the sym-
metric configuration is discussed here. Some of the results will
however be applied to the general case (corresponding physically to
an inhomogeneous base plane) in a work with J. Spruck that is now
in preparation.

We have limited ourselves in this work to the case in which
the total change of inclination angle of a meridional section does
not exceed π, as that is the maximum change that would occur
for a sessile drop. It should be pointed out there are good
physical reasons to continue the study further, at least to an
angle 2π, in order to include the kind of situation illustrated in
figure 2. In the interest of technical simplicity we did not do so
in this paper; the techniques do not all apply without change to
the extended situation, however, the difficulties in basing such an
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extension on the same general frame of ideas do not seem insur-
mountable.

The material of this paper did not lend itself well to an organ-
ization into "Theorem" and "Proof". As a guide to the structure of
the paper and to the main ideas, the numbers of principal formulas
have been underlined. Italicized statements, where they appear, are
used chiefly for emphasis within an immediate context. There are
a few exceptions.

Figure 1 illustrates what is meant in this paper by a sessile
liquid drop. A formal mathematical definition would not be difficult
but for present purposes, would, we think, be needlessly pedantic.
In the symmetric case we have considered, a definition is implicit
in the formulation of § 2. The principal interest in our results pre-
sumably lies in the (physical) case of two dimensional surfaces in
three space. It requires, however, only a bit more effort to cairy
out the estimates for ^-surfaces in (n + l)-space, and we shall dis-
cuss the problem in that generality.

We remark finally that an independent proof of uniqueness, for
the case 0 < 7 ^ ττ/2, has been given by J. Spruck.

I should like to thank N. N. UraΓtseva for a conversation that
attracted my attention to the problem considered here. I am inde-
bted also to R. Gonzalez and I. Tamanini, who pointed out to me
that the uniqueness question was still open.

2* Formulation- We consider a surface S over a horizontal
plane Π (Figure 1) for which the energy functional is stationary.
Let p be a point on S and w a vector normal to S at p, directed
toward the exterior of the fluid region (Figure 1). If the compo-
nent of w orthogonal to the plane Π is directed away from 77, we
obtain, by an elementary variational analysis, the equation

(1) div Γ» = «* - Λ. , Tu

for the distance u(x) of p from 77. Here tc — pgjσ is the "capillarity
constant"; p is the density difference, g the gravitational accelera-
tion, σ the surface tension. The constant λ is a Lagrange para-
meter, to be determined by the prescribed volume. (If the compo-
nent of w othogonal to 77 is directed toward 77, we obtain the same
equation with the signs of tc and λ reversed.) On the manifold of
contact of S with 77, the angle 7 between the normals to the sur-
faces is constant. The value of the constant is determined by the
physical materials; we may however normalize it to the range
0 < 7 ^ π (see Figure 1).
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FIGURE 1. Sessile drop; boundary angle γ

The transformation

77

( 2 ) u = X = ΛJ-

yields the equation

( 3 ) div Tv = {n - l)v .

We note (3) is the (normalized) equation for the rise height of
fluid in a capillary tube; thus, the totality of sessile drop solutions
is equivalent to the totality of capillary surfaces.

Reverting to original notation, we introduce a hypothesis of
rotational symmetry about x = 0 and set \x\ = r, obtaining

dr M/1 + u dr

Here ψ is the angle made with the r-axis by a tangent to the
meridional curve u = u{r) (see Figure 3). The hypotheses leading
to the (necessary) condition (4) are certainly verified near the vertex
of a drop, close to the point (0, u0) of symmetry. The existence of
such a neighborhood is ensured by the following result:

For arbitrary u0, there exists a unique solution u(r) of (4) in
an interval 0 < r < R(u0), and such that limr_0 u{r) = u0.

This theorem (for n = 2) goes back at least to Lohnstein [11].
Proofs (also for n = 2) can be found also in Johnson and Perko [9],
and (implicitly) in the Appendix of [4] and in [15]. The extension
to arbitrary n creates no difficulty. The first of the expressions in
(4) reverses sign wnen the sense of the normal reverses, the second
holds as stated in all cases.

FIGURE 2. > π
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FIGURE 3. Normalized configuration

We note that although (4) is of second order, it suffices (because
of the singularity at r — 0) to prescribe a single datum (i.e., the
initial value u0) to determine the solution uniquely; thus, the totality
of symmetric simply connected sessile drops is determined by a one
parameter family of curves. We proceed to characterize these cur-
ves qualitatively and to obtain for them various estimates. We
note it suffices to consider the interval u0 > 0.

3* General estimates*

3.1. Traverse. From (4) we find, for a given solution u(r) and
0 < r < R,

( 5 ) ^ - ' s i n ^ = (n — 1)\ ρn~1u(ρ)dp
Jo

from which we conclude that if u0 > 0, then u{r) is strictly increas-
ing in the range of r for which it can be continued as a solution
of (4).

Inserting upper and lower values for u(p) into (5), we obtain
the useful inequalities

(6a, b)
n n

We conclude: The trajectory can be continued across the hyperbola
ru — n/(n — 1), and develops a singularity at a value R <n/(n — 1)
1/UQ. The strict inequalities (6a, b) continue to hold until r — R.

We write (4) in the form

( 7 ) (sin ψ)r = (n — l)u

and place (6b) into (7) to obtain

(8)
n
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which shows that if u0 > 0, then ψ{r) is strictly increasing along
the trajectory. We may thus introduce ψ as independent variable,
obtaining the parametric system

(9a) d r - r c o s ^

(8b)

dψ (n —

du r sin
dilr (n ~

with

(9c) Δ = ru — sin ψ .

From (6) we find

(10) Δ > — - — sin ψ*
n — 1

on 0 < f ^ π/2. We conclude from (9), (10), first, that u(r) tends
to a finite limit as r —> R, and then that £&# solution (r, u) of (9)
can be continued as a solution past the value ψ = π/2 corresponding
to r = R.

Consider an interval [r, R] into which a continuation is possible,
with sin ψ > 0. From (4) we see there holds again on this interval

(11) (r71-1 sin ψ)τ = (n — ljr*"1^

and thus, writing (imprecisely) u(ρ) = u(f(ρ)) on the continuation,

(12) Rn~ι - rn~ι sin ψ = (n - !)[*pn~1u(ρ)dp .

From (9b, c) we see that u(ψ) increases monotonically on the
continuation in any subinterval of [π/2, π] in which r > 0 and (10)
holds. Since these inequalities hold at ψ = π/2, they continue to
hold on some open interval including π/2. In any such interval we
find from (12) and the monotonicity of u(ψ) that

(13) «(r) + B(r)] < <
n rn L n J r n

+ q
rn L n

From (6b) now follows

(14) ΊLΞLLRU{R) - 1 > δ > 0 .

n

We conclude at once that the solution is determined, with r > 0, on
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the entire interval 0 < ψ <* π, that u(ψ) increases monotonically and
that (6b), (9), (10) hold on that interval.

On the interval 0 < ψ < ττ/2, we may place (6b) into (9a) to
obtain

(15) _|r_<
dψ

from which

(16) _ ^ ( J Ϊ I M
dψ \ r

The same procedure on the continued solution yields

(17) d(m±-)<0, π/2<ψ<π.
dψ V r I

Thus, in all cases there holds

sin-f < sinα/Γfi = JL_
r ^ R R

on 0 < ψ <* π, equality holding only at ψ = π/2.

3.2. Height I. We write (9b) in the form

(19) (n - 1) (u - J Ϊ 5 J L ^ W = sin

we note by (6b) and the monotonicity of u(ψ), that u(ψ) > n/(n — 1)
sin fir in 0 < ψ £ π/2, u(ψ) > (n/(n/ΐ)(l/R) if ψ > π/2, and we inte-
grate (19) in two steps, obtaining

(20) Γ (u -S-™ϊ)du + \Ίu -**ί

where Λ is to be determined. To the first of these integrals we
apply (6b); in the second we observe from (17) that (sinτ)/lo<(sinψ)/r
if 0 < τ < ψ ^ π/2. Thus, if 0 < ψ ^ ττ/2, we find

(21)
• n

The right side of (21) is minimized if Λ = n/(n — l)sin ψ/r, a value
which, by (6b), lies interior to the range of integration of (20). Thus,

/22) „., ,\ ^ sinψ , (2(1 — cos^) 1 sin2

n — 1 n — 1

0<Ψ^|.
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If we apply (6a) to (22), we obtain the estimate(4)

1 s m ^(28) u(ψ) < i!5L3L + 1 2 ( 1 - c o s t )
r I n — 1

— I ) 2

If t > π/2, we apply (18) to (9b) and integrate to obtain, with

uR =

(24)
n —

which in turn implies, using — respectively — (22) or (23) at ψ —
π/2,

(25)

(26)

in -1) R* n f < ^
< λ +

I n - 1 (n -If R2)

To these relations should be adjoined

π .

(27)

n sinj

r
n 1 r̂

^ - 1 i2 ' 2

Alternatively, we may apply (6b) to the entire range of inte-
gration to obtain from (9b)

(28)
Δn (1 - cos ψ) +ul\ ,

71 — 1 )
0 < φ £ π ,

an estimate in which r does not appear explicitly.
The same procedure using (6a) yields

(29)
n Λ - 1

Again r does not appear explicitly. We may, however, obtain a
stronger result, analogous to (22), by dividing the interval of inte-
gration as in (20). We then apply (6a) to the first term, and to the
second term the inequality (which follows from (23))

4 cf. Siegel [14].
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(30) J™±> * £
1 +

n ~1

with

(31) k =
2(w - 1)

and observe that if i\ > r, then the corresponding kx < A;, so that
the factor involving k can be replaced in the integration by its
value at the upper end point. In the resulting estimate the best
choice of dividing point is

n - 1 + J l + "-

A = 1 * Ln

which by (29) and (6a) lies interior to the interval of integration.
The choice (32) leads to the estimate

(88) «(+) > /P
p ί n — 1 V n

with

(34)
n — 1 v k"

Using (6a) in (9b) on the interval [ψ, π/2] yields

u + \{uR - ^—-—uΛuo + \{uR uΛ
n v\ n ' n — 1

( 3 5 ) ( 2̂— c o s ^ , 0<t^ |-,
— 1 i 2

and using (17), we find from (9b)

f _ w n ^
UK

n - 1
(36) 2 Y / 2

-COSα/r ,

— 1 /
2

Here uR — u(π/2) can be estimated using the preceding relations.

3.3. Diameter I. We need relations connecting the rdius r and
volume of a drop with the value uQ. An upper bound for r, given
by (6a) when ψ ^ π/2, is asymptotically exact for large uOf but a
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poor estimate if u0 is small. We obtain further information by
placing (23) into (9a), yielding, for 0 < ψ <̂  π/2,

(37) l l / f + f J L > e o t ) f

& r αψ

with & given by (31).
If 0 < ψ ^ ψ! ^ π/2, then

(38)
kt r dψ

with &x = fc(ψΊ); integrating over the interval (0, ^ ) and using

(39) lim rSψ) = n -
1̂-0 sin ψ n — 1 u0

we are led to the inequality

(40) P Q^-i > VL
 s i n ^

1 + l/ l + p2 2k(n - 1) u0

where we have set pk = r and removed the subscript.5

The relation (40) is a counterpart to (6a) and provides an esti-
mate in the other direction. Taken together, (6a) and (40) show
that both estimates are asymptotically exact as r —> 0; further, the
estimate for smψ/uQ is asymptotically independent of φ.

For large r, (40) yields correctly an exponential growth, how-
ever the exponent is too large. We obtain a better estimate in this
case by observing from (23)

(41)

and

(42)

we

(43)

also

thus find

sin

1

from

VI -t

[n - l)r2

+ cos-ψ-

(9a)

- (n - l)r

1 /1

<[1 + (n -

'2 7 . COS ψ

- dr > —y

2(n — l)r2

1 + cos ψ

2
J 1 + cos^

l / l + COSα/rd

d r >

r 1/ 2sinf
Integrating over the interval (0, ψ) and using (39), we now find

(44) 2 r r ^ 2 - 1 > n s i n ^ x
1 + l/ l + σ2 n-1 u0

5 We note that (37) leads also, in a somewhat simpler way, to an improvement in
the result of 1.10 in [5].
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1 + cos ψ + i/2(l + cos ψ)

where we have set σ = Vn — l r . Here the exponent in the growth
estimate is exact for large r (cf. Siegel [14]), however, (40) is more
precise for small r. Putting (40) and (44) together, we obtain the
general result

( }

n — 1 ru0 11 + V1 + p

1 4- COS ψ + V 2(1 + COS α/r) 2(i-cos^/2) 2 ^ ^ I + ^ -

4 1 + τ/1 +

^ = &~V , σ = l/w — l r , 0 < ψ ^ — .

We see in particular that sin ψ/u0 is bounded above, depending only
on the diameter 2r of the wetted surface.

We note also the auxiliary inequality

1 + cos ψ + V 2(1 + cos ψ) e2(1-co^m < 1 + vT^-vr = 1 # 0 8 4

which yields a convenient simplified form of (45).

We consider the interval τr/2 < ψ ^ π. From (18) we have im-
mediately

(47) r > R sin f

with a lower bound for i? available from (27) or from (40): Alter-
natively, we find from (9a), if ψ > π/2,

(48) (w-i)_g£_> t
αψ̂  rt6β — sm α̂

which can be rewritten in the form

(49) ΛJlLΞlλ rnuR - r*-1 sin ψ 1 > 0
dψ L n J

so that

(50) r - J L § H L t ^ J
r > Λ

— 1 uR n — 1 uR

and (6b) now implies

(51) r>-J?—^Lt) 4< + < f f

w — 1 uB 2
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which is in turn an improvement of (6b). In (51), uR can be esti-
mated using (28). (The estimates obtained from (22) or (23) are al-
ready contained in the simpler form (18).)

If we insert the inequality r%~x > τnR~ι into (50), we are led to
the additional estimate, for π/2 <̂  ψ <; TΓ,

(52) „ - «>
R n

n ί-RuB - sin
n

which improves on (18) and (51) for values of ψ near π.
We note from (29) there holds always uR > (2/n — l) ι/2, thus

(53) r" > R« R λ / 2 { n - X) - n

r > R
Rλ/2{n - 1) - nsin ψ

which yields a nontrivial estimate whenever R\/2(n — 1) > n. Let-
ting rτ = r(τr) be the first positive r at which the surface becomes
horizontal, we obtain

and thus

(55) rτ> R -
V2(n - 1)

for all sufficiently large R. The estimates (54, 55) provide, to our
knowledge, the first explicit information on the diameter of the wet-
ted surface for a symmetric sessile drop. They are not the best es-
timates obtainable by the method; they could be made more precise,
for example, by using the full strength of (29) in (52), or of (36)
in the derivation of (50). It will turn out (§ 8) that R can be es-
timated in terms of volume.

We turn now to the question of bounding r(ψ) from above; as
before we study first the interval 0 < ψ <; τr/2, and we note (6a)
yields the estimate

r <
n-1

which is asymptotically exact as sin ψ/u0 —> 0.
We obtain a better result by introducing (33) into (9a). To do

so, we note first that



We have

and thus

(57)

THE SESSILE

/i 4-

T < 7) —
1 k ^ n

L 1 ^

whenever the inequality

(58)

holds.
We have from (33)

LIQUID DROP I.

1 .
V '

1

. - 1

>1 -

> i + x

/ i — ^
. ^ fc2

, w - 1 Λ

2 r

2r 2 > fc2

SYMMETRIC

1
8p 2 '

^ 1 ri

^ n -1 k^

(n - I)2

2

CASE

f

\

¥
r2

555

(59)
•w —

iilsin

and hence, using (57) and noting (1 + cos ψ) < 2,

(^bυ; 1 — — — - l l / -y

t* \ sm ^ / l -f~ cos ψ

•¥)2r 2

whenever (58) holds. We place this estimate into (9a) and integrate
between limits s and r to obtain

(61)

Choosing

(62)

(n - l)ι

-(-ί - - ) < |2cos^ + log tan ± If- .

o _ 1
2

we note that (58) holds for this choice, and using (6a) we are led
after some manipulation to

(63) S Ϊ n A(n; ψ; r;
s ; 0 < ψ- g τr/2 ,



556 ROBERT FINN

with

( 1 /M _|_ 1 \ ( Λ + D/2

x

x exp

n + 1

- 1)3/2

+ cos ψs + 1/2(1 + cos ψs)

+ 1 [ 1 + cos ψ + l/2(l — cos ψ)
2~") ^

2r

There holds uniformly, for all r > s,

(65) A(«; f, r; s) > A. = tt
\2

In any range r ^ 2s, this estimate can be improved. We may ob-
serve first that the left side of (61) is increasing in r, and thus,
for T Ξ£ 2s,

(65.1) sin t s < 2<-""β-*"'«+

X Sin air

cos2(ψ/2) + cosOf /2)

from which

(65.2) sin ψ>s < 2w-1/2e-2ίi/ίl+1sin ψ = Xn sin ψ

and hence

(65.3) cos 3fc? > 1 [l +

This estimate can now be put into (65.1) to improve the bound on
sin ψs, and so forth. The sequence of values obtained is monotone,
hence convergent.

We illustrate the procedure in the case n — 2, for which λ2 =
/ 2 r 4 / s = .373. Thus, by (65.2), sin^ s < .373sinψ ^ .373 so that,
by (65.3), cos(^,/2) > 0.982. From (65.1) we now find

^2cos(^/2)

sin ψa<V2 ίr4/s x .546 x —2— — — - sin ψ
Ψ cos2(t/2) + cos(-f/2)

< V~2.e-m x .546 x 2 ^

= 0.347

from which, by (65.3),
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cos— ψs > 0.984
Δ

and so forth. Thus, if r ^ 2s, there holds always

Ψ; r; .) > 1-077
(65.4)

>0.294exp)A},

the latter estimate being the one given by (65). For given ψ, the
estimate can be further improved by using the value for sin ψ (in-
stead of the approximation sin ψ < 1) in the above derivation.

The relation (63) complements (6a) for values r > s, and shows
that for solutions with large wetted area, uQ/smψ becomes ex-
ponentially small in r.

The above result, considered as an upper bound for uOf can be
inserted into (22), and the resulting inequality placed into (9a) to
obtain an improved version of (45); similarly, other of our inequal-
ities can be sharpened by that type of iteration. The results ob-
tained in that way are however of marginal interest for the pur-
poses of this paper, and we do not pursue them further here.

To study the case ψ > π/2, we observe that for any f with
π/2<, ψ^π there holds by (26)6

raa\ tι\^ 1 , ί 2(1 - cos <£) , 1 1 ) 1 / 2 . , τ,
R i n — 1 (n — I ) 2 R2 )

for all ψ in π/2^f^ψ. Thus by (9a)

(o7) in — 1) < , —
djr rXB(f) - s inf 2

from which

(68) -A-Γ r - 1 sin ψ - ^ - H i r U J > 0 ,
dψ L n Λ 2

so that, since ψ is arbitrary in its interval,

(69) r - n S i n α / r ^ ίr < Λ
— 1 λΛ(ψ») ^ — 1 XR(f)

in τr/2 <^ ψ ^ π.
We now write (52) in the form

6 We could improve the following estimates somewhat by using (25) instead of (26)
and by estimating u0 by (58) or by (63).
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K>UR
M

—ΓT I = R-y(R;ψ)
-RuR - s i n f /

n

and place the inequality

1 *•*R — η(R; ψ)

into (69) to obtain

H _ n 1

(71) rn<Rn —
n

n - 1 (Λ

Again the estimate for ττ is of special interest. We find

/ /w 1 \1/n

(72) rτ < R (1 - —VL ± )
\ n - 1 Jf2λΛ(t) /

and thus, for all sufficiently large R,

(73) rτ<R - , X .

This estimate should be compared with (55).

3.4. Volume I. We wish to estimate the volume V(ψ) enclosed
by a drop, this is, the volume cut off by a horizontal plane that
meets the surface in an angle ψ. We have immediately by (4)

= crnr
nu — dcr% 1 pn~xu — f—dψ

Jo d'yjr

n — 1 Jo dψ

or

(74) 7(ψ) = σn (τnu - — - — r — ^ i n ψ) , 0 ̂  ψ ̂  TΓ ,
V n — 1 /

where <7Λ, 3σ% are respectively the volume and surface of a unit
w-ball.7

From the inequality (23) we obtain, for 0 < ψ ^ τr/2,

sin(75) FW < — i - σ.r-1 j(l + f^)1'2 - l l si

7 We note that the difference between the two sides of (6b) appears as a factor in
the expression for V.



THE SESSILE LIQUID DROP I. SYMMETRIC CASE 559

and thus, since (1 + x)ιn < 1 + xm if x > 0,

(76) V(ψ) < —i— %*r* sin f , 0 < ψ ^ π/2 ,
n — 1 k

a simple estimate that provides useful information when r is large.
If r > s (cf. (62)), we may apply (63), (65) in (22) to obtain the

sharper result

(77) V(ψ) < —^—σ^-'sinψW^ - (n - 1) + Lr^e-^'T* - l\ ,
n — 1 tufc2 ^ 0 J )

which now implies

(78) F(t) < - J — ^ r w sin + ( l
w — 1 k \ r

LfcV-8e-2V5rrir) 0 < ^ ^+ JLfcV-8e-2 V 5 r r5 r r i r) , 0 < ^ ^ — .
' 2θ 2

Analogous estimates can be obtained for the case ψ > π/2 by
using (24), (25), (26) or (28); they take however a somewhat more
complicated form.

We note that although the volume estimated by (75-78) is an
(n + l)-dimensional quantity, r appears in these relations only to
the wth power. This reflects the tendency of the drop to flatten
over most of its diameter and to approach a limiting height with
increasing r.

If r is small, we may use the inequality (1 + x)m < 1 + x/2 in
(75) to obtain

(79) V{ψ) < σ.r*+\ s i n ^ , , 0 < ψ ^ ΊL .
1 + cos ψ 2

We can in some respects do better, and remove the restriction
on ψ. Consider a sphere Σ defined by v(ψ; u0), centered on the axis
of symmetry at the height uΣ = uQ + n/(n — l)l/uQf and of radius

r

Σ = n/(n — l)l/u0.

LEMMA. The entire traverse of the solution u(ψ; u0), in the
range 0 < ψ <̂  π, lies interior to Σ.

Proof. In the interval 0 < ψ ^ π/2, since Σ has constant mean
curvature [(n — l)/n]u09 the function v(φ; uQ) is determined by the
equations
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(80)

*-1 sin φ)r = (n — l)rn~ιuQ

sin φ — . Vr .
l / l + vl

For the solution u(ψ; uQ) we have

(81) (r"-1 sin ψ)r = (n - ϊ)r*-1u

and thus

(82) rn~\sin ψ — sin φ) — (n — 1) I pn~\u — uo)dp .
Jo

Since u > uQ, we have sin ψ > sin φ, hence ? '̂(r) > 'y'(r), and since
both curves coincide initially at the height u0, there follows u > v
in the interval 0 < r ^ R.

We next observe that for all ψ in 0 < ψ ^ π, there holds
u(ψ; u0) < v(ψ; u0). In fact,

1 — cos ψ

while by (28),

r)U0)
2 n

n — 1

— 1

- cos

from which the stated inequality follows.
From the above two remarks we conclude at first that all points

up to the first vertical of u(ψ; u0) lie in Σ. Since r(ψ; uQ) decreases

FIGURE 4. Proof of lemma
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for ψ > τr/2, the traverse continues to lie in Σ until the value ψ at
which u(ψ; uQ) = uQ + n/(n — l)l/u0, i.e., at which the traverse crosses
the horizontal diameter of Σ. (If there is no such ψ in 0 < ψ ^ π,
then there is nothing further to prove.)

Suppose there were a point (r(ψ ; u0), u(ψ; uo))9 ψ < ψ ^ π9 not
in 2\ Then there would be a value ψ* in this interval, at which
the radial distance from the center of Σ would be a maximum (see
Fig. 4). There cannot hold ψ* — π, since the solution curve has
zero slope at this point and therefore there would be neighboring
points of larger radial distance. Hence ψ < ψ* < π, and we con-
clude, since the solution curve lies on or outside Σ at this point,
that u^',uo)^v^:uo). We have however shown above the re-
verse inequality; this completes the proof of the lemma.

From the lemma we conclude that the volume V determined by
u(ψ; uQ) is less than the volume VΣ of the sector Σ up to the height
u. Thus

(83) V(ψ) < VΣ = σj n —Y
\n — 1 u0/

with

(84) θ = cos-^l - ϋ—lλuo(u - u0)) .
\ n /n

According to the above remarks, there holds θ < φ, and thus

(86) V^- < σJ \
smf \n — 1
^ < \ )

smf \n — 1 u0 I sin(ίί+21f

0 < ψ ^ π .

A convenient estimate for the integral is obtained by setting

gnW = Γ β i n ΛW - ^
Jo n + 1

Then /(0) = fir(O) = 0, and

sin ( t t + 1 ) f Jo

g'n{f) = s i n X l - cos f) > 0

and hence flrn(ψ) > 0 and, for 0 < ψ ^ ττ/2,
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n + 1

fn(ψ)< ψ-
n + 1

Thus, (75) implies

(86) V<σ
2

0
2

an estimate suitable chiefly for small values of ψ.
If n is even (which includes the physical case n = 2), one has

the identity8

(87)

(1 + cos ψ)1+v f£ \j)(l + v + l + j)

with y = n/2. Thus, for even n, (85) can be written

sin ψ \n — 1 u0

If i/r is bounded from zero, a convenient expression is

(89) V< σJ n

 Λ Bi
\n — 1

i / π

0 < f ^ 7Γ .

For vanishingly small values of r (or, equivalently, of sin ψ/uo)9

we may use (40) in (86) to obtain an inequality of the form

(90) V < σn ψ - 0 < ψ ^ π/2

thus permitting a direct comparison with (79) in this case.

To bound V(ψ) below, we consider first the case sin ψ/u0 > 0;
we insert (33) into (74) and use (63), (65) to obtain, for 0 < f ^ π/2,

(91) V(ψ) ——2* r%sin
n — 1 k

X
p

+
r

I am indebted to H. Wente for a simple proof.
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which should be compared with (78). Analogous estimates follow
for ψ > π/2 by adjoining (36) to (33). We note that for large r,
(78) and (91) bound the ratio F/sin'f above and below, depending
only on the radius r of the wetted disk; equivalently, they bound
r above and below depending only on F/sin^, whenever that ratio
is large. Both estimates can be expressed in terms of (sinψ/u0) by
using, e.g., (45) or (63).

If sin ψ/u0 is small, we proceed somewhat differently, and com-
pare with the volume subtended by a suitably inscribed spherical
surface. We suppose first 0 < ψ <; π/2, and we note that the meri-
dional curve v(r) of a lower hemisphere Σ, centered on the w-axis
at the height Vψ — u0 + n/(n — l)l/u^ (with u+ — u(<f)) and having
radius

(92) r , = _J_J_,
n — 1 uψ

satisfies the equation

(93) (rn~ι sin φ)r — (n — l ) r % ~ ^

where φ is the angle subtended at the r-axis by the line tangent
to the curve, and thus

S r
pn~\uψ — u)dp .

0

Since the inital points coidcide at u0, it follows that Σ lies entirely
above the solution surface, at least until the height u+. Let VΣ be
the volume of Σ if Σ lies below the plane u = u+f otherwise denote
by VΣ the volume of that part of Σ for which v ^ uψ. We then
have F > VΣ, and hence, in the former case,

(95) V>VΣ = ±-σn+1r
n

Σ

+1 - σnr«Σ

+1 Γ ' s i n +Wfl .
2 Jo

In the latter case, we have rΣ > uψ — uo; we find

(96) VΣ = σnrP

with

(97) ΘΨ = cos-'fl - u+ "" u°) .

\ rΣ )
To estimate this latter term, we note that if we set
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08)

then (29) implies

( 9 9 ) U+-UQ > 1 2(1 - cos
>

which yields, applying (29) again,
2(1 - cosψ)(n - 1) + pn

rΣ n 1 + pn

and hence

(101) ^ ~^° > A ( i - cos ψ )

so that, by (97)

(102) cos ΘΨ < 1 - —(1 - cos ψ) .

If n = 2, we find θψ> ψ (which means I7 cannot lie below the
plane u = w^) and hence

(103) V > VΣ > σnr\

In all cases, we find

(104) V > VΣ >

with

(105) an(ψ) = σn \ sinn+1θdθ
Jo

and

(106) ψ - COS"1 Γl - — ( 1 - COS α/r)Ί .
L n J

Here uψ can be estimated from e.g., (22), (23), or (28).
We may note the general inequality

cos x > 1 - —

implies
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(A

(107) ψ > —(1 - c o s ψ )
in

in all cases.

We can strengthen this result in the limiting situation of small
F/sinα/r. We note (104) can be expressed as an inequality of the
form

u0 \ σ sm ψ

with lim^o f(t; k) — 0, uniformly in k. (The function / is easily
given explicitly). I t follows then by a double application of (29)
t h a t for any ε > 0,

(109) u+ " u ° > (1 - e)(l - cos ψ)
rΣ

whenever Vjsmψ is small enough.
The relation (106) is now replaced by

(110)

We compute

(ill) i/Γ=T

and thus

(112)

If n - 2,

Ψ

^ sin ψ

1

/l

n
we may

= cos

— . I \

V
dψ _
dψ

— s
+ ε

set ε

+

(1

<

_

5 +

ε ) •

1

o,

(1

+•(:

+

ε)

< *

cf.

— ε)cos ψ] .

1 — ε)cos ψ
cosε

Sinα/r

sin'f

1/1 ε ψ.

(103).

/ I ε < i / l ε2

ψ(0) - 0

4* Uniqueness and existence

4.1. Symmetric solutions. We wish to show that for prescrib-
ed volume V and contact angle 7 there is exactly one symmetric
solution of (1). We note the symmetric solutions of (1) correspond
biuniquely to the solutions of (9), which in turn are determined by
the initial value u0. To show there is at most one solution it thus
suffices to show

v=w_Λ <o
du0 ΛΨ
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for each u0 and (fixed) ψ in 0 < ψ ^ π. We have as before

(113) V - σn(rnu - _2L_ r »- i s in Ϋ)
\ n — 1 /

and thus9

(114) V = σnτ
n-\nΔf + r2ύ)

where σn is the volume of the unit w-ball. Also

(115) 3 F _ σw r» + 1 sin^
d^ n — 1 Δ

(116) = —2 ^{(wJ — sin α>)r — r%} .

We show r < 0, ύ > 0. We obtain from (9)

(117) AL=-τΆ±Im±COsψ

(118) d^^^ύ + rsinψ .
dψ (n- l)z/2 Y

with

(119) r(0) = 0 , Λ(0) = 1 .

For 0 < r < J? we have

(120) r%-1 sin ψ = (n - 1)Γ pn~ιudp
Jo

and writing u = u(/o; %0) = u(p(ψ; u0); u0),

we find from (120)

(122) - f J = r2-* Γ jθ—^ώ - p tan f )dio ,
Jo

and we see from (119, 120) that for each u0 > 0 there is an initial
interval ^\ 0 < r < δ <; TΓ, in which r < 0.

In <_>% we have by (118)

(123) -If > - f ^ A > -<n - X
dψ ( 1)Δ2 sm

9 It is a formal (and not difficult) matter to prove the existence and requisite con-
tinuity properties of the derivatives in u0.
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and hence

(124) ύ > exp \-(n - 1) [* p ^ dψ
t Jo sin ψ

thus ύ > 0 in ^ , and it follows from (116) that dV/dψ < 0 in

Let ψ be the smallest positive f for which r = 0. If there is
no such f o r if ψ ^ π, then dV/dψ < 0 in 0 < ^ < TΓ, hence since
F(0) = 0, there holds V < 0 in 0 < ψ ^ 7Γ. If f < TΓ we have as
above V(f) < 0, ύ(ψ) > 0, and also from (114)

(125) V(ψ) = nσΛr (^)Λ(^) > 0 .

This contradiction establishes that r < 0 on 0 < ψ < π, hence
d V/dγ < 0 on that interval, hence V < 0 on 0 < ψ ^ TΓ, for any-
choice of uQ > 0. Since u0 is arbitrary, the result yields the uni-
queness of the symmetric solutions in the class of symmetric sur-
faces.

It remains to show there is at least one solution. To do so, we
note that from (113), (6a), (28) follows l im^^ V(φ) = 0, while from
(113), (29), (40) follows lim%0_0V(ψ) = oo, for any fixed ψ in 0<f^π.
Thus, given ψ — 7, and any prescribed V, there exists at least one
value u0 at which V is achieved.

4.2. General configurations. In the case of constant boundary
angle 7 ^ ττ/2, the symmetric solution u{r) is unique in the class of
all nonparametric solutions v(x) of (1) which bound the same volume,
which meet the plane u = 0 in a simple closed curve Γ of class C(3),
and which make with that plane the angle 7 at points of Γ.

Referring to § 4.1, we see that it suffices to prove the surface
v(x) is symmetric. We note the associated solution v(x) of (3) has
constant height on the image f of Γ, and the surface meets the
vertical cylinder through f in the constant angle π/2 — 7. The
symmetry of v, and hence of v, can now be inferred from the
theorem of Serrin [13].

5* The envelope* The family of solutions of (11) parametriz-
ed by u0 admits an envelope, determined by the condition

(126) = 0

or, equivalently,

(126a) F(ψ) = ύ cos ψ ~ f sin φ = 0
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FIGURE 5. The envelope

Since, as shown in § 4.1, ύ > 0, r < 0 on 0 < ψ < π, there can
be no envelope points on 0 < | ^ π/2. We have F(π/2) > 0, F{π) ^ 0,
F'(φ)=—ύ sin ψ — r cos f < 0 o n τr/2 <; ψ < TΓ. Thus on each integral
curve there is exactly one contact point ψe with the envelope, with
π/2 < ψe < TΓ. The envelope is illustrated in Figure 5.

6* An inclusion property• Referring again to the physical
situation of symmetric drops on a planar surface, we normalize
them to have a common axis of symmetry, and ask whether a given
drop contains in its interior every drop of smaller volume that
meets the plane with the same angle 7. In general this is not the
case, as we see from the computer calculations in [3] (see also Figure
7). We shall show, however, that if 0 < 7 ^ π/2, then the assertion
holds whenever the ratio V/sin ψ is small enough and we shall give
an explicit estimate of how small it must be.

We parametrize the solutions once more by u0, and consider
solutions u = u(r; uQ) and uδ = u(r; u0 + δ) of (4), δ > 0. Let
vδ(r; u0) = uδ — 3, then vδ(0; u0) = u(0; u0) and

(127)
V

(rn~ι sin <ψθr = (n - l)τn-ιu

where ψδ is the angle ψ measured on the curve vδ. Thus,

(128) r -'ίsin ψδ - sin ψ) = (n - 1) [* p*-\uδ - u)dp
Jo

from which we conclude uδ — u is increasing in r. It follows that
if the curve uδ is moved rigidly downward a distance <5, it will lie
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above the curve u except at the single point of contact at r = 0.
To show the inclusion property corresponding to an angle 7, it thus
suffices to show that for any δ > 0 there holds vδ < u at the points
where the angle 7 is achieved, and to this purpose it will suffice to
know dύ/dψ < 0 in the interval 0 < ψ < 7, for all u0 exceeding the
given one. We proceed to determine sufficient conditions for that
inequality; we first observe that, by (6), (40)

as r —>0

as r —>0 .

(129)

and thus, by

(130)

Writing (122)

(131) f(ψ) ΞΞ f

(119, 122)

in the form

sin ψ + r2ύ =

Δrs

r r^

rru

- —ru 0n

UQ

+ r2u 2-n I pn-l(fi _ ^
Jo

and using u{r) -> u0, ώ(r) —> 1, /5(r) -> 0, we find f{ψ) ~ r2/n; thus
there is an interval ^ : 0 < ψ < δ, in which, by (118), dά/d^ < 0.

At a first zero, ψ, of dύ/dψ, there would hold /($) = 0,
f(f) ^ 0 . We calculate

(132) fW = fco** Hn - ϊ)ru - (n + l)sin ψ] .
(w 1)J

Since, as was shown in § 4.1, f < 0, the inclusion property will fol-
low on the interval ^ , 0 < 7 ^ π/2, provided we can show

(133) g(ψ) = (n - l)ru - (n + l)sin ψ < 0

on wT, for the given surface and for all surfaces with smaller
volume.

We show first that if, for given 7, g(ψ) < 0 on <J^ for one sur-
face, then g(ψ) < 0 on ^ for all surfaces with smaller volume. In
view of the result of § 4.1, it will suffice to show g(ψ) < 0 for each

We have g(f) = (n — l)(rύ + fu). Since, as we have shown,
V< 0, r < 0, it follows from (114, 10) that

(134) g < - n ~~1{(n - 1)Δ - sin ψ) < 0 ,
r

as was to be proved.

We now give the first form of the result of this section.
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Suppose 0 < 7 £ π/2, and

(135) <>
1 N ( l

— 1)

Then every liquid drop with contact angle 7, corresponding to the
initial value u0 > u0, can be translated rigidly so as to lie strictly
interior to the drop corresponding to u0.

Proof. It suffices to show that if u0 satisfies (135), then
9(ψ; #<>) < 0 on Λ From (135) and (6a) follow

(136) r 2 < 3 (l + cos7).

2(n — 1)

From (23, 136) we find

( 2r2

(n — ϊ)ru < (n — I)sin7 + in — l H — - — ( 1 — cos 7)
[n — 1+ / I f < (^ - ! ) s i n 7 + 2 sin 7 = (^ + l)sin 7

(n — I)2 J

and thus 0(7; w0) < 0. Since (135) obviously holds for all ψ on
0 <; Ϋ < 7, we conclude #(^ w0) < 0 on J^, hence dώ/d^ < 0 on ^ .
Since (135) also holds for all larger uQf the result follows.

From a physical point of view it is desirable to have the result
in terms of the prescribed volume V. To do so, we use the lower
bound (104) (or, if n = 2, (103)) for V. Using also (28), we find
that the choice

X— < (—5—) r[n z ) a + c o s ^ ) ( w + 1 )
-i—-X— < (—5—) r z

(138) 1 fr

x—r-i \ sinn+1θdθ
sm%+27 Jo

ensures that the hypothesis (135) will be satisfied; thus, if 7 <; ττ/2,
αZΪ drops of smaller volume can be strictly enclosed by any given
one for which (138) holds.

In (138), 7 = 7 if n = 2, otherwise 7 is to be determined from
(106) or (110). We note the essential qualitative content of (138)
appears as a condition on the ratio F/sin7, rather than on volume
alone.

7 Non-monotonicity* We complement the result of the pre-
ceding section by showing that for sufficiently large F/sinψ*, the
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inclusion property fails. To do so, we consider the height
u(ψ) — uo; we have by (76), (6a), that lim^^ uQ = 0, and hence, by
(28), (29), (36), there exists

(139) q*. - lim q(ψ) - J—?—(1 - cos ^) , 0 < ψ ^ π .

It will thus suffice to show that for all sufficiently large F/sin ^,
there holds q(ψ) > q^.

We suppose first 0 < ψ ^ π/2 and consider (33), from which

(140) uW >
n —

We have

3> 1 + (r/k)

By (76),

1 1/ n - 1
"l + (r/fc) 8 Vl + (r/fcy

> i + ̂  - 1 l ( i _ A) _ (n-DViy
2 r\ r/ 8 Vr/

so that

(141) > -
V ,

h i
> ]L + -

I —

2
1 k

r
(n +• 3 )(w

8
-D/fcV

U/
for all r > k. Thus, using (31), (139-141),

_r sm
(142)

2

By (63), (65) we have for all r > s

n 1(143) -Jh— <
sin ^sin ^ n — 1 Ao

Hence ^(ψ) > gTO for all sufficiently large F/sin τ/r, which was to be
shown.

The case ττ/2 < ψ ^ TΓ yields to an analogous reasoning, by ad-
joining the inequality (36) to (33). We suppress details.
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FIGURE 6. Non-monotonicity, γ = π/2

Calculations to determine the maximum drop height qM and cor-
responding radius rM of wetted surface, for several choices of con-
tact angle 7 in the case n = 2, were performed by Heidi BJ0rstad.
The results, together with the (exactly known) limiting height q^
(as V—> 00) are summarized in Table 1. In Figure 6 some configu-
rations near the extremal one are sketched for the case 7 — π/2.

8* Unified estimates*

8.1. Diameter II. We combine here some of the results of the
preceding sections, in order to obtain estimates of the diameter of
the wetted surface and of the drop, in terms of volume and contact
angle.

Case 1. 0 < ψ ^ π/2:
We have immediately from (76)

(144)
{n-

σn
sin ψ

which provides a useful estimate when V/sin ψ is large. In the re-
maining case, (85) and (40) yield the estimate

(145)
+ V1 + (r/kγ

>

Both estimates are universally valid, and are asymptotically exact
for, respectively, large or small (V/sinψ). For sufficiently small
(V/sin ψθ we obtain additionally from (90) the estimate

(146) 2 - ε Y+11Y+11
+ 1
+ 2

which is again asymptotically exact.
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To bound r above, we consider again at first the case of large
i n ^ . We place (33) into (74), neglecting the explicit terms in

u0, to obtain

(147)

Using

ιΊ4ίTl

(141) and

f 1 p +w P
setting

1 kn \
γ )

^ w — 1 F
sin ^

σ B s m •

we find immediately from (144)

(149) rn <
n

8 P2

whenever the denominator is positive.
Putting (144) and (149) together, we have for any e > 0 and all

sufficiently large F/sini/r,

The left-hand inequality holds for all F > 0, but yields a good
estimate only when V/sin α/r is large. To study the remaining cases,
we may start with the lower bound (104) for the volume, and es-
timate u by (22) or (23). If

(151) -£*- < Λ '
smfy w — 1

we may use (22) to obtain

(152) u+ < -™J
r

from which, by (104), (92),

(153) V > a

 r%+1 ( n

sin ψ sin%+2α/r \% - 1 + (r/fc)

We have by (105) and the discussion following (85)

(154) an = σn [ zmθdθ >
Jo n + 2

thus
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(155) *> r (
sin ψ n + 2 sin*+fy W - 1 + (r/k

Using (106) we find easily

(156) sin-f __ _2_ ln — l+ cos
sin ψ> w ^ 1 + cos ψ

Setting

(157) Q*+1 = n + 2 n / 1 + c o s
Q /

<7Λ 2 ^ ^ — 1 + cos ψ(kn)n+1 sin

we obtain

(158) r<(n-l)k Q

1 - Q

which holds whenever (151) holds. This result provides an estimate
suitable for an "intermediate" range of F/sin ψ.

The result could of course be strengthened by using the original
definition for an instead of the approximation (154), cf. (103) for
even n.

We note the inequality

(159)
2 v (n —

+ C O B *

1) + cos ψ v 2

provides a convenient simplification in (158).

For small values of F / s i n ^ we write (23) in the form

(160")

The procedure

(161)

with

<

above

n

now

•<*1

sin^
-1 r

yields

1

-(l +

Vl -

2Q

/
2n Wl

4Q2

(162)
Λ

Jo

whenever Q < 1/4. Here $ is determined by (110) and satisfies the
estimates (111, 112). If n = 2, we may set ε = 0, cf. (103).

We have also the simpler, if slightly less precise, expression
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(163) r <kV2n(Q + 4Q3) .

This result is in asymptotic agreement with (145, 146).

Case 2. π/2 < ψ ^ π:
From (18) we have

(164) r > R sin ψ , JLv / I I

We seek to estimate R, using the results for Case 1, with ψ = π/2.
To do so we need an estimate for V(π/2) in terms of (the given)

FIGURE 7. Proof of (168)

We integrate (4) twice along the common segment [r, R], using,
respectively, values u+

f ψ+, or u~, ψ~ on upper or lower parts of
the solution curve (Figure 7). We find

(165)

Since u+ > u~, we find by subtracting the second equation from the
first

(166) sin ψ+ < sin ψ~

and thus

(167) u+ — uR < uR — u~ .

We conclude immediately from (74)

(168)

where we have replaced ψ + by ψ.
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For large values of V we thus find from (144)

(169) Rn > v '—
2τ/2o

while from (145) we find

i Γ (
n

( 2A;e ' 1 + ' l -" J - ' N»+ 1 ^ 1 V 2
(170) Vi • • " ~- ~-Λ >(HO) \l + Vl + 2(n-lw) ^Ϊ7¥~7^ \V

V2

 + /
which is preferable for small V. These estimates together with
(164) yield a lower bound on r in the range of ψ considered.

If

n

-l) 1 - β i n V '

the estimate (cf. (53))

i/2(n - 1) /? -,

(172) r"> Rn

n

is preferable to (164). We now find from (169) the result

for all sufficiently large V.

To bound r above in this case, we observe first that V(π/2) <

V(ψ) if ψ > π/2, hence (149) yields the estimate, for large V,

ΊDn ^ *• R

(174) (Λ n + 1 1
Pi)- l P i 2 16 Pj

with

(175) PI

The procedure leading to (158) yields now

(176) R <

with
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m Λ- 9 /'λ/OίrvΊ 1
(λ TTλ f)n + l lϋ ~f~ & I V CΛ\ΪV J

V~2σn\ n

and (163) becomes

(118) R <
v — 1

with

(179)
σn 2 \ n

Similarly, analogues of (161), (163) can be given for small drops.
An upper bound for r now follows from (69) or (71). We find in
particular from (174), (73),

( M 1 \l/2n / 1 \l/n 1

Ά—L) (±V) - . 1

2 / \σn I 2Vn - 1
for all sufficiently large V (compare (173)).

8.2. Height II. We reformulate here the results of § 3.2 in
terms of the (physical) drop height

and, for the case ψ > π/2, the "semi-height"

h = uR — nQ

from the level of maximum diameter to the vertex height, which is
useful in some applications (cf. Roberts [12] and the references cited
there).

We find from (33)

(181) <?W y 0̂ ,ί / V + 1Γ 1 sinV
sin ψ sin φ I* p L k\n — I)2 u

1Γ 1
L k\n —

2

nΔ

The right side of (181) is an increasing function of smψ/uQ;
using (6a) we see that it is decreasing in p. If y/sin ψ is large,
we may estimate p using (147) et seq., and sinψ/uQ using (63). If
y/sin Y is small, we may use (6a) to convert (181) into

(182) . > ( l + (
sin Ϋ n sin ψ \ v \n — 1 / k2 u

0 < ψ S π/2
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and sinψ/u0 can be estimated using (85) et seq. Both formulas are
correct in all cases, and we obtain a bound of the form

(183) x .
sm ψ \σn sin -

with the asymptotic properties

(185) F(t, k)
1) 2 V fc(n - 1)

Setting ψ = π/2, we obtain from (181), (182)

(186)

(187)

h > V-
h

1 + p
P

>—n
n

A _ 1 + 1 + Pin ~ I)2 _ i l
- 1 ^ n2 )

+ n — l

the former relation being more precise, the latter more convenient.
From (184), (185) we find

(188) h>

where, asymptotically

(189)

(190) + 2 ί ,
n — 1

If ψ- > π/2, we write

(191) q{ψ) = tt(ψ ) - a* + λ .

From (36)

(192) M(V) -uΛ>uΛ(Jl- 2

1— 1 u%
and from (22)

(193) uB < 1. + J - £ - - - ^ r l i + -
i? v » — 1 % — 1 i?2 w
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By (144),

(194) R>
Ύi —
n

We may thus apply (63) whenever

l v γ > l n + l
n J 2 Vn - 1

(195) n - 1 1
2

For F satisfying (195) we apply (63) and the estimates (174) et seq.
to obtain bounds below for u(ψ ) — %R of the form

(196)

where, asymptotically,

(197) G(t; ψ) ~ - COSΊ/Γ _2 \mn

- 1 /

x
COS^r

l/ l — cos ψr(l + v 1 — cos ψ)

To include the case of V that do not satisfy (195) we note from
(23)

(198) I N 2 4
— I ) 2 J?2

Applying (145) with ψ = π/2, we are led again to a relation of the
form (196), with

(199) G(t;
2

i / π

7"
V
In

V

+
2

+
2

3

2

)

)

+ 2)
Vπ 2\

_ > 0 .

We turn our attention now to the question of upper bounds.
From (22) we find

(200)

- 1 r2
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With the aid of (28), (6a, b) we find easily that the right side of
(200) is decreasing in r, increasing in sin ψ/u0. The inequalities (40),
(144) thus yield, in all cases, an estimate of the form

(201)

with

(202) L(t; k)

sinψ , sin'

1 1 / sinu+2)qjr y/(»+»

' /
ί->0

(203) L(ί; fc) 1 + ( 1 )

These results should be compared with (184), (185). We note
q/sin ψ is bounded from zero and from infinity, depending (essential-
ly) only on V/sin^. Asymptotically, the upper and lower bounds
move together as ψ changes, but vary at most by a factor equal
to two, for small t, and equal to V 2 for large t.

Setting ψ = π/2 we obtain

(204)

with

(205)

(206)

Λf<

Γ

i/ π 2\

M + t —> co y

in agreement with (189,190).

If t > ^/2, we first note from (28), (40), (174) et seq., and the
observation V(π/2) < V(ψ), that there is a relation of the form

(207)

From (25), (144), we obtain immediately that N(t; ψ) can be chosen
to satisfy

(208) N(t; • 2 ( 1 -

n

c o s^) +/ L
- l \(n-(w - 1)Λ.
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in agreement with (190, 198). From (28), (40) we see that we can
have

(209) — cos ψ)
2

Vπ

Γ (n
V
In

+
2

+
2

3

2

)\
0 ,

a result in agreement with (189, 199).

All the asymptotic estimates of this section can be written as
explicit inequalities, by using the estimates from which they are
derived. We do so for some particular situations in the following
section, where we compare some of our estimates with those of
other authors.

8.3. Height III. Laplace [10, pp. 971-993] considered a drop of
mercury resting on a glass surface, the diameter of whose wetted
circle is 10 cm. For this configuration he calculated, using—es-
sentially—a method of matching expansions, a drop height q =
0.3397 cm. As is characteristic of the method, no error bounds can
be given. Laplace chose the example to correspond with measure-
ments due to Gay-Lussac, who obtained q = 0.3378, and to Segner,
who found q = 0.3407.

Although the example does not correspond directly with the
format of the present paper, we can adapt our results as follows:

Taking for κ9 7 the values K = 400/13, 7 = 136.8° used by Lap-
lace, we replace r, R in (53), (69) by V~κr, λ/ΊcR and set r — 5 to
obtain (with n = 2)

(210) 5.0305 < R < 5.0418 .

For this range of R, there holds R > s; thus we may apply (63),
(64) to obtain

(211) ^ 0 < 2 . 5 x l 0 - n .

Using (186), and (200) with ψ = τr/2, we compute

(212) 0.2582 < h < 0.2613 .

According to (211), u0 can be neglected, and we may set USP& h in
(24), (36) to obtain effective bounds above and below for U(Ί) — uR.
The monotonicity properties of those relations, in h and in R9 yield,
in view of (210), (212),

(213) 0.0788 < U(Ύ) -UB< 0.0811 .
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Noting again that uQ can be neglected, we set nR^h in (24), (36)
to obtain directly from those estimates

(214) 0.3377 < q < 0.3416 ,

a result that appears to substantiate both the experimental results
and Laplace's calculation.

Laplace's values for K, 7, derive from measurements cited
earlier in his article. Current literature suggests a value Λ:~28.6,

which is somewhat less than Laplace's value. (Bashforth and Adams
in [2] determine /r~40.) There is poor agreement, even in modern
literature, on the value for 7. If we use the values K — 28.6, 7 =
140°, as suggested in [1], then our calculations show q > 0.354,
which exceeds both Laplace's result and those of the two experi-
ments he cites. Nevertheless, both Laplace's choice and that of
Bashforth and Adams were likely appropriate to the materials that
were studied; both surface tension and contact angle are sensitive
to impurities in the materials, and techniques for purification of
mercury have improved greatly in the ensuing years.

9* The capillary tube*

9.1. Equivalence. We restrict attention here to the case
0 < ψ ^ 7ϋ/2. We have seen in § 2 that the problems of the sesbil^
drop and that of the capillary tube in an infinite vessel transform
formally into each other. Much of the foregoing analysis has been
carried out in terms of the latter formulation, and the results
(notably of §§ 3, 4) apply to that physical situation. Many of the
results were most conveniently expressed in terms of the ratio
sin ψ/u0, which has immediate physical significance for the capillary
problem.

The physical interpretation of u0 for the sessile drop is not im-
mediately clear. We were, however, able to transform our results
(and to derive some new ones) into formulations regarding the ratio
V/smψ, as seems appropriate for this problem; we note, however,
that V has no evident physical meaning for the capillary tube.

9.2. Reciprocity. The two above ratios are not independent of
each other, but are connected by simple relations. Specifically, we
note from (40) and (45)

(215) n s i n ^ < F(r; k)
n — 1 uQ

the symbol k denoting in this context an "inessential" dependence
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on ψ, that is, there exists F*(r) < °° such that F(r9 k) < F*(r) for
all ψ in 0 < ψ <* ττ/2.

From (6a)

(216) n s i n ^ >r
n — 1 w0

and also from (63), whenever r > s,

(217) -ϋίLiL > j?( r ; fc)

which grows exponentially in r.
We have from (145)

(218) — 5 : — F W < -T
smτ/τ sm

or alternatively from (144)

(219) - ^ — V(f) < σ" rn

sm ψ k(n — 1)

especially for larger r. In the other direction we have from (149)

(220) (lti) 2
sinψ

for large r, and from (163)

(221) ( 1 + ε ) V(ψ)
sm /sm τ/r sin*+

for small r.
Putting these results together, we find a general inequality of

the form

(222) σ / ^ i n j ^ . Λ\ ^ _ V _ ^ σ / ^ i n j L ; k) .
\ u0 / s inf V ^ 0 /

Both functions G^τ; k)9 G2(τ; k) can be obtained explicitly from
the indicated estimates. We may assume in what follows that a
best possible choice has been made. We have, asymptotically for
small values of the two ratios (or, equivalently, of r),

(223) Gfr; k), G2(τ; k)
— 1
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We note these functions have identical asymptotic dependence on k,
as τ —> 0.

To obtain a corresponding asymptotic estimate for large r we
observe from (45, 63)

(224) i log -^2^ ~ Vn - 1 ,
r u0

We thus find from (150), (222)

(225) G&; k\ G2(τ; k) ~ 2s(

From (223), (225) we see that the two ratios are asymptotically
determined in terms of each other, both for small and for large
values of r .

Similar comments apply to the ratio q/sinψ, as one sees imme-
diately from the relations (184-5), (202-3). The drop height q has a
physical meaning also for the capillary tube, as the height of the
meniscus.

Collecting estimates in terms of wetting radius r, we find that
for r -> 0 there holds

V 1 f̂

(226) r - i . s f r * - . " - I
u0 n

r-,_q L _
sin ψ 1 + cos ψ

while for r —>• <χ

(227)

\ , i V 1
\ S i n /ι!r 72* — J. JL

with 1/2 ^ λ ^ 1.
These results are compared with numerical calculations for the

case n = 2, in Table 2. For convenience in engineering applications,
the tabulations are given in terms of the (nondimensional) Bond
number, referred to unit radius of wetted surface. The present
variable r (under our normalization k = 1) is retrieved by the trans-
formation B = r2.
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Table 2b. Asymptotic properties, large B

u0

5 = 1 0
0.1849
0.1479
0.1109
0. 07396
0. 03698

5=100
0.0003143
0. 0002358
0.0001572
0.00007859

5=1000
.2353xlO"12

.2000xl0"1 2

.1765xlO"12

.1176xlO"12

. 05882 xKΓ 1 2

1

πr2

0. 9027
0. 7015
0. 5171
0. 3411
0.1695

0. 8946
0.6492
0. 4251
0.2105

0. 9636
0. 7946
0. 6926
0. 4526
0. 2240

/l+cosγ V
V 2 sin?-

0. 6534
0. 6175
0. 6009
0. 5916
0. 5867

0. 8794
0. 8646
0. 8582
0. 8551

0. 9642
0.9586
0. 9569
0.9545
0.9533

r u0

0. 5014
0. 4922
0. 4768
0. 4834
0. 4815

0. 7954
0. 7921
0. 7903
0. 7893

0. 9184
0.9174
0.9170
0. 9165
0.9161

\sin γ V 1 + cos?- /

0. 05613
0. 02600
0.01138
0. 002945

-0.001579

0. 5786
0. 5528
0. 5435
0.5394

0. 57Q9
0. 5408
0. 5313
0.5191
0.5138
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