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HEIGHT ESTIMATES FOR CAPILLARY SURFACES

DAVID SIEGEL

In this paper estimates are obtained for any scalar func-
tion u(x) that staisfies the equation

(la) div (Tu) = κiι in Ω

and the boundary condition

(lb) Tu v = cos γ on Σ = dΩ .

Here K is a positive constant, Ω is an open domain in w-dimen-
sional Euclidean space, v is the exterior unit normal on Σ,
and Tu is the vector operator

For n = 2, u(x) can be interpreted physically as the height of a
capillary surface above the undisturbed fluid level when a vertical
cylindrical tube with section Ω is dipped into a large reservoir. The
"capillarity constant" tc and the "contact angle" 7 are determined
physically; tc = (p — p^o~xg, where p is the density of the fluid, p0

is the density of the gas, g is the acceleration due to gravity, and
σ is the surface tension. If the tube is homogeneous 7 is constant
[4].

The operator Nu = div (Tu) is n times the mean curvature of
the surface xn+1 = u(x). Geometrically stated, a capillary surface
has mean curvature proportional to its height above a horizontal
reference plane and it meets a vertical cylinder in a prescribed
angle.

We shall distinguish three types of domains: "interior", "exte-
rior", and "general exterior" corresponding to Ω bounded, the com-
plement of Ω bounded, and Σ unbounded, respectively. Existence,
uniqueness, and regularity of solutions to problem (1) have been
established under fairly general conditions on Ω and 7. However,
for a general exterior domain uniqueness has not been established
and for an exterior domain uniqueness has been established only
under the condition u = o(l) as \x\ —> 00 [see 6, 7, 8, 9].

For simplicity we shall only consider solutions to problem (1) in
domains with piecewise smooth boundaries, with boundary condition
(lb) holding on the smooth part Σ* of Σ. In § 2, we extend the
existence theory for smooth bounded domains to the case of piece-
wise smooth bounded or unbounded domains.

We now state our main results. In what follows K — 1, and 7
is constant, 0 <; 7 ^ ττ/2.
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The simplest examples of interior, exterior, and general exterior
domains are J5Λ(0) = {x:\x\< R}, Bc

R(0) = {x: \x\ > R} and H = {x: x, > 0}.

The solutions to problem (1) in these domains are v(r, R, 7), w(r, R, 7),
and z(xl9y), with r = \x\. An explicit formula is known for the
"one-dimensional" solution z(xl9 7). We have

( 2 ) z(xl9 7) ~ C1(7)β"ίCl as xx > 00

where d(τ) is an explicitly known constant.
Chapter II is devoted to the study of v and w. General esti-

mates are given for v and w that improve upon those given by
Finn [5]. For small R, v is shown to be close to a spherical cap.
Laplace's asymptotic formula for the center height is proved correct.
For large R, near the boundary v and w are shown to be close to
a one-dimensional solution, i.e.,

lim v(R - I, R, 7) = lim w(R + I, R, 7) = z{l, 7) .
J2 iJJ2-

Away from the boundary, estimates are also given, in particular

D(Λ-L)/2

(3) v(0, R, 7) ~ C(τ) - — = - as JB
expiί

(4) ^( r , ig ,7)-C( i? ,7) e ^ ( _~ 2

r ) as r 0̂0

where C(τ) is an explicitly given constant and C(JB, 7) is determined
asymptotically as R -> 00. Monotonicity and continuity properties of
C(R, 7) are given. Estimates on the derivatives of v and w are also
given.

In Chapter III, solutions to problem (1) are estimated in terms
of v, w, and z. This is done by use of an appropriate comparison
principle due to Concus and Finn [3].

General estimates are given that apply to any solution of equa-
tion (la): \u(x)\ ^ v(0, d, 0), d is the distance from x to Σ; \u(x)\ <Ξ
w(rf R, 0) if 2?i(0) c Ω; and \u(x) \ ̂  z(xlf 0) if Hcz Ω. Combining these
general estimates with results (2)-(3)-(4), we see that solutions to
equation (la) decay exponentially away from the boundary of the
domain. The derivatives of a solution decay at the same rate at
which the solution decays.

The third general estimate improves on an estimate given by
Gerhardt [8]. The first general estimate implies that for an exterior
domain, problem (1) has a unique solution.

We now consider estimating solutions to problem (1). To improve
upon the above general estimates or to study solutions in general
exterior domains one needs to know when BB(y)aΩ, r = \x — y\,
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implies that u(x) ^ v(r, R, 7). An example shows that this is not
always true. We prove that if Ω Π Bχ(y) is convex, where Bχ(y) is
the maximal domain of existence of v9 then the assertion is true.
Alternatively, if Σ is smooth and bounded and R <£ &lf where ^
is the "interior rolling number" of Ω, then the assertion is also true.
Analogously, if BR(y)aΩ, r = \x — y\, if Σ is smooth bounded and
strictly convex, and if R ^ ,^2, where &2 is the "exterior rolling
number", then u(x) <̂  w{r, R, 7). Again, an example shows that this
inequality is not always true when B£(y) c Ω.

Estimates for solutions to problem (1) in certain general exterior
domains are given. We show that z(xlf 7) is the unique solution to
problem (1) in H. Consider the two-dimensional domain J ^ =
{(xlf x2): xx > \x\ cos a}, with 0 < a < π. For 0 < 7 < π/2 there exists
a unique positive solution to problem (1) in <SίΓa. Furthermore, for
a < τr/2: on Σ*, u(x) Ξ> 2(0, 7) and lim^^u^x) = «(0, 7). For a > π/2:
on J*, %(») ^ 2(0, 7) and lim^^^^^) = 2(0, 7). For a + 7 ^ ττ/2,
α < τr/2:

lim inf

and

lim sup %(») ^ 2 l/"2"[l - (1 - kψψ

where k = cos 7/sin a. These inequalities show there is a "rise" at
the corner. Some higher dimensional generalizations are given.

Chapter I contains preliminaries that are needed in the other
chapters.

Chapter I
Preliminaries

l The comparison principle* Our basic tool will be the com-
parison principle (CP):

THEOREM 1. Let Σ = Σ° + Σa + Σβ be a decomposition of Σ, such
that Σβ is C1 and Σ° can be covered from within Ω by a sequence of
smooth surfaces {A}, each of which meets Σ in a set of zero (n — 1)
dimensional measure, and such that A —> Σ° and the area of A tends
to zero. Let u,v e C\Ω) and suppose

( i ) Nu ^ feu and Nv ^ tzv on Ω.
(ii) for any approach to Σa from within Ω lim sup [u — v] ^ 0.
(iii) on Σβ, (Tu — Tv) v <; 0 almost everywhere as a limit from

points of Ω.
(iv) if Ω is unbounded, u — v ^ o(l) as \ x \ —> oo.
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Then u ^ v on Ω; if equality holds at any point then u Ξ= V on Ω.

Proof (see [3]). We have added condition (iv), but precisely the
same proof holds.

Note. In condition (iii), v has been extended continuously into
a neighbordood of Σβ.

The following corollary was proved in [3] in a different way.

COROLLARY. // u(x) satisfies (la) in Ω and BR{y)cΩ then
\u(x)\ < 2/tcR + R in BB(y).

Proof. Let v(x) = n/fcR + R— vR2- \x-y|2. Then Nv = n/R =
/c min v(x) <^ tcv and lim Tv -v = 1. Thus lim sup (Tu — Tv) v ^ 0.
By CP u(x) < v(x) < s\χ pv(x) = n//cR + R on J?Λ(l/) Replace v by
— v to get the other inequality.

When 42 is contained in a symmetric domain we have the follow-
ing comparison principle (CPS):

THEOREM 2. Let Ω be bounded and Σ piecewise smooth. Suppose
u(x) is a solution to problem (1) with boundary data y(σ), 0 g y{σ) ̂  yOf

0 ^ 7o ̂  π/2, on I7*.
( i ) If Ωd BR(0) then v < u o r v = uonΩ.

(ii) If Ω c J5J5(O) ί/̂ ê  w <u on Ω.
(iii) If Ω czH then z(xj) < u(x) on Ω.

Here v = v(r, i2, τ0), w = w(r, J?, 70), αwd ̂ fe) = 2(»i, 70).

Proof. The proofs for parts (i) and (ii) are in [5]. We present
the proof for (iii) which is very similar. We introduce the angle
ψxiXi) between the curve and the positive x1 direction

It is known that sin^Cα^) is negative and increasing in xx (see §5).
OnΣ*, Tu'V — cos7 ^ cos70 = —sin^(0) ^ —sinψSŝ d ^ Tz v. The
last inequality is true because \Tz\ = —sin ^ifo). Apply CP to obtain
z(xλ) < u(x) on Ω.

We shall need the following consequence of the boundary point
form of Hopf's maximum principle [11].

LEMMA 1. Let u e C\BB) Π C\BR) and v e C\BR). Suppose u and
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v satisfy condition (i) of Theorem 1, u < v on BR and u(x0) = v(x0)
at xoedBR. Then (du/dv)(x0) Φ (dv/dv)(xQ).

Proof, Let w — u — v, then w satisfies

( 5 ) Lw = Σ UijWxiXj + Σ

where

h = Σ v w Γ - ^ [^ + *(
*,i ° Jo a ^ f c

Under the hypotheses L is uniformly elliptic with bounded coefficients
on BR. Since w < 0 on 1?̂  and w(a?0) = 0, Hopf ?s theorem gives
(dw/dv)(x0) Φ 0.

REMARK. The smoothness properties of u and v can be inter-
changed in Lemma 1.

2. Existence theorems* Gerhardt [9] proves the following
result:

THEOREM 3. If Ω is bounded, Σ e C2>\ 0 < y(σ) < π, y(σ) e Cι>\
then there exists a unique solution u{x) to problem (1) with u{x) e
C2>a(Ω).

Simon and Spruck [16] prove a similar theorem under the condi-
tion Σ e C4. They give a local estimate of the gradient up to the
boundary. With this estimate we prove:

THEOREM 4. Let Ω be a domain with a piecewise smooth bound-
ary Σ. Let Σ = Σ° + Σ*, where Σ* is open in Σ and Σ* e C\ Sup-
pose that on Σ*f y(σ)eC1>a and 0 < y(σ) < π. Then there exists a
solution u(x) to (1), with boundary condition (lb) holding on Σ*.

Proof.

Step 1. We construct approximating domains Ωi with C4 bound-
aries Σt. For Ω bounded we require:

(a) if x e Σ and dist (x, Σ°) > εt then x e Σt

(b) άiBt(Σ9Σi)<ei

with lim^^ et = 0. For Ω unbounded we require ΩRi = Ω Π BR.(0) to
be piecewise C\ with lim^^ Ri — co9 and that conditions (a) and (b)
hold with Σ replaced by dΩR..
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Extend j(σ) to all of Σt so that 0 < y(σ) < π and y(σ) e C l α . Let
ut be the solution to problem (1) with this data, ^ e C 2 ( β ) .

Step 2. We now obtain a local Holder estimate of the gradient
of Ut up to 2**, independent of i.

Take xQ e Σ*, choose δ > 0 so that B4δ(xQ) ΓiΩaΩVΣ*, choose N
so that i > N implies B4δ Γ) 2* c I7,.

We estimate |^i(flc)|^Λί on B3^0) ίl β. By the corollary to
Theorem 1 we can choose M = n(κR)~ι + i? if each point of j?3($ Π β
is contained in a closed ball of radius R lying in B4δ Π β. One can
choose J? = min [<5, (fc)"1] if fe > 0, R = 3 otherwise, where k = max &(σ)
over B4d n -Σ'*, AJ((J) = the maximum principal curvature of Σ at tf
with respect to the interior normal.

By Theorem 3 of [16]: {Fu^z^^ < Λ.
By the argument on pp. 467-8 of [13]: I^L^n^uo) < A- Here

Γx and Γ2 are independent of i.

Step 3. We now obtain interior estimates on the derivatives of
Ui independent of i.

Take x0 e Ω, choose δ > 0 so that B4δ(x0) c i2, choose N so that
i > N implies B4δ c Ωt.

We estimate | ^ | ^ ^(^δ)- 1 + 45 on i?43.
The gradient can be estimated on Bzδ since

\Vuly) I ̂  d exp {C2 sup [w€ -

where d and C2 depend on n and δ swp\ut\ (see [10]). This gives

The interior Holder estimate for divergence structure equations
[11, p. 265] yields {Vu^^ < Γ4.

Finally, we apply the interior Schauder estimate, since we can
treat the equation as a linear, uniformly elliptic equation with Cβ

coefficients. This gives lu^β^^^ < Γδ. Here Γ3, Γ4, and Γδ are
independent of i.

Step 4. Because of the boundary and interior estimates we can
choose a subsequence of {uτ) that converges in C2 on every compact
set kdΩ, and in C1 on every compact set kaΩUΣ*. The limit
function u(x) will belong to C\Ω) Π C\Ω U Σ*) and will be a solution
to problem (1).

REMARK. If Ω is bounded the solution to problem (1) is unique.
This is an immediate consequence of CP.

3* Two normalizations* From now on we shall take tc to be
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one. This is no loss in generality because of the following lemma:

LEMMA 2. Let u(x) satisfy Nu = u in Ω and Tu-v~ cos7 on
Σ. Define v(x) = (l/V/"F)%(V/"Fίc). Let Ω', Σ', and vf he the images
of Ω, Σ, and v under the transformation x —• {ljV~Έ)x. Then Nv = icv
in Ωf and Tv v' = cos 7 on Σ\

Proof, Prom the expression

Nu =

we see that iW(x) = l/Ίc Nuθ/Ίc x) = i/T^(l/Tx) = /«;(«). Also,
Tv(x/VT) - Γ%(a?) in i2 and v'(x/]/T) = v{x) on 2̂ . Thus, Γv ^ =
cos 7 on Σ'.

If 7 is constant we shall assume 0 ^ 7 ^ π/2. This is no loss
in generality because if u{x) satisfies Nu = u in Ω and Tu- v = cos 7
on J , then v(x) = — w(a?) satisfies iNfa = v in Ω and Tv - v — cos (π — 7)
on 2\

4 Solutions to the linearized equation* We examine the solu-
tions to the linearized equation Au = u that depend only on r = |α?|;
% must satisfy

The general solution is u(r) = AI(r; n) + BK(r; n); A and B are arbi-
trary constants, I(r; n) = r~m7m(r), K(r; n) = r~mKm{r), m = (n — 2)/2,
Im is a modified Bessel function of the first kind, and Km is a
MacDonald's function.

To be explicit (see [14]):

(7) /«(r) = J
m

( 8 ) ^ ( r ) = Γ e~rcoshu cosh (m^)d^ .
Jo

The following recurrence relations hold:

(9 ) ( r—IJ, - r~mIm+1

(10) ( r - ^ J , = -r-»Km+ί .

From equations (7) through (10) we conclude:
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Irr > 0 and I > 0 for r ^ 0 Ir > 0 for r > 0
( 1,(0) = 0 and 1(0) = p ' - * " * / 1 ^ ) ] - 1

ίΓrr > 0 , ϋΓr < 0 , and K > 0 f or r > 0
( } lim K(r) = lim ϋΓr(r) = 0 .

We shall employ I and K to estimate v(r, R, 7) and w(r, i?, 7).
In fact, AI and AK, for any positive constant A, satisfy a super
solution condition:

LEMMA 3. For any constant A, A > 0, N(AI) ^ A/,

Proof, For a function % = ^(r)

(13)

We use the properties listed under (11) and (12):

N(AI) = ^ ^ ^

[1 + (AKr)ψ*

J±J\. -j- \J±J\.r)

The asymptotic behavior of Im and Km has been studied (see [14]).
As a consequence of these estimates we obtain

as r > oo

(15) K(r) = J— * , [1 + O(l/r)] as r > oo

(16) / r (r) = , — ~ Γ Ί [•"• ~̂~ ̂ (•"•/̂ )1 a s r > °°

(17) ίΓ r(r) = - J— e~r [1 + O(l/r)] as r > oo
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We now give explicit estimates on IJI and KJK. For any
solution u of equation (6), v = uju satisfies a nonlinear first order
differential equation

(18) vr = 1 - ^ — i '
r

Let

& = \{r, v): r > 0 and 1 - v>" ~~ ±J v - v2 > 0

= {(r, v): r > 0 and vx{r) < v < v2(r)}

where

and

With this notation, we have:

LEMMA 4. For r > 0:

( i ) /r/J α?ιc£ i^/iΓ are strictly increasing in r.
(ii) 0<IJI<v2(r).
(iii) v1(r)<Kr/K< - 1 .

Proof. Part (i) is equivalent to saying that (r, I r/ί) and (r, KJK)
are contained in ^ , thus we need only prove parts (ii) and (iii).

We note that v^r) and v2(r) are increasing functions of r.
Let v = Jr//, then v(0) = 0 and v(r) > 0 for r > 0. Suppose

v(rx) ^ v^Tί), then v(r) ^ ^2(^i) > 0 for r < r19 contradicting that
v(0) = 0. This proves part (ii).

Let w = ϋΓJiΓ, then w < 0. Since Kr < 0, we have Krr = K-
((n — ΐ)/r)Kr > K and KrKrr < ifrίΓ. Integrating from r to oo gives
iΓr

2 > ίC2 and hence KJK < - 1 .
Suppose wίrj ^ ViCrJ, then for r > rlf w(r) < ^(rx) = — α, with

α > 1. Integrating from rx to r gives JSΓ(r) < K(rx) exp α(ri — r) for
for r > TV This contradicts equation (15) as r-> oo. The proof of
part (iii) is complete.

REMARK. The upper bound on IJI and the lower bound on KJK
are asymptotically exact to order 1/r since

+ θ(±-) as
2r V2
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and

^ - l - ί S L ^ l + o f - l ) a s r — > ~ .
K 2r VW

5* The one-dimensional solution* There is only one explicitly
known solution to problem (1). We denote by z(x; 7) the unique
solution to

for 0 < x <(19a) ( . Zχ ) =

Wl + z*/*

(19b) za(fi + ) - - c o t 7

(19c) lim z(x) = 0 .
χ—*oo

Here, z can be interpreted physically as the height of a capillary
surface on one side of an infinite vertical plate.

An explicit solution with x as a function of z is given by

x = - 2 Λ/l - *1 - In -?- + In ( l + J l - —) + D
> 4 2 \ > 4/

(20)
2? = 1/2(1 +sin7) + In ^ - ^ - In(l +

THEOREM 5. For 0 ^ 7 < π /2:

( i ) There is α unique solution z to problem (19) given by (20),
z(x) e C2(0, 00) n C[0, 00), with z>0 and zx < 0.

( i i ) z = C^e-'ll + O(e-2X)] as x -> 00 w i t f t Q 7 ) = 4 exp (D - 2).
(iii) sin ψ^x) = — C1(7)β~a'[l + O(e~2a0] as a? -> 00 and cos ψi(#) =

1 + O(e~2x) as x -> 00.

(iv) 0 < ^e-3' /or x > 0, z0 = z(0, 7) = l/2(l - sin 7).
(v) z(x) 6 C2[0, 00) j / 0 < 7 < ττ/2.

Here sin ^(a?) = ^/i/l + z\.
Proof.

Part (i). From equation (20) x is defined for 0 < z < z0 and

Thus xz < 0 for 0 < z < z0. Inverting, z is defined for 0 < x < °o
and zx < 0. From equation (21):

(22) sin ψ, = -an/1 - z2/4

and
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(23) cos ψx = 1 - z2/2 .

We can rewrite equation (19a) as

Thus, by equation (23) we see that z satisfies equation (19a). By
equation (22) we see that z satisfies equation (19b). That z satisfies
condition (19c) comes from equation (20).

Part (ii). We rewrite equation (20) as

(24) - * * - = — (τ/1 - z2/4 + 1) exp 2 (1 - τ/1 - z2/4) .
Cx(7) 2

By Part (i) this quantity is 1 + o(l), thus z = 0(e~x); putting this
back into equation (24) gives

- ^ - = 1 + O(e-2X) .

Pαrί (iii). These estimates follow from Part (ii) and equations

(22) and (23).

Part (iv). Let v(x) = zoe~x, then

iV'U = ° 2 _2a; 3/o < zoe~x — v

v(Q) = z{Q), and z - v = o(l) as αj -^ oo. By CP « < v for aj > 0.

Part (v). For 0 < 7 < ττ/2, equation (21) shows that zxeC[0, 00)
and by equation (19a) zxx = z(l + z*)meC[0t 00).

REMARK. If 7 = ττ/2, z(x, π/2) = 0 is the unique solution to prob-
lem (21). This is an immediate consequence of CP.

Chapter II
Solutions in Symmetric Domains

6. General estimates—interior case* We obtain estimates for
the function v(r; R, 7) that satisfies

(25a) -ί- ( Γ ' ^ Q =v for 0 < r < R
r»-l Vi/1 + V2

r /r

(25b) vr(0 + ) =0

(25c) Vr(Λ-) = cot7 -
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Johnson and Perko [12] prove by the method of successive
approximations:

THEOREM 6. Problem (25) has a unique solution v(r, R, 7) which
is continuous in (r, R, 7) for 0 ^ r ^ R, R > 0, and 0 ^ 7 ^ π/2.
If 0 ^ 7 < π/2 ίftέm v > 0, vr > 0, and vrr > 0 for 0 < r < R. If
7 = π/2 £ftew v = 0.

Note. Johnson and Perko give the proof for n — 2, but the same
proof holds for n > 2.

Introducing sin ψ(r) = vjVl + v\ we have

(26a) -^— {rn-1 sin ^ ) r = v

(26b) si

(26c) sin ψ(R-) = cos 7 .

Equation (26a) can be rewritten as

(27) (sin ψ)r + ^ "" 1^ sin ψ = v .
r

Partially inverting equation (27):

(28) - (cos ψθ, + ^ ^ 1 ^ sin ψ = v .
r

We shall estimate sin ψ/r and then use equations (28) to estimate v.

LEMMA 5.

r%~ιv{r)dr = rg-1 sin ψ(r2) — τl~x sin ^(n) .

Proof. Multiply equation (26a) by rn~ι and integrate.

LEMMA 6.

r n

( i i ) (^)r>o

Proof.

Part (i). From Lemma 5 and Theorem 6:
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"-1 sin ψ = ¥ s^v&ds < — v(r) .

Part (ii).

/sin ψ \ _ r(sin ψ)r — sin ψ __ — n sin ψ + rw ^ π

\~~V/r ~ r2 r"2 "

The last equality comes from equation (27); the inequality comes from
Part (i).

LEMMA 7.

/or 0 < r < Jϊ.

Proof. From Lemma 6 (ii)

We note that

lim s i n ^( g) < s i n f (r) < l i m sin

s->0+ S s-»0+

Thus, using equation (27):

By condition (26b)

sin

We have shown

v(0) , sin ψ(r) ̂  cos 7
n r R

Combining this inequality with Part (i) of Lemma 6 gives the stated
inequality.

THEOREM 7. For 0 <: 7 < π/2:

max jτ/2(l-sin7), ^C^S7} < ι;(Λ, Λ, 7) .
R
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(ii) v(R, R, Ί)<{n- 1) ̂ L Z + ^2(1 - sin 7) +
t it

(iii) 2(1 - sin 7) + 2 ( ^ ~ 1 ) [v{R) - v(0)]v(0) < v\R) - v\Q)
n

< 2n(X — sin 7) .

Proof. Parts (i) and (iii) are due to Finn [5]. Integrate equa-
tion (28) from v(0) to v(R):

( 2 9 ) v\R) - *φ) = , _ s i n 7 + _ χ ) \
2 Jt>(o) r

Employ the estimates of Lemma 7:

(30)

v(0) γ

n

n cos γ/R n. Cv(R)

2d \Jv(θ) 71 Jncosϊ/R ±1

_ n /cos_7 V v\0) ( m cos 7

Part (i). Equation (29) gives v(R) > V2(1 - sin 7); Part (i) of
Lemma 6 with r — R gives v{R) > n cos y/R.

Part (ii). Combining equation (29) and inequality (31) gives

1 - sin 7 + -LvW) - »(n-l)coB*7
2tΎi 2 R

Solving this quadratic inequality:

v(R) < (n — 1) C 0 S 7 + 2(1 — sin 7) + (1 — n
R L

Estimating v(0) < n(cosy/R) gives the stated inequality.

Part (iii). Combining equation (29) and inequality (30) gives the
left-hand side of inequality (iii). The right-hand side is obtained by
employing sin ψ/r < v/n; this estimate yields

fV{R) sinτ/r , y\R) - ^2(0)
Jtf(o) r - 2n

Combining this with equation (29) gives the result.
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Inequalities (i) and (ii) are sharp for small and large R, more
precisely:

COROLLARY.

v(R, R, 7) = s(0, 7) + 0(1/22) as R > oo

v(R9 R, 7) = n^t- + 0(R) as R > 0 .
R

7. The narrow tube* A study is made of v(r, R, 7) for small
R. We show that the solution is close to a spherical cap.

First, we prove a technical lemma:

LEMMA 8. Suppose Nf(r) ^ Ng(r) for 0 ^ r ^ R, then f(r2) -
/(n) ^ g(r2) - gin) for O^r^r^R.

Proof.

/ r^gr

Multiply by r^"1 and integrating from 0 to r gives

Vi + fl ~ i/i + ^2, *

Simplifying: fr ^ βrr. The conclusion follows upon integrating from
rλ to r2.

We take 0 ^ 7 < ττ/2 in what follows. Introduce

Sir) = i2tan7 - i/(22 sec7)2 - r2 +
R

and

S2(r) = Sir) + .β sec 7(1 - sin 7) .

LEMMA 9. Slf) < v(r) < S2(r) for 0 ^ r < R.

Proof. To apply CP, we check that

for 0 ^ r < R, and TS^v = TS2 y = cos 7 for r = J?.
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Two special cases of Lemma 9 are

(32) n^L g V(R9 R9 7 ) ^ j?sec7(l - sin7)
R R

(33) n^P-> v(0, R, 7) > » ^ 2 - Λ sec 7(1 - sin?) .
R R

Introduce Rx = R sec τ[l - (Λ2M) sec2 7(1 - sin 7)]-1 and R2 =
R sec 7[1 + (R2/n) sec2 7(1 - sin 7)]-1.

THEOREM 8. (0 g 7 < π/2) v(r, R, 7) > S,(r) = iJ2(i2, 7) + R1 -
VR\ - r2 and v(r, R, 7) = S3(r) + O(i23) as R -> 0,

H2(S, 7) =

/or 7 Φ 0, and

t o) = % ( 1 + ^ i ) - R (1 +
R \ n / V

Proof.

Case 7 ^ 0 . Let /x(r) = Rt - l/Λ? - r2 and /2(r) = J28 - V'SΓ-"*5.
Clearly, Rx> R and R2> R for i? ^ J?o, with i?0 sufficiently small.
By estimates (32) and (33)

NfAr) = — < v(0) ^ v(r) = iw

^Λ(r) = -J- ^ «(Λ) ^ «(r) =

Hence, by Lemma 8

(34) R, - VR\ - r2 < i;(r) - v(0) < R2 - τ/Λi - r2 .

Let

Hl(R9 7) =

Multiplying estimate (34) by τn~ι and integrating from 0 to R gives

(35) H2 < v(0) < Ht .

Let
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S 3 (r) = H2 + / i (r)

and

S4(r) = if, + /2(r) .

By inequalities (34) and (35): S8(r) < t (r) < S4(r). Now

.Q /ΛΛ „ .Q f/>Λ — 7? 7? -4- ^ \ r%-i/η/r>2 -,2 „ i/zps ju,,

i ? % Jo

\ - r2 - VR\ - r2) .

Clearly R2 - R1 = O(Λ3) as # -> 0, and

VR\ - r- - r
VR\ - r2 + VR\ - r2

as i? -* 0. Hence S4(r) - S3(r) = O(R3) as Λ -* 0.

Case 7 = 0 . We must modify the above proof. We still have
v(0) < H^R, 0) and R, - VR\ - r2 < v(r) - v(0); however, i?2 < ^ and
v(r) - v(0) < R2 - Λ/R\ - r2 only for 0 <: ?• < R2. We obtain

(36) v(0) > -^ sin ^(Λ2) - R2 + J

Here

- —V 1 and i?2 = R (l +
n

We estimate sin ^(i?2); Lemma 5 gives

Thus

sin
R

+
n \ n

Putting this into estimate (36) gives v(0) > H2(R, 0). Thus v(r) > SB(r).
Now

Γ / 7?2 \ n

ΓV\ TT / 73 Λ\ 73 7Γ> I 73 1 / 1 ι -t*' 1

L \ ^
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+ JL i* r-Vx* - r*dr
Rn

 JB 2

= 0(R3) as R > 0 .

We estimate v(R, R, 7) by Part (iii) of Theorem 7:

(37) v(R) - v(0) < 2 n < * ± =
v(R) + v(0) n_ , n_ _

R R

n
(38) v(R) - v(0)

We have employed estimates (32) and (33) for v{R) and v(0). Esti-
mates (37) and (38) show that v(R) = v(0) + R + O(R3) as R -> 0.

Since iSft; = v > iVS3 for 0 ^ r < R, Lemma 8 gives v(R) — v(r) >
S,(R) - S8(r). Thus t;(r) < v{R) - SZ(R) + S3(r). We note that

S8(0) = Λx - l/i2? - i?2 = i2 + O(i23) as R -> 0. Therefore

< b(0) + 5] - [S8(0) + Λ] + S3(r)

= S8(r) + b(0) - S8(0)] + O(i23)

< S8(r) + O(Λ3) as S > 0 .

We have used that v(0)~Ss(0) = v(0)-H2(R, 0)<ίZ"x(i2, 0)-H2(R, 0) =
O(R5). Since we started with Sa(r) < v(r) the proof is complete.

COROLLARY. For n = 2, H2(R, y) can be calculated explicitly,
yielding

(39) v(0, Λ, 7) = 2 ( l
cos 7 \ 3 cos2 7

as R-+0.

REMARK. The formula (39) is known as Laplace's formula.
Ferguson has given a formula differing from formula (39) [1]. We
have settled the question.

8* The wide tube*

8A. Estimate near the boundary. We show that near the
boundary the solution v approaches the one-dimensional solution as

LEMMA 10. For 0 ^ 7 < π/2 and 0 ^ Z ̂  R:
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(40) v\R -I) < v\R) + 2 sin 7 - 2 cos ψ (R - I)

(41) sin ψ(R - I) < - s i n ^ ί ) + -— (n - 1) cos 7 .
R

Proof. Integrating- equation (28) from v(R — I) to v(R) and
estimating sin /̂r > 0 gives inequality (40).

By CPS, z(jxί9 7) <v(\x-y\, R, Ύ) in BB(y) if BR(y)czH. Choose
y = (R,0, •• , 0) and a? = fo, 0, , 0). Thus

(42) z(xlf 7) < v(R - a?lf R, 7) for 0 < x, ̂  J? .

Let r = R — xt. Then [sin ^ife)]^ = — [sin ψ{x^\r. Therefore (sin ψ)r +
(n — l)(smψ/r) > — [sin ^(α^)],.. Integrating from R — I to R and
estimating sinψ/r < cosy/R gives inequality (41).

THEOREM 9. For 0 ^ 7 < π/2 and I ^ 0:

( i ) v(R — I, R, 7) is strictly decreasing in R.
(ii) lim^α, v(R - I, R, 7) = z(l, 7).

Proof.

Part (i). By CPS, v(\x - y2\, R2, 7) < v(\x - ^ | , Λlf 7) in BRl(Vl)
if ί ^ W c ^ W . Choosing ^ = (i?^ 0, , 0) i = 1 or 2, and a =
(Z, 0, , 0) gives v(R2 - I, R2, 7) < v(R, - Z, Ru 7) for i22 < R2 and
0 < i ^ Jelβ

For ί = 0we have v(R2ί R2, 7) ̂  i;(Λlf Rlf 7). If 7 ^ 0 Lemma 1
rules out equality.

A special argument is needed for the case 7 = 0 and 1 = 0:
Let uλ(r) = v{r, Rl9 0) and u2(r) = v(r + i?2 — -Bx, i22, 0). Suppose
v(R2, R2, 0) = v(Rlf Ru 0), then ^ ( S J = u^R,). Also ^(r) > u2{r) for
0 ^ r < Rx. At 5X

since iSΓ̂ i = Nu2 at J?x; here φt (i = 1 or 2) is the angle between the
curve given by ut(r) and the positive r direction. Thus, (sin^X <
(sin φ2)r at Rlm This inequality must hold for Rx — ε ̂  r <^ Rlf for
some e > 0. Integrating from r to i^ gives sin φx(r) > sin ̂ 2(r); this
implies that u^r) < u2(r) for R1 — ε <; r <Z Rλ after another integration.
This is a contradiction.

Part (ii). For R such that

(43) R
1 + sin ψ^
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the right-hand member of inequality (41) is < 1 . Combining ine-
qualities (40) and (41) and noting by equation (23) that 2[sin 7 —
cos ψβ)] = z\l) - s2(0) gives

(44) v\R - I) < v\R) - z\ϋ) + z\l) + 2η(l, R)

η(l, R) = cosψ^ϊ) - [cosVi(ϊ) + 2εsinψι(l) - εψ2

where ε = (n — l)(l/R) cos 7. Clearly, lim^*, η(l, R) = 0. By the cor-
ollary to Theorem 7 l i m ^ v\R) = z\ϋ). Thus l i m ^ v(R - ί, i2, 7) ^
2(Z, 7). By inequality (42) v(R - I, R, 7) ^ «(ί, 7). Hence Part (ii) is
proved.

8B. Estimate of v(r> R, 7) from above.

THEOREM 10. For 0^7<ττ/2: v(r, R, Ί)<H(R, y)I(r)[l + O(l/R1/2)]
for 0 ^ r ^ R - (1/4) In i2 as R -> 00,

, 7) =
exp xc

Proo/. By CP and Lemma 3, v(r, R) < (I(r)/I(R - l))v(R - ί, Λ)
for 0 ^ r < JS - I. By inequality (44)

t;(JB - I) < z(l){l + [2z(l)]-2[v\R) - z\0) + 2)y(Z, R)ψ2 .

Choose I = (1/4) In ϋί, for i? sufficiently large condition (43) shows
that η is defined. By the estimates of Chapter I we find

and

= Cx(7) exp (-1) [l + 0

To estimate η, we note that

0 < η(l9 R) < ε[-2 sin ψ,(l) + ε][cos ti(ί)]"1 .

Thus

Also v2(i2) - z2(0) = 0(1/2?) by the corollary to Theorem 7. Combining
estimates and noting that z(l) = 0(1/RUi) gives the result.

8C. Estimate of v(r, R, 7) from below.

THEOREM 11. For 0^7<π/2: v(r,R,y)>H(R,y)I(r)[l + O(lnR/R)]
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for 0 ^ r ^ R - (5/2) In R as R -» oo.

Proof. By Theorem 9, v{R - I, E, 7) > z{l, 7) for 0 ^ i g B. We
construct a subsolution %(r) for 0 ^ r ^ i? — I with %(i? — Z) = z(l, 7),
where i will be chosen later. Let

u(r) = Λ ( l - - T 4 — ) /(r) = hB(r)I(r)

where h9 ε, and a are positive constants with ε < α.

ur = h\B(r)Ir+ 2

2er

L (r2 + α)2

We note: u > 0 and wr ^ 0. The subsolution condition Nu ^ u
becomes

Ur

We require the stronger inequalities

(45a) urr + ί n " ^ ^ r ^ w(l + 2ul)
r

(45b) max %r < 1 .

These are stronger because (1 + x)m <£ 1 + 2x for 0 ^ a; <£ 1. Condi-
tion (45a) reduces to

(46) ^
(r2 + α)2

I r2 + a

By Lemma 4 we can choose 6 so that

hUb)^5-n
I(b) ~ 2 '

Let a = Zb\ With this choice for a, A(r) > 1 for all r ^ 0, as can
be seen by checking the cases r > b and r < b. Choose h =
z(l)[I(R - l)B(R - I)]'1. Let

c — max — — — .

By Lemma 4 we can estimate Ir < /, thus
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max ur < h[B(R - I) + εc]I(R - I)

= z(l)[l + εcB-\R - I)]

(47) < z(l) [ l + εc (l - -i-)"1]

minn >

n-i (r2 + α)2 (#2 + a)2

We can satisfy condition (46) by choosing I so that

(48) ϊ r

We have estimated z(l) < l/ 2 e~z. Finally, choose ε = In R/R and
I = (5/2) In Λ, then Z > (1/2) In [2R(R2 + α)2/ln R] + o(l) as i2 -> oo.
Thus condition (48) is satisfied for R sufficiently large. With estimate
(47) we check that condition (45b) holds for R sufficiently large.

By CP, u(χ) < v(r) for 0 ̂  r ^ R - I. Thus

v(r) > hB(r)I(r)

> *® A B(0)B-\R -
1\K — I)

By the estimates in Chapter I we find

In Rn - 1 exp (R - I) Γ1

" l)~VW Λ«-»'2 L1

Combining estimates and noting that B~\R — I) = 1 + O(ln
gives the result.

COROLLARY 1. v(r, Λ, 7) = iί(i?, τ)/(r)[l + O(l/i?1/2)] /or 0 ̂  r ^
i? - (5/2) In J? as R-* 00.

Proof. Combine Theorems 10 and 11.

We can estimate the first derivative as follows:

COROLLARY 2. For 0 ^ r ^ i2 - (5/2) In R

sin ψ(r) - H(R, τ)/r(r) [l + 0

for R —> 00.

Proof. By Lemma 5,
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1 fr

sin ψ(r) = \ sn~ιv(s)ds .
γ%-1 Jo

Estimating v(r) with Theorem 10 gives

sin γ(r) < H(R, τ)/r(r) Γl + O ι

for 0 <Ξ r <̂  i? — (1/4) In R. Estimating v(r) with Theorem 11 gives

sin γ(r) > H(Λ, 7)I,(r) [ l + 0

for 0 <̂  r <; i? — (5/2) In i2. Combining estimates gives the result.

REMARK. One expects the error in Corollaries 1 and 2 to be
OQnR/R). Perko [15] obtains this error estimate for 7 > 0 by a
completely different method. The case 7 = 0 is important in view
of the general estimates of Chapter III.

9. The exterior problem* We obtain estimates for the func-
tion w(r, R, 7) which satisfies

(49a) — / **~lw' ) =w f o r r>R

(49b) wr(R + ) = -cot 7

(49c) lim w(r) = 0 .
r—>oo

Johnson and Perko [12] prove by a "shooting argument":

THEOREM 12. Problem (49) Λαs α unique solution w(r, R, 7) which
is continuous in (r, 7) for r ^ R and 0 < 7 ^ π/2; w > 0, wr < 0 if
0 <Ξ 7 < π/2; w Ξ 0 if y = π/2; w{r, R, 0) = lim?_>0+ te;(r, i2, 7); αwcZg
lim^^ wr ~ 0.

REMARK. The note after Theorem 6 applies here as well.

9A* Continuity with respect to (r, R, 7). We fill in a gap in
the continuous dependence properties.

LEMMA 11. For 0 <̂  7 < π/2, # ! < iϋ2 αwd r > R2

(50) ϋ?(r + Rλ - R2, Rl9 7) < w(r, R2, Ί)<^W ( A r , ^ 7 ) .

Proof, Let ^?: = w(ru Ru 7) and rt = \x — yt\ for i = 1 or 2. If
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B£2(y2) c B^iyj) then the proof of Theorem 2 shows that Tvx v <̂
COST = Tv2- v on dB^. Since vx = o(l) and v2 = o(l) as |a?| —> °°, CP
gives vx < v2 on 2?^. Choose j / 2 = 09y1 = (R2 — Rlr 0, , 0), and x =
(«!, 0, , 0); thus w{xί + J?i — i?2, Λi, 7) < w(xlf R2, 7) for xλ > R2.

Let

u —

Then by Lemma 2

= (J: > <
in BJ2(O) and Tu v = cos 7 on dBc

R2. Thus by CP, ^ > w in #4(0).

LEMMA 12. For 0 ^ 7 ^ ττ/2:

0 < ε < l/~2~ , σ(ε) = — .

If \τx — rz\ < σ(ε) and ru r2 ^ R then \w(r2, R, 7) — w{ru R,Ί)\ < ε.

Proof. See [5].

THEOREM 13. For 0 <̂  7 ^ π/2: w(r, i2, 7) is continuous in (r, i2)
independent of 7.

Proof. We show continuity at (r1# i?i).

For jβ > i?x: By inequality (50)

w(r, Rl9 7) < w(r, Rf 7) < -=r- w ( - ^ ^ ^i> ^)

Suppose

\r -rj <σ(β)

(51)

By Lemma 12

A r —

(52)

<σ(ε)

R
, β l f 7) - ε < w(r, R,Ύ)<^~ [w(rl9 Rl9 7) + ε] .

κ
For Λ < Rt: By inequality (50)

4 w

K
, Rlf 7) .
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Supposing condition (51):

(53) A - [w(rlf Rl9 7) - ε] < w(r, R, 7) < w(rl9 Rl9 7) + ε .

Inequalities (52) and (53) show continuity at (rl9 Rx) independent of

7.

COROLLARY. w(r9 R9 7) is continuous in (r, Rf 7) for r ^ R,
R>0, and 0 ^ 7 ^ π/2.

Proof. We show continuity at (r1? JBJ, 7I).

I w(r, Λ, 7) - w(rl9 Rlf Ti) I ̂  I w(r, β, 7) - w(n, iel? 7) |

+ I w(rlf Ru 7) - w{rl9 Rlf 7i) I

= ! + //.

For 17 - 7i| < S,: IK e by Theorem 12. For | r - rx\ < o2 and
IJB - Rx\ < δ,: I < ε by Theorem 13. Hence I + IK 2ε.

9B* General estimates—exterior case. Introducing sin <p(r) =
wrjVl + w\ we have

(54a) (rw - 1 sin φ)r — w for r > R

(54b) sinφ(iϋ —) = —cos 7 .

Equation (54a) can be rewritten as

(55) (sin φ)r + ^—-—i sin φ = w .
r

Partially inverting equation (55):

(56) -(cosφ) w + ^ ~ 1^ sin φ = w .

r

LEMMA 13. For 0 <: 7 < ττ/2 α^ώ r > R9 (sin 9?)r > 0 and

(57)
< < 0

R r

Proof. Since sin φ < 0, (sin φ)r — w — {n — l)/r sin φ > 0. Thus
— cos 7 < sin<£>(r) < 0 for r > R implying inequality (57).

THEOREM 14. For 0 ^ 7 < π/2:
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( i ) w(R, R, 7) < l/2(l - sin 7) .

(ϋ)

Proof. Part (i) is due to Finn [5], Integrate equation (56) from
w(r) to w{R):

( 5 8 ) w\R) - w\r) = _ g i n γ + c o s φ

2 )w(r) r

L e t r —> 00:

= 2(1 - sin 7) + 2(n - 1)

Estimating with inequality (57) gives

w\R) < 2(1 - sin 7)

w\R) > 2(1 - sin 7) - 2(n - 1) - ^ 2 W(R) .
R

Solving this quadratic inequality gives part (ii).

COROLLARY. W(R, R, 7) = α/2(l - sin 7) 4- 0(1/R) as R

9C* Estimate near the boundary.

LEMMA 14. For 0 ^ 7 < ττ/2:

(59) w(r, i2, 7) < z(r - R, 7) for r>R

(60) sin <?(# + I) < sin f ,(l) + (n - 1) l c o s y for I > 0 .
XL

Proof Let w(sc) = «(a?i — R, 7). By the proof of Theorem 2:
ΓM; v ^ cos 7 = Tu v on {#: x± — R). Since i(; = o(l) and t̂  > 0 we
have w — u <* o(l) as | a? | -> 00. By CP,

w(r, R, 7) < z(Xι - R, 7) ^ ^(r - R,Ί) for r > R .

Let »! = r — J?, then (cf. Lemma 10)

(sinφ)r + ί^JzJI sin φ < -[sin tife)], -
r

Integrating from R to R + I and employing inequality (57) gives
inequality (60).
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THEOREM 15. For 0 <: 7 < π/2 and I ^ 0:

( i ) w(R + i, R, 7) is strictly increasing in R.
(ii) l i m ^ w(R + Z, R, 7) = z(l, 7).

Proof.

Part (i). For I > 0 and Rx < i?2, take r = R2 + Z in Lemma 11:
?! + I, Ru 7) < w(S2 + I, J?2, 7). For Z = 0 we have w(Ru Rl9 7) ^

2, R2, 7). If 7 ^ 0 Lemma 1 rules out equality. The case I = 0
and 7 = 0 is handled as in the proof of Theorem 9.

Part (ii). From equation (58): w\r) > w\R) + 2[sin7 —
Let r = R + I and combine this with inequality (60) noting that
2[sin7 - cos^(Z)] = z\l) - z\0):

(61) w\R + l)> w\R) - z\0) + z\l) + 2η(l, R)

where η is the function introduced in § 8. Now, by the corollary
to Theorem 14 l im,^ w\R) = z\0). As before lim^^^ η(l, R) = 0, thus
lirn^.^ w(R + Z, Λ, 7) ̂  z(ΐ). By inequality (59): w(B + I, R, 7) ^
z(l, 7). Thus lim^^ w(JFϊ + Z, i2, 7) ̂  s(Z, 7).

9D* Behavior at infinity. We study ^(r, i2, 7) for r large.

THEOREM 16. For 0 ^ 7 < π/2:

( i ) C(B, 7) - lim ^ ( r > ^^ τ ) exists and C{R, 7) > 0 .
JSΓ(r)

(ii) w(r, R, 7) =_CCB, 7)JSΓ(r){l + O[^2(r)]} as r ~> 00.
(iii) C(Λ, 7) < V/2/τrC1(7)i2u-1)/2^[l + O(ln Λ/S)]

C(R, 7) > l/2/7rC1(7)i2u-1)/2βs[l + O0-/Rm)] as R-+00.

Proof.

Part (i). Since K(r) is a supersolution (Lemma 3) CP gives

for r > R, .

Thus w(r)/K(r) is monotone decreasing in r and positive. Hence
C(R, 7) exists and C(R, 7) ̂  0.

We now construct a subsolution. Let tt(r) = AK(r)[l + αϋ"2(r)]
for r^R^R. Let A - w(Ru R, Ί){K{RX)[1 + aK\RJ\}-\ We will
determine α(i2, i?J > 0 so that u satisfies the subsolution condition
iSΓ̂  ^ u for r ^ i?!. By CP we will then have u < v for r > Rx.

We calculate ur = AiΓr(l + 3αj^2) and note that ^ r < 0. We
estimate ur by noting
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^ W(R) V~2
~ K{R) K(R)

Thus

The last inequality comes from Lemma 4. The subsolution condition
becomes upon dividing by u:

(62) 1 + 2a(K2 + ZK})(1 +

r ίΓ (1 + iΓ2) V

We will require the stronger inequality obtained by replacing
(1 + uXfn with 1 + c{R)u\, with

¥{R)
We require

(63) ulf < 2ag(l +

where

KΛ(l+2aK>
-c

Rearranging condition (63);

(64) 2α > A*Klfg~\l + ZaKJQ. +

As above,

Thus

Also

K

Thus

max Kϊfg-1 ^ max Kίfg-1 =
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Choose a = U(R)/[K\R) - θώ^iPO^)] and condition (64) will be
satisfied. We note that 6(12), c(R) and d(R) are decreasing in R.

Take R, sufficiently large, then w{r) > u{r) for r > R, and thus

K{r)

Part (ii). From Part (i) C(R, 7) < w(r)IK(r) or

(65) C(R, Ί)K{T) < w{r, R, 7) ίor r > R .

Next, note

W(r) > ^M K^X

K{R,) [1 +

for r^R^R. Divide by K(r) and let r

(66) C(Λ, 7) ^ w ^ ' R' Ύ )

Replacing Rx by r gives

(67) w(r, R, 7) < C(R, y)K(r)[l + a(R, r)K\r)] .

Combining estimates (65) and (67) gives Part (ii).

Part (iii). We find an upper bound as follows:

v) < w(Rί> R>

where I = i?j — R. The second inequality comes from Lemma 14.
Choose I = (1/2) In R, then by the estimates of Chapter I:

Thus

We find a lower bound by combining inequalities (61) and (66)
with Rt = R + I:

7)
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Choose I = (1/4) In R, then

By the corollary to Theorem 14: w\R) - z\ϋ) = 0(1/22). Noting that
d{R) is decreasing in R we have

C(R, 7) > VWClΊ)enR{"-λm\± + 0

We can determine the asymptotic behavior of the derivatives of
w:

COROLLARY.

( i ) wr = COR, 7)iΓr(r){l + O[ΛΓ2(r)]} α s r - ^ o o .
(i i) w r r - C(R, Ύ)Krr(r){l + 0[K\r)]} as r -> oo.

Proof.

Part (i). Integrate the equation (r*"1 sin 9>)r = r*~ιw from r to
oo *

1 f °°

— sin^(r) = -^=-- \ sn~1w(s)ds .

r n 1 Jr

Estimate the integral with w{s) <̂  w(r)(K(s)/K(r)) and

( ) > w{r)K{s)[l + aK\s)} w(r)K(s)
V ; ~ K(r)[l + aK\r)] K(r)[l + aK\r)] 'Note:

J°° sn~1K(s)ds = -r^K^r) .

Hence

w S - I — r =

A.

Thus sin<?> = C(i2, 7)iίr[l + 0(K*)] a s r->oo. This implies Part (i).

(ii):
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Wrr

(1 + wVf11
(sin

C(Ύ,

C(Ύ,

R)[
R)K +

(n — 1)-

^ •— 1 ) i

r

sin ^
r

ΐ [1

We give some further properties of C(22, 7):

THEOREM 17.

( i ) C(R, 7) is continuous in (22, 7) /or 22 > 0 and 0 <; 7 Ŝ π/2.
(ii) C(22, 7) is strictly increasing in R for 0 <̂  7 < ττ/2; (7(22, 7)

is strictly decreasing in 7.

Proo/.

Pαrί (i). We show continuity at (22O, τ0). For 70 < itβ we com-
bine inequalities (65) and (66):

O, T O )
+

Require 122 - 2201 < 220/2, then choose Rx so that a(R0)K2(R1) < ε and
a{R)K\R1) < ε. Here α(220) = α(220, R1) and α(22) = α(22, 22X). By the
corollary to Theorem 13 there are δλ > 0 and δ2 > 0 so that

w(RlfR9j) _ . , <

2!, 220, To)

for 15 - Ro\ < ^ and | τ - τ o | < ^2 Thus

o, 7o)

For 70 = π/2 and 7 < π/2:

0 <r Γf7? Ύ) < W(R> R> yS) < ^ ( ί " s i n ^)
V ' J K(R) K(R)

Require |22 — 22O| < 220/2. Clearly there is a δ > 0 such that 0 <
C(R, τ )<ε for 17-τr/2|<δ. This shows continuity since C(22O, π/2) = 0.

Part (ii). Let 22X < 222. By Lemma 11 w(r, Rίf 7) < w(r, R2, 7)
for r ^ R2. Dividing by K(r) and taking r —> 00 gives C(22X, 7) ^
C(J?2, 7). Likewise if Ti < 72, CP gives w(r, R, τ2) < w(r, 22, Ti) for
r > R. Dividing by K{r) and taking r-> 00 gives C(R, τ2) ^ C(22, Ti).
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To complete the proof we need only show that if wx and w2 are
two solutions of equation (49a) with w1 ~ CK(r) as r —> oo and w2 ~
CK(r) as r —> oo then w1 = w2. Let u = wλ — w2; without loss of
generality we can assume u ^ 0, since by CP if u(R) ̂  0 then u(r) ^ 0
for r ^ R. Suppose wx & w2, then we must have u(r) > 0 for r > R.
Note: u(r) = o[K(r)] as ?• —> oo. The equation satisfied by u is

(68) (rn~ιurq)r =

with

q(r) = Γ{1 + [w2>r

Jo

By the corollary to Theorem 16:

q(r) = 1 + 0[K\r)] and 9 r (r) - O[JSΓ2(r)]

as r—> oo. Rewriting equation (68):

(69) Urr + U

r q' q

We construct a subsolution for equation (69). Let

u = Ae~
r(«-i

then

Choose α: α > (w - l)(n - 3)/4. For Rx sufficiently large

Urr + Ur (ϋ—JL + in) > A [/ for r ^ Rx

\ r q' q

(independent of A because the equation is linear) and l/q(r) > 0 for

r ^ JBI. Choose

A = (exp RJR? (l + ^
R-

Let F(r) = u(r) — U(r); V satisfies

Vrr + F r (^-Zlί + SL) < 1 F for
\ r Q' Q
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and V(RX) = 0. By the weak maximum principle [11] mmBlύr^Bi V(r) ^
min[0, V(R2)]. Letting R2-+oo yields V(r) ^ 0 for r ^ R±. Thus
u(r) ^ U{r) for r ^ 22j, but

u = o|X(r)] = o Γ——

a contradiction as r —> °o.

Chapter III
Solutions in Unsymmetrical Domains

10* General estimates, exponential decay• General estimates
are given that apply to any solution of equation (la):

THEOREM 18. Suppose u{x) e C\Ω) satisfies Nu = u in Ω.
( i ) If BB(y) c Ω then \u(x)\£v(\x-y\,Rf 0) for x e BB(y).
(ii) If Bί{y) c Ω then \u(x)\ ^ w(\x - y\,R, 0) for x eBc

R{y).
(iii) // H = {x:ή x> b, \n\ = l}dΩ then | %(«) | ^ «(% x - 6, 0)

/or α e i ϊ .

Proo/.

Part (i). This follows directly from CP (cf. the corollory to
Theorem 1) since lim sup (Tu — Tv) v <̂  0 on dBR(y) implies u(x) <Ξ v(x)
in BR(y); for the same reason —u(x) ^ t (a ) in BR(y).

Part (ii). From Part (i)

(70) \u(x)\ ^ v(O,d!, 0)

where d = dist (a?, 3fl). By Theorem 10 l i m ^ t?(0, d, 0) = 0; thus
\u(x)\ = o(l) as |x|—>oo. Also w(|a? — τ/|) = o(l) as Ixj-^oo, thus
«?(|aj-2/|)~%(α) = o(l) as | a | -*oo. On dB£(y), l imsup( jΓu- Γ ^ ) P ^ 0 ;
hence by CP, %(α?) ̂  wQx — y\) in BR(y). The same reasoning gives
— %(«) ^ w(| x — 2/|) in B^(l/).

(iii). For a? 6 H, let 2/ = sc + (R - n a? + 6)w, then Bs(2/) c H.
By Part (i) \u(x)\ ^ v(\x - y\, R, 0) = v(R - ή - x + b, R, 0). By The-
orem 9 lim^oo v{R — n x + b, R, 0) = z(ή - x ~ b, 0). This gives Part
(iii).

COROLLARY 1. Let d = dist (x, 342), then

C^ for d^do>O
expd
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where C depends on d0.

Proof. By inequality (70) \u(x)\ ^ v(0, d, 0); by Corollary 1 to
Theorem 11 v(0, d, 0) ~ H(d, 0)1(0) as d -> oo f where

H(d, 0) = V2πCί(0) .
expcί

Combining estimates gives the result.

COROLLARY 2. If B£(Q) c i2

where C depends on R.

Proof. By Part (ii) | u(x) | ^ w(\ x |, R, 0); by Theorem 16
w(\x\, R, 0)~C(R, 0)K(\x\) as | α | - > o o . By § 4

M as M^oo.

Combining estimates gives the result.

COROLLARY 3. If HaΩ then \u(x)\ S V~2 exp (6 — ΰ x) for
xeH.

Proof. By Part (iii) \u(x)\ ^ z(ή x - 6, 0) for α? e H. By The-
orem 5 z(ή- x — 6, 0) <; i/2 exp (6 — w a?) for xeH.

Corollaries 1, 2, and 3 give different exponential rates of decay
for solutions to equation (la) away from the boundary of the domain.
The estimate of Corollary 3 is best possible because if Ω = H and
u(x) = z(ΰ-x -b, 0) then u = z(0, 0) = i/ΊΓ on dH. Gerhardt [8]
gives an estimate of the same form with V 2 replaced by (n + 1).

COROLLARY 4. // Ω is an exterior domain then problem (1) has
a unique solution.

Proof. Two solutions ux and u2 to problem (1) must satisfy
uλ(x) = o(l) and u2(x) = o(l) as | a; | —> c>o thus ^(a?) — ̂ 2(cc) = o(l) as
I a? I —> oo. CP gives that ux Ξ U2.

The derivatives of any solution to equation (la) can be estimated
as follows:
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LEMMA 15. Suppose u(x) e C\Ω) and Nu = u in Ω. If Bid(x0)czΩ
then \u\2,a,Bδ < C\u\OtBAδ where C depends only on δ and n.

Proof. See Step 3 of the proof of Theorem 4.

Lemma 15 in conjunction with Corollaries 1, 2, and 3 shows that
the derivatives of a solution to equation (la) decay at the same rate
at which the solution decays:

COROLLARY.

I Vu{x) I < C din~L)/2 for d^d0, d = d i s t (x, dΩ)
expd

where C depends on d0.

Proof. Combining Corollary 1 and Lemma 15 (with 8δ = d0) gives

c
exp(<2 -do/2)

for d Ξ> dQ, where C depends on d0. Thus the corollary holds with a
different constant C.

REMARK. Similar estimates hold for higher derivatives, and if
BR(ZΩ or HaΩ, the analogous estimates are based upon Corollaries
2 and 3. These estimates improve upon the derivative estimate given
by Gerhardt [8].

11* Special estimates* We now put restrictions on y(σ) and Ω
to obtain special estimates on solutions to problem (1). For simplicity
we assume that Σ is piece wise smooth.

We first extend CPS of Chapter I.

THEOREM 19. Suppose Nu = u in Ω and Tu v = COST on I7*,
with 0 <; y(σ) S Ύo ̂  τc/2. If Ω c Bs(y) and u ^ o(l) as \x\ —> oo9 then
w{r, R, 70) ̂  (̂ί») where r ~ \x — y\.

Proof. By the proof of Theorem 2, Tw v ^ cos τ 0 ̂  Tu v on
Σ*. By hypothesis w — u ^ o(l) as \x\ —> oo. Thus CP gives the
conclusion.

COROLLARY. // Ω is an exterior domain, 0 6 Ω% and u is a solu-
tion to problem (1) with 0 ̂  y(σ) ^ 70 < ττ/2, then
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where Ct and C2 are positive constants.

Proof. For some positive R, and R2, Bi^O) c f l c B£2(0). By
Theorem 18 and Corollary 2 to Theorem 18

and u(x) = o(l) as |sc| -» ©o. Thus by Theorem 19: w(\x\, R2, 70) ^
By Theorem 16: w(\x\, R2, 70) ~ C(R2, yQ)K(\x\). Combining estimates

gives the result.

REMARK. In this case we have determined the rate of decay.

We now improve upon the upper bounds given in § 10.

THEOREM 20. Let u be a solution to problem (1) with Ύi^Ύ(σ)^πt

0 < 7! < τr/2. Suppose BR(y) c Ω and BR(y) Π Ω is piecewise smooth
and convex, where BR(y) is the maximal domain of existence of
v(r, R, 7i), r = \x — y\, then u(x) <; v(r9 R, 7i) in BR{y).

Proof. Let d(BΈ n Ω) = Σ° + Σ1 + Σ2 where Σ1 and Σ2 e C\ Σι c
Σ = dΩ and Σ2 c (3J55) Π β.

For a ; 6 Γ , Tv v = 1 > Γ^ v .

For x e Σι, Tv - v = (cos ί) sin ̂ (r)

where ^ is the angle between v and x — y. Let π, be the tangent
plane to Σ at x and let n = dist(τ/, TΓJ. We have cos^ = rjr and
r ^ rγ ^ J?. Thus

ΓV . it = n

 s m ^ ( r ) ^ sin ψ(n) ^ sin ψ(R) = cos 7i ^ Tu - v .

The first inequality comes from Lemma 6(ii).
Therefore CP applies, giving u ^ v in Bΰ Π Ω.

COROLLARY 1. Let u be solution to problem (1) with 0^
Suppose BR(y) c Ω and BR.(y) Π Ω is piecewise smooth and convex,
with lim^oo Rt — °°, then u{x) ^ 0 in BR(y).

Proof. Define 7* so that v(r9 Rif π) — v(r, R, yt) for 0 <; r ^ R.
Note: τr/2 < 7* < π. By Corollary 1 to Theorem 11 l i m ^ i;(r, JB<, π) = 0
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for 0 ^ r ^ R. By § 3, — v(r, R, τ») = v(r, R, π — T*) and — u is a
solution to problem (1) with boundary data π — Ί{O). Since 0 < π —
7< < π/2 ^ π — τ(tf), Theorem 20 gives — % ^ — v. Thus v(r, ϋί, τ<) ̂  w(αθ
in BR(y). Letting i —> oo gives the result.

COROLLARY 2. Lei i ϊ = {sc: α̂  ̂  0}. There is a unique solution
to Nu — u in H and Tu v — cos 7 0% 3iϊ, 7 constant: the one-
dimensional solution, u — z(xu 7).

Proof. We need only consider 0 ίg 7 ^ π/2. By Corollary 1,
u(x) ^0 on H. By Theorem 19, if HaB&(y) then w(r, i2, 7) ^ w(a?).
For xeH, choose y = ( —Λ, x2, - , »»), then r = R + α?lβ Thus
w(J? + xlf R, 7) ^ u(x). Take the limit i?—> co. ^(a?lf 7) ^ %(«).

By Theorem 20, if BB(y)dH then %(&) ^ v(r, iϊ, 7). For cceiί
choose ?/ = (i2, sc2, , xn), then r = R — xx. Thus %(») ^ v(JB — xx, R, 7).
Take the limit R -> co: %(a ) ^ 2(#1? 7). Therefore ^(x) = J S ^ , 7).

REMARK. Uniqueness also holds for n = 1, since a solution to
problem (1) in H is a solution to problem (1) in H for n = 2.

For an interior domain, we define the "interior rolling number":

^ i = max {i2: for each xeΣ there is a ball BR c 42, with x e BR).

THEOREM 21. Lei 42 6e bounded and Σ eC\ Letue C\Ω) Π C2(42)
be a solution to problem (1), with 70 ^ Ί(O) < TΓ, 0 < 70 ^ ?r/2. Suppose
&ι exists, then

( i ) max tt(aθ ̂  v(.^i, ^ 1 , 70).
(ii) if BR(y) c 42 and R ^ ^ , then u(x) ̂  v(? , J?, 70) in BR(y),

with r — \x — y\.

Proof.

Part (i). If u ^ 0 there is nothing to prove. If u(xL) > 0 for
Xi e Ω, then by the maximum principle, max u(x) occurs on Σ, say at
x0. Suppose u(x0) > v(&l9 &lf y0). By Theorems 6 and 9, v(R, R, 70)
is continuous and strictly decreasing in R. By Theorem 7,
limR->ov(R, R, 70) = °°. We can thus choose R < ^ so that
v(#, i2, To) = MO&O). There is a ball BRc:Ω with XO^JB^. By CP:
u(x) < v(r, Λ, To) in BR. Thus (du/dv)(x0) ^ (dv/dv)(xQ). However,
(dv/dv)(x0) = cot 70 and (du/dv)(x0) = cot 7(#0), since at ίc0:

cos -1/1 + |F« | 2 l/ l + \Vuf
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and (du/dv)(x0) = \Fu\. Therefore (du/dv)(x0) — (dv/dv)(x0), contradicting
Lemma 1.

Part (ii). This follows immediately from Part (i) and CP.

REMARK. The proof shows that equality holds in Part (i) only
if Ω is a ball and j(σ) = y0.

For an exterior domain, we define the "exterior rolling number":

,^?2 = min {R: for each x e Σ there is a ball BRZD Ω% with x e BR).

THEOREM 22. Let Ω be an exterior domain, Σ e C1 and Ωc convex.
Let u(x) e C\Ω) (Ί C\Ω) be a solution to problem (1) with τ 0 ^ Ίf(p) < π,
0 < To ̂  π/2. Tftew

( i ) maxw(#) < 2(0, τ0).
(i i) ί/ ^? 2 exists, then maxu(x) ^ w(&2, &2, y0).
(iii) ί/ ^ 2 e^isίs α^ώ jBi(2/) aΩ, R ^ ,^?2, ίfeew (̂ίi?) ^ w(r, R, τ0)

m .Bid/), wiίfe r = \x — y .

Proof.

Part (i). If u ^ 0 there is nothing to prove. If u(xλ) ^ 0 for
x1 e Ω, then by the maximum principle and the fact that u(x) — o(l)
as I a? I —> oo: max w(a?) occurs on 21, say at α?0. Suppose u(xQ) ^ ^(0, τ0) —
i/2(l — sin70). Choose 7i ^ 70 so that u(x0) — ^(0, 7i). For convenience
suppose x0 — 0, that the tangent plane to Σ at x0 is given by {x: xx = 0},
and that if = {ίc: xL > 0} c i2. Since w — « ^ o(l) as |a;| -> oo, by CP:
w(a?)<ίδ(α?1, 7i) in H. Hence (du/dv)(0)^(dz/dv)(0). However, (dz/dι>)(0) =
cot 7i and (du/dι>)(0) = cot 7(0); thus (du/dv)(0) = (dv/dv)(0), contradicting
Lemma 1.

Pαrί (ii). Suppose %(a;0) = max %(a?) > w(<^?2, &2, 70), where α?0 e J .
By Theorems 13 and 15: w(R, R, 70) is continuous and strictly in-
creasing in R, with l im^^ w(R, R, 70) = z(0f 70). We can choose
R > &2 so that w(R, R, 70) = u(xo)9 since by Part (i) u(x0) < ^(0, 70).
There is a ball 5^, with Ωc c ^ and a;0 6 BB. By CP, w(a?) < w(r, R, 70)
in BE, thus (du/dv)(x0) ^ (dv/dv)(xQ). However, (dw/dv)(xQ) = cot7 0 and
(du/dv)(x0) = cot7(a?o). Therefore (dw/dv)(x0) = (du/di>)(x0), contradicting
Lemma 1.

Pαr£ (iii). This follows immediately from CP and Part (ii).

REMARKS. ( 1 ) The proof shows that equality can hold in Part
(ii) only if Ωc is a ball and y(σ) = 70.



HEIGHT ESTIMATES FOR CAPILLARY SURFACES 509

(2) If Σ 6 C2 and Ωc is strictly convex, then ^ will exist,
^ 2 = (k)-1 where k — min k{σ) over Σ and k = the minimum principal
curvature of 2* at σ (see [2]).

12* Two examples* We give two examples that show the ap-
propriateness of the convexity condition of Theorems 20 and 22 and
the "rolling number" condition of Theorem 21.

EXAMPLE 1. We construct a domain Ω = BB(y) U J%Γ where 3^
i s p a r t of a cone 3ίί= {x: xλ> \x\ cos a, xx < xx), 0 < a < π/2, a n d y =
(R + ε, 0, , 0); here ε > 0 and

1 — ε sec2 2i2

+
where xx is the xx coordinate of the first intersection of 3ίί with BR

(see Figure 1).

FIGURE 1

Let v = v(\x — y\9 R, 7) and let u(x) be the solution to problem
(1) in Ω, where 7 = ττ/2 — a. For ε sufficiently small we will show
that u < v in 5^.

Let wn be the volume of the unit ball in ^-dimensions.
We modify an argument of Finn [5]. By integration by parts:

\ udx — \ Tu vdσ = (cos 7) | dΩ
JΩ JdΩ

c

\ vdx = (cos 7) I dBR I .

Thus

Now
calculate:

\ (u - v)dx = cos 7(| dΩ I - \dBB\) - \

- \Σ2\ where Σ1 (

udx
Ω-BR

and ΣzcdBB. We

11'11 = w%_1(tan%~2 α) sec α^Γ"1

rΓ2ds g



510 DAVID SIEGEL

[where τλ is the distance from the xx axis along a profile curve and
s is arc length, thus r^s) ^ s]

^Rsin"1 t a n α ) - ^ t a n α + O(xf)

n

Let 0 < Rλ < R and ^ = (j^, 0, , 0).

Claim. For ε sufficiently small Ω — BRcBRι(y^ and u(x) < h{x)
in S ^ Π Ω, where

h(x) = 2L + Rt

Assuming the claim:

S (tt — v)dx ^ cos Ίwn_Λ tanw~2α(sec α — tan α ) ^ " 1

-(—+ Ri) ^ ^ tan'1-1 a$ϊ
\Ri / ^

For x1 sufficiently small

[ (u - v)dx > 0
J BR

by equation (71) this is true if ε is sufficiently small. Therefore
u < v in BR.

Proof of claim. Since Nh ^ h (cf. Corollary 1 to Theorem 1) we
need show only that Th v ^ cos 7 on [d(Ω D BRί)]* = Σ1 + Σ* + Σ\
where Σ3adBRί and Σ*cdBR. On J 1 , Th-v=; cos 7 and on J 3 ,
Th- v = 1. For a e ί 4 we must show

(72) cos 0 ^ —x cos 7
r

where r = |& — yt\ and 0 is the angle between x — y1 and v.
By changing the x1 coordinate, x-^Rι — xι, —{Rly0y * ,0), we

calculate

(73) cos θ - — Γr + & (R - R1 + e)Ί .

We check that cos# is smallest for xx = xι determined by dBRΠdBRι:

_ (R - R,){R, - ε) - ε2/2
R — Rι + ε
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Putting this value into equation (73) gives

(74) cos θ ^ 1 - ε ( i g " Ri) - — 5 — .
RRi 2iR]i1

For ε sufficiently small, so that

1 ε (R ~ Rί) g 2 > Ri c o s Ύ

Rx — ε

then condition (72) will be satisfied.

REMARKS. ( 1 ) The domain Ω is not convex.
( 2 ) The example can be modified so that Σ is smooth BRaΩ,

R > . ^ , and u(x) < v{r, R, 7) in BR.

EXAMPLE 2. We construct a domain Ω = BR(y){J J3Γ (see Figure
2) by the method of Example 1 so that u(x) < w(r, R, 7) in B£(y).

FIGURE 2

REMARKS. ( 1 ) Ωc is not convex.
( 2) The example can be modified so that Σ is smooth, Ω° is not

convex, BR C i2, and u(x) < w(r, i2, 7) in BC

R.

13* The infinite wedge* We consider solutions to problem (1)
in

<5^a = {0&i, xz)' % i > \xι\ c o s α }

with 0 < a < 7Γ, and 7 constant, 0 < 7 ^ π/2.

THEOREM 23. JFO?- 0 < 7 < π/2 problem (1) Λαs α unique positive
solution in J%Γa. Furthermore, for a < ττ/2: on J?*, ^(x) ^ ^(0, 7)

ôo w(ίc) = ^(0, 7). For a > ττ/2: on JF*, ^(x) ^ «(0, 7)
*) = <0, 7). Here Σ* = d^Γa - {(0, 0)}.

Proof. Existence comes from Theorem 4. Let d = dist (x, Σ).

Case a < π/2. Any solution u{x) to problem (1) must be non-
negative since J ^ is convex, by Corollary 1 to Theorem 20. By
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Theorem 19, if ΩaB£ then w(r, 22, 7) < u(x) in Bί. By a limit
argument (cf. the proof of Corollary 2 to Theorem 20) we obtain

(75) z(d, 7) ̂  u(x) for x e

If BR c SΓa, then u(x) < v(r, R, 7) in BB, by Theorem 20. Given
x e J£^ we choose BB c J ϊ ^ with center on the xx axis so that the
radius through x is perpendicular to Σ. This determines R =
α?i tan α sec α — d tan2 α. Thus,

(76) u(x) ̂  v(22 - d, R9 7) .

Suppose there are two solutions ux(x) and u2(x) to problem (1).
We show that ut — u2 = o(l) as | a; | —> 00.

Given ε > 0, choose d1 so that v(0, dlf 0) < ε/2. For d > dlβ

1̂ 0*0 — u20*0| < I t î(») I + \u2(x)\ < ε. For xx > xx and d <̂  dx, with
xt sufficiently large: 0 < v(R — d, R, 7) — z(d, 7) < ε, by Theorem 9.
Thus, \ux(x) — u2(x)\ < ε for xx > xlf by estimates (75) and (76). There-
fore ux — u2 = o(l) as |α?| -> 00. By CP, ̂  = u2.

Taking d = 0 in estimates (75) and (76) gives the limit statement
and estimate on Σ*.

Case a > π/2. We first show that for any solution u(x) to prob-
lem (1): u ^ o(l) as \x\ -> ©o.

Given ε > 0, choose ^ as above. For d > dx: u{x) > —ε/2. Choose
7i > π/2 so that v(r, dl9 7i) > — ε for 0 <; r ^ dx. For d^dγ and
»!<»!, ^1 sufficiently small so that a; 6 Bdl(y) c ^ ^ , with dist (y, Σ) = d,f

and JSrf^) Π 3ίΓa is convex, we have: u(x) ̂  v(r, cϋj, 7) > — ε (cf. the
proof of Corollary 1 to Theorem 20). Therefore u ^ o(l) as \x\ ~» 00.

Now, if 3raaBc

R then w(r, 22, 7) ^ w(a?) in BJ, by Theorem 19.
This shows u(x) > 0 in 3ίΓa Furthermore, given x e JίΓu with xx < 0,
we choose BRχ(y) c 3ίΓ°a, with center on the xλ axis so that segment
joining x and 7/ is perpendicular to Σ. This determines Rx —
— x1 sec a tan α + d tan2 a. We have

(77) w(Rx + d, 22., 7) ^

Given ε > 0, choose dx as above. Thus,

(78) 0 < u(x) < ε/2 f o r d>d±.

Choose xx so that | w(Rx + d, Rx, 7) — ^(d, 7) | < ε/2 for x1 < xλ and 0 <;
d ^ dlβ Choose R so that |v(22 - d, 22, 7) - «(d, τ ) | < ε/2 for d ^ dlβ

For x e 3ίTa with d ^ d l f there is a ball BΛ(i/) c 3ίίa, dist (2/, J ) = Rf

the radius through x is perpendicular to I7, and BR(y) Π ̂ ^ convex,
if xx < $!, ίx sufficiently small. Thus

(79) u{x) ̂  v(R — d, 22, 7) for d ^ d1 and ^ < xx .



HEIGHT ESTIMATES FOR CAPILLARY SURFACES 513

Suppose there are two solutions ut(x) and u2(x) to problem (1).
They must both satisfy estimates (77), (78), and (79). Thus
\uλ{x) — u2(x)\ < ε for xx < min (xlf Xj). This implies ux — u2 = o(l) as
x\ —> oo; by CP, ut = w2-

The limit statements come from estimates (77) and (79) with
d = 0.

We now obtain the estimate on Σ*. Let Ω = J%^ Π {x: x2 < 0}.
Let BR{y) c 3ίΓa be tangent to J * at a point #0 β dΩ. Let v = (r, R, 7)
and [3Jfe(lί)Γ = Σ1 + J 2 + 2*3, where Σ1 c J * , J 2 c {z: ^ > 0, x2 = 0}
and Σ*(zdBΰ{y). On 211, Tv v^ COST, by the proof of Theorem 20.
On J?2, Γt; v > 0. On J 3 , T ;̂ v = 1. Because of uniqueness, wfo, a?2) =
u(xlf —x2). Thus du/dx2 = 0 on J?2, hence Γu v = 0 on Σ2. Therefore
Tv-v^Tu v on [dBji(y)]*; by CP, u(x) < v(r, R, 7) in 5Λ(y). Taking
R-> °°, with .BRO/) tangent at α?0, gives:

w(a?) < ^ ( ^ x, 7) in ίί i = {x: ΰt a? > 0}

u(x) < z(n2 * x, 7) in H2 = {x: w2 α? > 0}

where nx — (sinα, — cosα) and ^ 2 = (sin α, cos a). Thus on 21*,
u(x) ^ 2(0, 7).

We now study the behavior at the vertex.

THEOREM 24. For a + 7 ^ τr/2 ami 0 < a < ττ/2, ί/te solution to
problem (1) m ^ ^ satisfies

( i ) lim inf w(a?) ^ V T ( 1 - l/Γ^fe2)1 7 2

0

(ii) lim sup u(x) ^
ί»->0

where k = cos7/sina.

Proo/.

P a r ί (i). As a comparison surface choose z(xl9 7), with 7 = cos"1 A;.
On (9^%ί)*, Tz v= —sin^(OPOsinα ^ c o s 7 s i n α = cos7 = Tu-%>.
Since u > 0, then z — u ^ o(l) as | α? | -> ^ , in ^%^. Hence by CP,
« < u in J ^ . Therefore lim inf^0 u ^ 2(0, 7). This gives the result.

Part (ii). As a comparison surface choose

h(χ) = ^-+R- l/R2 - \χ - y\*
R

where y = (A?i2, 0). We have Nh^h m BB(y). We check: Th-v =
cos7 on (3^eς)* and Th v = 1 on 3J5*. Thus, Th-v^Tu v on

Π J<O]*; by CP, u(a?) < Λ(a>) in JBΛ n 3fa. Therefore,
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lim sup u(x) ^ Λ(0) = — + 72(1 - i/ l - ¥) .

Minimize this bound by choosing

R = 1/Ύ(1 - i/ l - W)-m .

This gives the result.

REMARKS. In ^-dimensions, with 3tΓa = {x:xt> \x\ cosα}, 0 <
a < π/2, Theorems 23 and 24 still hold with 2i/~2~ replaced by 2V~n
in Part (ii) of Theorem 24. We note

- kψ2 > z(0, 7) .

This shows that there is a "rise" at the vertex. For the case a +
7 < π/2, Concus and Finn [3] show that the solution to problem (1)
is unbounded at the vertex.

For

= {x: χx > Vx\ + x\ cos a), 0 < a < π .

Theorems 23 and 24 still hold, with the same modification.
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